

Contents	in	Detail
1.	 Cover	Page
2.	 Title	Page
3.	 Copyright	Page
4.	 About	the	Author
5.	 About	the	Technical	Reviewer
6.	 BRIEF	CONTENTS
7.	 CONTENTS	IN	DETAIL
8.	 ACKNOWLEDGMENTS
9.	 INTRODUCTION

1.	 Assumptions	and	Prerequisites
2.	 What	Is	Great	Code?
3.	 Programmer	Classifications
4.	 So	You	Want	to	Be	a	Great	Programmer
5.	 A	Final	Note	on	Ethics	and	Character
6.	 For	More	Information

10.	 PART	I:	PERSONAL	SOFTWARE	ENGINEERING
11.	 1	SOFTWARE	DEVELOPMENT	METAPHORS

1.	 1.1	What	Is	Software?
2.	 1.2	Parallels	to	Other	Fields
3.	 1.3	Software	Engineering
4.	 1.4	Software	Craftsmanship
5.	 1.5	The	Path	to	Writing	Great	Code
6.	 1.6	For	More	Information

12.	 2	PRODUCTIVITY

1.	 2.1	What	Is	Productivity?
2.	 2.2	Programmer	Productivity	vs.	Team	Productivity
3.	 2.3	Man-Hours	and	Real	Time
4.	 2.4	Conceptual	and	Scope	Complexity
5.	 2.5	Predicting	Productivity
6.	 2.6	Metrics	and	Why	We	Need	Them
7.	 2.7	How	Do	We	Beat	10	Lines	per	Day?
8.	 2.8	Estimating	Development	Time
9.	 2.9	Crisis	Mode	Project	Management
10.	 2.10	How	to	Be	More	Productive

11.	 2.11	For	More	Information

13.	 3	SOFTWARE	DEVELOPMENT	MODELS

1.	 3.1	The	Software	Development	Life	Cycle
2.	 3.2	The	Software	Development	Model
3.	 3.3	Software	Development	Methodologies
4.	 3.4	Models	and	Methodologies	for	the	Great	Programmer
5.	 3.5	For	More	Information

14.	 PART	II:	UML
15.	 4	AN	INTRODUCTION	TO	UML	AND	USE	CASES

1.	 4.1	The	UML	Standard
2.	 4.2	The	UML	Use	Case	Model
3.	 4.3	The	UML	System	Boundary	Diagrams
4.	 4.4	Beyond	Use	Cases
5.	 4.5	For	More	Information

16.	 5	UML	ACTIVITY	DIAGRAMS

1.	 5.1	UML	Activity	State	Symbols
2.	 5.2	Extending	UML	Activity	Diagrams
3.	 5.3	For	More	Information

17.	 6	UML	CLASS	DIAGRAMS

1.	 6.1	Object-Oriented	Analysis	and	Design	in	UML
2.	 6.2	Visibility	in	a	Class	Diagram
3.	 6.3	Class	Attributes
4.	 6.4	Class	Operations
5.	 6.5	UML	Class	Relationships
6.	 6.6	Objects
7.	 6.7	For	More	Information

18.	 7	UML	INTERACTION	DIAGRAMS

1.	 7.1	Sequence	Diagrams
2.	 7.2	Collaboration	Diagrams
3.	 7.3	For	More	Information

19.	 8	MISCELLANEOUS	UML	DIAGRAMS

1.	 8.1	Component	Diagrams
2.	 8.2	Package	Diagrams
3.	 8.3	Deployment	Diagrams
4.	 8.4	Composite	Structure	Diagrams
5.	 8.5	Statechart	Diagrams

6.	 8.6	More	UML
7.	 8.7	For	More	Information

20.	 PART	III:	DOCUMENTATION
21.	 9	SYSTEM	DOCUMENTATION

1.	 9.1	System	Documentation	Types
2.	 9.2	Traceability
3.	 9.3	Validation,	Verification,	and	Reviews
4.	 9.4	Reducing	Development	Costs	Using	Documentation
5.	 9.5	For	More	Information

22.	 10	REQUIREMENTS	DOCUMENTATION

1.	 10.1	Requirement	Origins	and	Traceability
2.	 10.2	Design	Goals
3.	 10.3	The	System	Requirements	Specification	Document
4.	 10.4	The	Software	Requirements	Specification	Document
5.	 10.5	Creating	Requirements
6.	 10.6	Use	Cases
7.	 10.7	Creating	DAQ	Software	Requirements	from	the	Use	Cases
8.	 10.8	(Selected)	DAQ	Software	Requirements	(from	SRS)
9.	 10.9	Updating	the	Traceability	Matrix	with	Requirement	Information
10.	 10.10	For	More	Information

23.	 11	SOFTWARE	DESIGN	DESCRIPTION	DOCUMENTATION

1.	 11.1	IEEE	Std	1016-1998	vs.	IEEE	Std	1016-2009
2.	 11.2	IEEE	1016-2009	Conceptual	Model
3.	 11.3	SDD	Required	Contents
4.	 11.4	SDD	Traceability	and	Tags
5.	 11.5	A	Suggested	SDD	Outline
6.	 11.6	A	Sample	SDD
7.	 11.7	Updating	the	Traceability	Matrix	with	Design	Information
8.	 11.8	Creating	a	Software	Design
9.	 11.9	For	More	Information

24.	 12	SOFTWARE	TEST	DOCUMENTATION

1.	 12.1	The	Software	Test	Documents	in	Std	829
2.	 12.2	Test	Plans
3.	 12.3	Software	Review	List	Documentation
4.	 12.4	Software	Test	Case	Documentation
5.	 12.5	Software	Test	Procedure	Documentation
6.	 12.6	Level	Test	Logs
7.	 12.7	Anomaly	Reports

8.	 12.8	Test	Reports
9.	 12.9	Do	You	Really	Need	All	of	This?
10.	 12.10	For	More	Information

25.	 AFTERWORD:	DESIGNING	GREAT	CODE
26.	 GLOSSARY
27.	 INDEX
28.	 Footnotes

1.	 i
2.	 ii
3.	 iii
4.	 iv
5.	 v
6.	 vi
7.	 vii
8.	 viii
9.	 ix
10.	 x
11.	 xi
12.	 xii
13.	 xiii
14.	 xiv
15.	 xv
16.	 xvi
17.	 xvii
18.	 xviii
19.	 xix
20.	 xx
21.	 xxi
22.	 xxii
23.	 xxiii
24.	 xxiv
25.	 xxv
26.	 xxvi
27.	 1
28.	 2
29.	 3
30.	 4
31.	 5
32.	 6
33.	 7

34.	 8
35.	 9
36.	 10
37.	 11
38.	 12
39.	 13
40.	 14
41.	 15
42.	 16
43.	 17
44.	 18
45.	 19
46.	 20
47.	 21
48.	 22
49.	 23
50.	 24
51.	 25
52.	 26
53.	 27
54.	 28
55.	 29
56.	 30
57.	 31
58.	 32
59.	 33
60.	 34
61.	 35
62.	 36
63.	 37
64.	 38
65.	 39
66.	 40
67.	 41
68.	 42
69.	 43
70.	 44
71.	 45
72.	 46
73.	 47

74.	 48
75.	 49
76.	 50
77.	 51
78.	 52
79.	 53
80.	 54
81.	 55
82.	 56
83.	 57
84.	 58
85.	 59
86.	 60
87.	 61
88.	 62
89.	 63
90.	 64
91.	 65
92.	 66
93.	 67
94.	 68
95.	 69
96.	 70
97.	 71
98.	 72
99.	 73
100.	 74
101.	 75
102.	 76
103.	 77
104.	 78
105.	 79
106.	 80
107.	 81
108.	 82
109.	 83
110.	 84
111.	 85
112.	 86
113.	 87

114.	 88
115.	 89
116.	 90
117.	 91
118.	 92
119.	 93
120.	 94
121.	 95
122.	 96
123.	 97
124.	 98
125.	 99
126.	 100
127.	 101
128.	 102
129.	 103
130.	 104
131.	 105
132.	 106
133.	 107
134.	 108
135.	 109
136.	 110
137.	 111
138.	 112
139.	 113
140.	 114
141.	 115
142.	 116
143.	 117
144.	 118
145.	 119
146.	 120
147.	 121
148.	 122
149.	 123
150.	 124
151.	 125
152.	 126
153.	 127

154.	 128
155.	 129
156.	 130
157.	 131
158.	 132
159.	 133
160.	 134
161.	 135
162.	 136
163.	 137
164.	 138
165.	 139
166.	 140
167.	 141
168.	 142
169.	 143
170.	 144
171.	 145
172.	 146
173.	 147
174.	 148
175.	 149
176.	 150
177.	 151
178.	 152
179.	 153
180.	 154
181.	 155
182.	 156
183.	 157
184.	 158
185.	 159
186.	 160
187.	 161
188.	 162
189.	 163
190.	 164
191.	 165
192.	 166
193.	 167

194.	 168
195.	 169
196.	 170
197.	 171
198.	 172
199.	 173
200.	 174
201.	 175
202.	 176
203.	 177
204.	 178
205.	 179
206.	 180
207.	 181
208.	 182
209.	 183
210.	 184
211.	 185
212.	 186
213.	 187
214.	 188
215.	 189
216.	 190
217.	 191
218.	 192
219.	 193
220.	 194
221.	 195
222.	 196
223.	 197
224.	 198
225.	 199
226.	 200
227.	 201
228.	 202
229.	 203
230.	 204
231.	 205
232.	 206
233.	 207

234.	 208
235.	 209
236.	 210
237.	 211
238.	 212
239.	 213
240.	 214
241.	 215
242.	 216
243.	 217
244.	 218
245.	 219
246.	 220
247.	 221
248.	 222
249.	 223
250.	 224
251.	 225
252.	 226
253.	 227
254.	 228
255.	 229
256.	 230
257.	 231
258.	 232
259.	 233
260.	 234
261.	 235
262.	 236
263.	 237
264.	 238
265.	 239
266.	 240
267.	 241
268.	 242
269.	 243
270.	 244
271.	 245
272.	 246
273.	 247

274.	 248
275.	 249
276.	 250
277.	 251
278.	 252
279.	 253
280.	 254
281.	 255
282.	 256
283.	 257
284.	 258
285.	 259
286.	 260
287.	 261
288.	 262
289.	 263
290.	 264
291.	 265
292.	 266
293.	 267
294.	 268
295.	 269
296.	 270
297.	 271
298.	 272
299.	 273
300.	 274
301.	 275
302.	 276
303.	 277
304.	 278
305.	 279
306.	 280
307.	 281
308.	 282
309.	 283
310.	 284
311.	 285
312.	 286
313.	 287

314.	 288
315.	 289
316.	 290
317.	 291
318.	 292
319.	 293
320.	 294
321.	 295
322.	 296
323.	 297
324.	 298
325.	 299
326.	 300
327.	 301
328.	 302
329.	 303
330.	 304
331.	 305
332.	 306
333.	 307
334.	 308
335.	 309
336.	 310
337.	 311
338.	 312
339.	 313
340.	 314
341.	 315
342.	 316
343.	 317
344.	 318
345.	 319
346.	 320
347.	 321
348.	 322
349.	 323
350.	 324
351.	 325
352.	 326
353.	 327

354.	 328
355.	 329
356.	 330
357.	 331
358.	 332
359.	 333
360.	 334
361.	 335
362.	 336
363.	 337
364.	 338
365.	 339
366.	 340
367.	 341
368.	 342
369.	 343
370.	 344
371.	 345
372.	 346
373.	 347
374.	 348
375.	 349
376.	 350

WRITE	GREAT	CODE
VOLUME	3

Engineering	Software

by	Randall	Hyde

San	Francisco

WRITE	GREAT	CODE,	Volume	3:	Engineering	Software
Copyright	©	2020	by	Randall	Hyde.

All	rights	reserved.	No	part	of	this	work	may	be	reproduced	or	transmitted	in	any
form	or	by	any	means,	electronic	or	mechanical,	including	photocopying,
recording,	or	by	any	information	storage	or	retrieval	system,	without	the	prior
written	permission	of	the	copyright	owner	and	the	publisher.

ISBN-13:	978-1-59327-979-0	(print)
ISBN-13:	978-1-59327-981-3	(ebook)

Publisher:	William	Pollock
Executive	Editor:	Barbara	Yien
Production	Editor:	Rachel	Monaghan
Developmental	Editors:	Liz	Chadwick,	Neville	Young,	and	Athabasca	Witschi
Project	Editor:	Dapinder	Dosanjh
Cover	and	Interior	Design:	Octopod	Studios
Technical	Reviewer:	Anthony	Tribelli
Copyeditor:	Rachel	Monaghan
Compositor:	Danielle	Foster
Proofreader:	James	Fraleigh
Illustrator:	David	Van	Ness

For	information	on	distribution,	translations,	or	bulk	sales,	please	contact	No	Starch
Press,	Inc.	directly:
No	Starch	Press,	Inc.
245	8th	Street,	San	Francisco,	CA	94103
phone:	1.415.863.9900;	info@nostarch.com
www.nostarch.com

The	Library	of	Congress	issued	the	following	Cataloging-in-Publication	Data	for
the	first	edition	of	Volume	1:

Hyde,	Randall.	
		Write	great	code	:	understanding	the	machine	/	Randall	Hyde.

							p.	cm.

		ISBN	1-59327-003-8

1.	Computer	programming.	2.	Computer	architecture.		I.	Title.

			QA76.6.H94	2004

			005.1--dc22

mailto:info@nostarch.com
http://www.nostarch.com

																																																				2003017502

No	Starch	Press	and	the	No	Starch	Press	logo	are	registered	trademarks	of	No
Starch	Press,	Inc.	Other	product	and	company	names	mentioned	herein	may	be	the
trademarks	of	their	respective	owners.	Rather	than	use	a	trademark	symbol	with
every	occurrence	of	a	trademarked	name,	we	are	using	the	names	only	in	an
editorial	fashion	and	to	the	benefit	of	the	trademark	owner,	with	no	intention	of
infringement	of	the	trademark.

The	information	in	this	book	is	distributed	on	an	“As	Is”	basis,	without	warranty.
While	every	precaution	has	been	taken	in	the	preparation	of	this	work,	neither	the
author	nor	No	Starch	Press,	Inc.	shall	have	any	liability	to	any	person	or	entity	with
respect	to	any	loss	or	damage	caused	or	alleged	to	be	caused	directly	or	indirectly
by	the	information	contained	in	it.

About	the	Author

Randall	Hyde	is	the	author	of	The	Art	of	Assembly	Language
and	Write	Great	Code,	Volumes	1,	2,	and	3	(all	from	No	Starch
Press),	 as	 well	 as	 Using	 6502	 Assembly	 Language	 and	 P-
Source	(Datamost).	He	is	also	the	coauthor	of	Microsoft	Macro
Assembler	 6.0	 Bible	 (The	 Waite	 Group).	 Over	 the	 past	 40
years,	 Hyde	 has	 worked	 as	 an	 embedded	 software/hardware
engineer	 developing	 instrumentation	 for	 nuclear	 reactors,
traffic	 control	 systems,	 and	 other	 consumer	 electronics
devices.	 He	 has	 also	 taught	 computer	 science	 at	 California
State	Polytechnic	University,	Pomona,	and	at	the	University	of
California,	Riverside.	His	website	is	www.randallhyde.com/.

http://www.randallhyde.com/

About	the	Technical	Reviewer

Tony	 Tribelli	 has	 more	 than	 35	 years	 of	 experience	 in
software	 development,	 including	 work	 on	 embedded	 device
kernels	 and	molecular	modeling.	He	 developed	 video	 games
for	 10	 years	 at	 Blizzard	 Entertainment.	 He	 is	 currently	 a
software	 development	 consultant	 and	 privately	 develops
applications	utilizing	computer	vision.

BRIEF	CONTENTS

Acknowledgments

Introduction

PART	I:	PERSONAL	SOFTWARE	ENGINEERING

Chapter	1:	Software	Development	Metaphors

Chapter	2:	Productivity

Chapter	3:	Software	Development	Models

PART	II:	UML

Chapter	4:	An	Introduction	to	UML	and	Use	Cases

Chapter	5:	UML	Activity	Diagrams

Chapter	6:	UML	Class	Diagrams

Chapter	7:	UML	Interaction	Diagrams

Chapter	8:	Miscellaneous	UML	Diagrams

PART	III:	DOCUMENTATION

Chapter	9:	System	Documentation

Chapter	10:	Requirements	Documentation

Chapter	11:	Software	Design	Description	Documentation

Chapter	12:	Software	Test	Documentation

Afterword:	Designing	Great	Code

Glossary

Index

CONTENTS	IN	DETAIL

ACKNOWLEDGMENTS

INTRODUCTION

Assumptions	and	Prerequisites

What	Is	Great	Code?

Programmer	Classifications

Amateurs

Programmers

Software	Engineers

Great	Programmers

So	You	Want	to	Be	a	Great	Programmer

A	Final	Note	on	Ethics	and	Character

For	More	Information

PART	I:	PERSONAL	SOFTWARE	ENGINEERING

1
SOFTWARE	DEVELOPMENT	METAPHORS

1.1	What	Is	Software?

1.1.1	Software	Is	Not	Manufactured

1.1.2	Software	Doesn’t	Wear	Out

1.1.3	Most	Software	Is	Custom

1.1.4	Software	Can	Be	Easily	Upgraded

1.1.5	Software	Is	Not	an	Independent	Entity

1.2	Parallels	to	Other	Fields

1.2.1	Programmer	as	Artist

1.2.2	Programmer	as	Architect

1.2.3	Programmer	as	Engineer

1.2.4	Programmer	as	Craftsman

1.2.5	Artist,	Architect,	Engineer,	or	Craftsman?

1.3	Software	Engineering

1.3.1	A	Formal	Definition

1.3.2	Project	Size

1.3.3	Where	Software	Engineering	Fails

1.4	Software	Craftsmanship

1.4.1	Education

1.4.2	Apprenticeship

1.4.3	The	Software	Journeyman

1.4.4	The	Master	Craftsman

1.4.5	Where	Software	Craftsmanship	Fails

1.5	The	Path	to	Writing	Great	Code

1.6	For	More	Information

2
PRODUCTIVITY

2.1	What	Is	Productivity?

2.2	Programmer	Productivity	vs.	Team	Productivity

2.3	Man-Hours	and	Real	Time

2.4	Conceptual	and	Scope	Complexity

2.5	Predicting	Productivity

2.6	Metrics	and	Why	We	Need	Them

2.6.1	Executable	Size	Metric

2.6.2	Machine	Instructions	Metric

2.6.3	Lines	of	Code	Metric

2.6.4	Statement	Count	Metric

2.6.5	Function	Point	Analysis

2.6.6	McCabe’s	Cyclomatic	Complexity	Metric

2.6.7	Other	Metrics

2.6.8	The	Problem	with	Metrics

2.7	How	Do	We	Beat	10	Lines	per	Day?

2.8	Estimating	Development	Time

2.8.1	Estimating	Small	Project	Development	Time

2.8.2	Estimating	Medium	and	Large	Project
Development	Time

2.8.3	Problems	with	Estimating	Development	Time

2.9	Crisis	Mode	Project	Management

2.10	How	to	Be	More	Productive

2.10.1	Choose	Software	Development	Tools	Wisely

2.10.2	Manage	Overhead

2.10.3	Set	Clear	Goals	and	Milestones

2.10.4	Practice	Self-Motivation

2.10.5	Focus	and	Eliminate	Distractions

2.10.6	If	You’re	Bored,	Work	on	Something	Else

2.10.7	Be	as	Self-Sufficient	as	Possible

2.10.8	Recognize	When	You	Need	Help

2.10.9	Overcome	Poor	Morale

2.11	For	More	Information

3
SOFTWARE	DEVELOPMENT	MODELS

3.1	The	Software	Development	Life	Cycle

3.2	The	Software	Development	Model

3.2.1	The	Informal	Model

3.2.2	The	Waterfall	Model

3.2.3	The	V	Model

3.2.4	The	Iterative	Model

3.2.5	The	Spiral	Model

3.2.6	The	Rapid	Application	Development	Model

3.2.7	The	Incremental	Model

3.3	Software	Development	Methodologies

3.3.1	Traditional	(Predictive)	Methodologies

3.3.2	Adaptive	Methodologies

3.3.3	Agile

3.3.4	Extreme	Programming

3.3.5	Scrum

3.3.6	Feature-Driven	Development

3.4	Models	and	Methodologies	for	the	Great	Programmer

3.5	For	More	Information

PART	II:	UML

4
AN	INTRODUCTION	TO	UML	AND	USE	CASES

4.1	The	UML	Standard

4.2	The	UML	Use	Case	Model

4.2.1	Use	Case	Diagram	Elements

4.2.2	Use	Case	Packages

4.2.3	Use	Case	Inclusion

4.2.4	Use	Case	Generalization

4.2.5	Use	Case	Extension

4.2.6	Use	Case	Narratives

4.2.7	Use	Case	Scenarios

4.3	The	UML	System	Boundary	Diagrams

4.4	Beyond	Use	Cases

4.5	For	More	Information

5
UML	ACTIVITY	DIAGRAMS

5.1	UML	Activity	State	Symbols

5.1.1	Start	and	Stop	States

5.1.2	Activities

5.1.3	States

5.1.4	Transitions

5.1.5	Conditionals

5.1.6	Merge	Points

5.1.7	Events	and	Triggers

5.1.8	Forks	and	Joins	(Synchronization)

5.1.9	Call	Symbols

5.1.10	Partitions

5.1.11	Comments	and	Annotations

5.1.12	Connectors

5.1.13	Additional	Activity	Diagram	Symbols

5.2	Extending	UML	Activity	Diagrams

5.3	For	More	Information

6
UML	CLASS	DIAGRAMS

6.1	Object-Oriented	Analysis	and	Design	in	UML

6.2	Visibility	in	a	Class	Diagram

6.2.1	Public	Class	Visibility

6.2.2	Private	Class	Visibility

6.2.3	Protected	Class	Visibility

6.2.4	Package	Class	Visibility

6.2.5	Unsupported	Visibility	Types

6.3	Class	Attributes

6.3.1	Attribute	Visibility

6.3.2	Attribute	Derived	Values

6.3.3	Attribute	Names

6.3.4	Attribute	Data	Types

6.3.5	Operation	Data	Types	(Return	Values)

6.3.6	Attribute	Multiplicity

6.3.7	Default	Attribute	Values

6.3.8	Property	Strings

6.3.9	Attribute	Syntax

6.4	Class	Operations

6.5	UML	Class	Relationships

6.5.1	Class	Dependency	Relationships

6.5.2	Class	Association	Relationships

6.5.3	Class	Aggregation	Relationships

6.5.4	Class	Composition	Relationships

6.5.5	Relationship	Features

6.5.6	Class	Inheritance	Relationships

6.6	Objects

6.7	For	More	Information

7
UML	INTERACTION	DIAGRAMS

7.1	Sequence	Diagrams

7.1.1	Lifelines

7.1.2	Message	Types

7.1.3	Message	Labels

7.1.4	Message	Numbers

7.1.5	Guard	Conditions

7.1.6	Iterations

7.1.7	Long	Delays	and	Time	Constraints

7.1.8	External	Objects

7.1.9	Activation	Bars

7.1.10	Branching

7.1.11	Alternative	Flows

7.1.12	Object	Creation	and	Destruction

7.1.13	Sequence	Fragments

7.2	Collaboration	Diagrams

7.3	For	More	Information

8
MISCELLANEOUS	UML	DIAGRAMS

8.1	Component	Diagrams

8.2	Package	Diagrams

8.3	Deployment	Diagrams

8.4	Composite	Structure	Diagrams

8.5	Statechart	Diagrams

8.6	More	UML

8.7	For	More	Information

PART	III:	DOCUMENTATION

9
SYSTEM	DOCUMENTATION

9.1	System	Documentation	Types

9.2	Traceability

9.2.1	Ways	to	Build	Traceability	into	Your
Documentation

9.2.2	Tag	Formats

9.2.3	The	Requirements/Reverse	Traceability	Matrix

9.3	Validation,	Verification,	and	Reviews

9.4	Reducing	Development	Costs	Using	Documentation

9.4.1	Reducing	Costs	via	Validation

9.4.2	Reducing	Costs	via	Verification

9.5	For	More	Information

10
REQUIREMENTS	DOCUMENTATION

10.1	Requirement	Origins	and	Traceability

10.1.1	A	Suggested	Requirements	Format

10.1.2	Characteristics	of	Good	Requirements

10.2	Design	Goals

10.3	The	System	Requirements	Specification	Document

10.4	The	Software	Requirements	Specification	Document

10.4.1	Introduction

10.4.2	Overall	Description

10.4.3	Specific	Requirements

10.4.4	Supporting	Information

10.4.5	A	Sample	Software	Requirements	Specification

10.5	Creating	Requirements

10.6	Use	Cases

10.6.1	Enable/Disable	Debug	Mode

10.6.2	Enable/Disable	Ethernet

10.6.3	Enable/Disable	RS-232

10.6.4	Enable/Disable	Test	Mode

10.6.5	Enable/Disable	USB

10.6.6	Read	DIP	Switches

10.7	Creating	DAQ	Software	Requirements	from	the	Use
Cases

10.8	(Selected)	DAQ	Software	Requirements	(from	SRS)

10.9	Updating	the	Traceability	Matrix	with	Requirement
Information

10.9.1	Requirements	to	Be	Verified	by	Review

10.9.2	Requirements	to	Be	Verified	by	Testing

10.10	For	More	Information

11
SOFTWARE	DESIGN	DESCRIPTION
DOCUMENTATION

11.1	IEEE	Std	1016-1998	vs.	IEEE	Std	1016-2009

11.2	IEEE	1016-2009	Conceptual	Model

11.2.1	Design	Concerns	and	Design	Stakeholders

11.2.2	Design	Viewpoints	and	Design	Elements

11.2.3	Design	Views,	Overlays,	and	Rationales

11.2.4	The	IEEE	Std	1016-2009	Conceptual	Model

11.3	SDD	Required	Contents

11.3.1	SDD	Identification

11.3.2	Design	Stakeholders	and	Their	Design	Concerns

11.3.3	Design	Views,	Viewpoints,	Overlays,	and
Rationales

11.4	SDD	Traceability	and	Tags

11.5	A	Suggested	SDD	Outline

11.6	A	Sample	SDD

11.7	Updating	the	Traceability	Matrix	with	Design
Information

11.8	Creating	a	Software	Design

11.9	For	More	Information

12
SOFTWARE	TEST	DOCUMENTATION

12.1	The	Software	Test	Documents	in	Std	829

12.1.1	Process	Support

12.1.2	Integrity	Levels	and	Risk	Assessment

12.1.3	Software	Development	Testing	Levels

12.2	Test	Plans

12.2.1	Master	Test	Plan

12.2.2	Level	Test	Plan

12.2.3	Level	Test	Design	Documentation

12.3	Software	Review	List	Documentation

12.3.1	Sample	SRL	Outline

12.3.2	Sample	SRL

12.3.3	Adding	SRL	Items	to	the	Traceability	Matrix

12.4	Software	Test	Case	Documentation

12.4.1	Introduction	in	the	STC	Document

12.4.2	Details

12.4.3	General

12.4.4	A	Sample	Software	Test	Case	Document

12.4.5	Updating	the	RTM	with	STC	Information

12.5	Software	Test	Procedure	Documentation

12.5.1	The	IEEE	Std	829-2009	Software	Test
Procedure

12.5.2	Extended	Outline	for	Software	Test	Procedure

12.5.3	Introduction	in	the	STP	Document

12.5.4	Test	Procedures

12.5.5	General

12.5.6	Index

12.5.7	A	Sample	STP

12.5.8	Updating	the	RTM	with	STP	Information

12.6	Level	Test	Logs

12.6.1	Introduction	in	the	Level	Test	Logs	Document

12.6.2	Details

12.6.3	Glossary

12.6.4	A	Few	Comments	on	Test	Logs

12.7	Anomaly	Reports

12.7.1	Introduction	in	the	Anomaly	Reports	Document

12.7.2	Details

12.7.3	A	Few	Comments	on	Anomaly	Reports

12.8	Test	Reports

12.8.1	Brief	Mention	of	the	Master	Test	Report

12.8.2	Level	Test	Reports

12.9	Do	You	Really	Need	All	of	This?

12.10	For	More	Information

AFTERWORD:	DESIGNING	GREAT	CODE

GLOSSARY

INDEX

ACKNOWLEDGMENTS

Many	 people	 have	 read	 and	 reread	 every	word,	 symbol,	 and
punctuation	 mark	 in	 this	 book	 in	 order	 to	 produce	 a	 better
result.	Kudos	to	the	following	people	for	their	careful	work	on
the	 second	 edition:	 development	 editor	 Athabasca	 Witschi,
copyeditor/production	 editor	 Rachel	 Monaghan,	 and
proofreader	James	Fraleigh.

I	 would	 like	 to	 take	 the	 opportunity	 to	 graciously	 thank
Anthony	Tribelli,	a	longtime	friend,	who	went	well	beyond	the
call	 of	 duty	when	 doing	 a	 technical	 review	 of	 this	 book.	He
pulled	every	line	of	code	out	of	this	book	(including	snippets)
and	compiled	and	ran	it	to	make	sure	it	worked	properly.	His
suggestions	 and	 opinions	 throughout	 the	 technical	 review
process	have	dramatically	improved	the	quality	of	this	work.

Thanks	to	all	of	you,

Randall	Hyde

INTRODUCTION

In	 the	 late	 1960s,	 the	 need	 for	 computer	 software	 was
outpacing	 the	 capability	 of	 technical	 schools,	 colleges,	 and
universities	 to	 produce	 trained	 computer	 professionals	 to
create	 that	 software—a	 phenomenon	 that	 became	 known	 as
the	 software	 crisis.	 Increasing	 the	 output	 of	 colleges	 and
universities	 wasn’t	 a	 practical	 approach;	 too	 few	 qualified
students	 were	 enrolling	 in	 computer	 science	 programs	 to
satisfy	the	demand.	At	the	time,	researchers	determined	that	a
better	 solution	 was	 to	 increase	 the	 productivity	 of	 existing
computer	 programmers.	 Noticing	 similarities	 between
software	 development	 and	 other	 engineering	 activities,	 these
researchers	 concluded	 that	 the	 procedures	 and	 policies	 that
worked	 for	 other	 engineering	 disciplines	 could	 solve	 the
software	crisis.	Thus,	software	engineering	was	born.

Until	the	field	of	software	engineering	blossomed,	software
development	was	 a	mysterious	 craft	 practiced	 by	 gurus	with
varying	 abilities	 and	 accomplishments.	 Up	 to	 that	 point,	 a

software	project’s	success	depended	entirely	upon	the	abilities
of	one	or	two	key	programmers	rather	than	those	of	the	entire
team.	 Software	 engineering	 sought	 to	 balance	 the	 skills	 of
software	teams	to	make	them	more	productive	and	less	reliant
upon	those	one	or	two	highly	talented	individuals.

To	a	large	extent,	 the	practice	of	software	engineering	has
been	successful.	Large	projects	built	by	teams	of	programmers
could	 never	 have	 been	 completed	 with	 the	 ad	 hoc
organizational	 methods	 of	 the	 past.	 But	 at	 the	 same	 time,
important	qualities	were	lost.	Software	engineering	encourages
team	productivity	at	the	expense	of	individual	creativity,	skill,
and	 growth.	 Although	 software	 engineering	 techniques	 have
the	 potential	 to	 turn	 poor	 programmers	 into	 good
programmers,	 they	 can	 also	 restrict	 great	 programmers	 from
doing	 their	 best	 work.	 The	 world	 has	 too	 few	 great
programmers.	The	last	thing	we	want	to	do	is	to	discourage	a
programmer	 from	 reaching	 their	 potential;	 however,	 this	 is
what	the	software	engineering	regimen	often	does.

The	Write	Great	Code	series	is	an	effort	to	restore	some	of
that	lost	individual	creativity,	skill,	and	growth.	It	covers	what
I	 call	 personal	 software	 engineering,	 or	 how	 a	 programmer
can	improve	the	quality	of	their	code.	Specifically,	it	describes
how	 you	 can	 produce	 great	 code—code	 that’s	 easy	 to
maintain,	enhance,	test	and	debug,	document,	deploy,	and	even
retire—from	 mediocre	 code.	 Great	 code	 is	 devoid	 of	 the
kludges	 and	 hacks	 that	 are	 often	 the	 result	 of	 unreasonable
pressure	 or	 ill	 planning	 on	 the	 engineer’s	 or	 management’s
part.	Great	code	is	code	you	can	be	proud	of.

As	 I	 completed	 Write	 Great	 Code,	 Volume	 2:	 Thinking
Low-Level,	 Writing	 High-Level	 (WGC2),	 I	 had	 intended	 to

incorporate	more	information	in	this	book.	In	the	last	chapter
of	WGC2,	I	wrote	the	following:

[Write	 Great	 Code,	 Volume	 3:	 Engineering	 Software]
begins	 discussing	 the	 personal	 software	 engineering
aspects	 of	 programming.	 The	 software	 engineering
field	 focuses	 primarily	 on	 the	 management	 of	 large
software	systems.	Personal	software	engineering,	on	the
other	 hand,	 covers	 those	 topics	 germane	 to	 writing
great	code	at	a	personal	 level—craftsmanship,	art,	and
pride	 in	 workmanship.	 So,	 in	 Engineering	 Software,
we’ll	 consider	 those	 aspects	 through	 discussions	 on
software	 development	 metaphors,	 software	 developer
metaphors,	 and	 system	 documentation	 [emphasis
added],	among	other	topics.

System	 documentation	 (including	 requirements,	 test
procedures,	design	documents,	and	the	 like)	 is	a	huge	part	of
software	 engineering.	 Therefore,	 a	 book	 on	 the	 subject	must
provide,	at	the	very	least,	an	overview	of	these	subjects.	Well,
about	 seven	 chapters	 into	 this	 book	 I	 realized	 there	 wasn’t
enough	room	to	cover	all	this	material	in	a	single	book.	In	the
end,	 I	wound	up	splitting	 this	volume,	Engineering	Software,
into	four	volumes.	The	first	of	these	four	volumes	is	this	one,
which	 is	 the	 third	 volume	 of	 the	Write	Great	Code	 series.	 It
concentrates	 on	 software	 development	 models	 and	 system
documentation.	 The	 fourth	 volume	 of	 the	 series	 will	 teach
software	 design;	 the	 fifth	 volume	 will	 develop	 the	 great-
coding	 theme	 further;	 and	 a	 sixth	 volume	 will	 deal	 with
testing.

As	I	write	this,	it’s	been	10	years	since	I	completed	Volume

2	 of	 the	Write	 Great	 Code	 series.	 It	 was	 time	 to	 complete
Volume	 3,	 even	 if	 it	meant	 splitting	 the	 original	 information
across	two	or	more	volumes.	If	you’ve	read	my	earlier	books,
you	know	I	like	to	cover	subjects	in	depth;	I’m	not	interested
in	writing	books	that	barely	touch	on	the	subject	matter.	Thus,
I	 was	 faced	 with	 either	 splitting	 the	 work	 across	 multiple
volumes	and	getting	them	out	 the	door	or	producing	a	2,000-
page	 tome	 that,	 as	 history	has	oft	 demonstrated,	might	 never
be	completed.	I	apologize	to	those	who	expected	this	book	to
cover	 additional	 subjects.	 Fear	 not—the	 information	 will
arrive	in	future	volumes.	You’re	just	getting	the	first	part	of	it
sooner	in	this	book.

ASSUMPTIONS	AND
PREREQUISITES
In	order	to	concentrate	on	engineering	software,	this	book	has
to	make	certain	assumptions.	Although	I’ve	tried	to	keep	those
to	 a	 minimum,	 you’ll	 benefit	 most	 from	 this	 book	 if	 your
personal	skill	set	fulfills	some	prerequisites.

You	 should	 be	 reasonably	 competent	 in	 at	 least	 one
imperative	 (procedural)	 or	 object-oriented	 programming
language.	This	includes	C	and	C++,	C#,	Swift,	Pascal,	BASIC,
Java,	 and	 assembly.	 You	 should	 know	 how	 to	 take	 a	 small
problem	 description	 and	 work	 through	 the	 design	 and
implementation	of	its	software	solution.	A	typical	semester	or
quarter	 course	 at	 a	 college	 or	 university	 or	 several	 months’
experience	 on	 your	 own	 should	 be	 sufficient	 for	 using	 this
book.

You	should	also	have	a	basic	grasp	of	machine	organization

and	data	 representation.	For	 example,	 you	 should	 understand
hexadecimal	 and	 binary	 numbering	 systems,	 and	 how
computers	 represent	 various	 high-level	 data	 types,	 such	 as
signed	integers,	characters,	and	strings	in	memory.	Write	Great
Code,	 Volume	 1:	 Understanding	 the	 Machine	 (WGC1)	 fully
covers	 machine	 organization	 if	 you	 feel	 your	 knowledge	 in
this	area	is	weak.	Although	I	might	refer	to	material	in	WGC1,
you	should	have	no	problem	reading	this	book	independently
of	that	one.

WHAT	IS	GREAT	CODE?
Great	code	is	software	that	follows	a	set	of	rules	that	guide	the
decisions	 a	 programmer	 makes	 when	 implementing	 an
algorithm	 as	 source	 code.	 Great	 code	 is	 written	 with	 other
programmers	in	mind—with	documentation	that	allows	others
to	read,	comprehend,	and	maintain	the	software.	I	call	this	the
Golden	Rule	of	Software	Development,	and	it	holds	the	key	to
software	engineering.

Taking	things	down	a	level,	great	code:

Is	fast	and	uses	the	CPU,	system	resources,	and	memory	efficiently

Is	well	documented	and	easy	to	read,	maintain,	and	enhance

Follows	a	consistent	set	of	style	guidelines

Uses	 an	 explicit	 design	 that	 follows	 established	 software	 engineering
conventions

Is	well	tested	and	robust

Is	produced	on	time	and	under	budget

While	Volumes	1	and	2	of	the	Write	Great	Code	series	deal
with	many	of	the	efficiency	aspects	associated	with	great	code,
the	remaining	books	in	the	series,	starting	with	this	one,	focus
specifically	on	creating	code	that	meets	the	preceding	criteria.

PROGRAMMER	CLASSIFICATIONS
In	order	 to	understand	what	makes	 a	programmer	great,	 let’s
first	consider	 the	differences	between	amateurs,	programmers
at	various	levels,	and	software	engineers.

Amateurs
The	 amateur	 programmer	 is	 self-taught,	 with	 only	 a	 small
amount	of	experience,	and	as	such	is	the	antithesis	of	the	great
programmer.	 In	 the	 early	 days	 of	 computers,	 these
programmers	were	known	as	hackers.	That	term	has	morphed
into	 several	 different	 meanings	 today	 that	 don’t	 necessarily
describe	 a	 programmer	 without	 sufficient	 education	 or
experience	to	do	professional-level	software	engineering.

The	problem	with	code	written	by	amateur	programmers	is
that	typically	they	write	it	for	themselves	or	for	friends;	thus,	it
doesn’t	usually	adhere	to	contemporary	standards	for	software
engineering	 projects.	 However,	 amateur	 programmers	 can
improve	 their	 status	with	 a	 little	 education	 (which	 the	WGC
series	can	help	provide).

Programmers
Computer	programmers	have	a	wide	range	of	experiences	and
responsibilities,	 which	 is	 often	 reflected	 in	 titles	 like	 junior
programmer,	 coder,	 Programmer	 I	 and	 II,	 analyst/system
analyst,	and	system	architect.	Here	we	explore	some	of	 these
roles	and	how	they	differ.

Interns

Typically,	 interns	 are	 students	 working	 part-time	 who	 are
assigned	so-called	grunt	work—tasks	such	as	running	a	set	of

canned	 test	 procedures	 on	 the	 code	 or	 documenting	 the
software.

Junior	Programmer

Recent	graduates	typically	fill	the	junior	programmer	position.
Often,	 they	work	 on	 testing	 or	maintenance	 tasks.	Rarely	 do
they	 get	 the	 opportunity	 to	 work	 on	 new	 projects;	 instead,
most	 of	 their	 programming	 time	 is	 spent	 reworking	 existing
statements	or	dealing	with	legacy	code.

Coder

A	 programmer	 advances	 to	 the	 coder	 level	 when	 they	 gain
sufficient	 experience	 for	 management	 to	 trust	 them	 with
developing	new	code	for	projects.	A	more	senior	programmer
assigns	 (less	 complex)	 subcomponents	 of	 a	 larger	 project	 to
the	coder	to	help	complete	the	project	faster.

Programmer	I	and	II

As	 a	 programmer	 gains	 more	 experience	 and	 is	 capable	 of
handling	 complex	 implementation	 tasks	 on	 their	 own,	 they
progress	from	coder	to	Programmer	I	and	then	Programmer	II.
A	system	analyst	can	often	provide	a	Programmer	I	or	II	with
a	general	idea	of	what	they	want,	and	the	programmer	is	able
to	fill	in	the	missing	details	and	produce	an	application	in	line
with	the	system	analyst’s	expectations.

System	Analyst

A	 system	 analyst	 studies	 a	 problem	 and	 determines	 the	 best
way	 to	 implement	 a	 solution.	 Often,	 the	 system	 analyst
chooses	 the	 major	 algorithms	 to	 use	 and	 creates	 the	 final
application’s	organization.

System	Architect

The	 system	 architect	 chooses	 how	 the	 components	 designed
by	a	system	analyst	in	a	large-scale	system	will	work	together.
Often,	the	system	architect	specifies	processes,	hardware,	and
other	non-software-related	items	as	part	of	the	total	solution.

The	Complete	Programmer

A	 complete	 programmer	 is	 the	 amalgamation	 of	 all	 these
subdivisions.	 That	 is,	 a	 complete	 programmer	 is	 capable	 of
studying	 a	 problem,	 designing	 a	 solution,	 implementing	 that
solution	in	a	programming	language,	and	testing	the	result.

THE	PROBLEM	WITH	PROGRAMMER
CLASSIFICATION

In	 reality,	 most	 of	 these	 programmer	 categories	 are
artificial;	they	exist	simply	to	justify	a	different	pay	scale
for	beginning	programmers	and	experienced	programmers.
For	example,	a	system	analyst	designs	the	algorithms	and
overall	 data	 flow	 for	 a	 particular	 application,	 then	 hands
off	the	design	to	a	coder,	who	implements	that	design	in	a
particular	 programming	 language.	We	 normally	 associate
both	 tasks	with	programming,	 but	 junior	members	 of	 the
programming	 staff	 don’t	 have	 the	 proper	 experience	 to
design	 large	 systems	 from	 scratch,	 although	 they’re
perfectly	capable	of	taking	a	design	and	converting	it	into
an	 appropriate	 programming	 language.	 The	 system
analysts	 and	 architects	 usually	 have	 the	 experience	 and
ability	to	handle	the	entire	project.	However,	management
generally	finds	it	more	cost-effective	to	use	them	on	those
portions	of	the	project	 that	require	their	experience	rather

than	 having	 them	 do	 the	 low-level	 coding	 that	 a	 recent
graduate	could	do	(at	lower	cost).

Software	Engineers
In	 the	 engineering	 fields,	 engineers	 approach	 a	 specified
problem	 by	 following	 a	 prescribed	 set	 of	 rules,	 building	 a
custom	 solution	 from	 a	 combination	 of	 predetermined
solutions.	This	approach	allows	even	less	talented	engineers	to
produce	working	solutions	without	having	to	develop	a	system
from	 scratch.	 Software	 engineering	 emerged	 as	 an	 effort	 to
maximize	 the	 value	 of	 the	 entire	 programming	 team	 by
applying	 traditional	 engineering	 concepts	 to	 software
development.	 For	 the	 most	 part,	 the	 software	 engineering
revolution	 has	 been	 successful.	 Software	 engineers	 with	 the
proper	 training	and	 leadership	can	produce	high-quality	code
in	less	time	and	for	less	money	than	was	possible	before.

Pure	 software	 engineering	discourages	divergent	 thinking,
because	it	risks	wasting	time	and	leading	the	engineer	down	an
unsuccessful	 path	 (resulting	 in	 higher	 development	 costs	 and
longer	development	times).	In	general,	software	engineering	is
more	 concerned	with	 developing	 an	 application	on	 time	 and
under	budget	than	with	writing	code	the	best	possible	way.	But
if	 software	 engineering	 practitioners	 never	 try	 anything	 new,
they	often	miss	opportunities	to	produce	a	great	design,	never
develop	any	new	practices	to	incorporate	into	their	rule	book,
and	never	become	great	programmers.

Great	Programmers
Great	programmers	are	cognizant	of	the	budgetary	issues,	but
they	also	 realize	 that	exploring	new	 ideas	and	methodologies

is	 important	 to	 advance	 the	 field.	 They	 know	 when	 it’s
essential	 to	 follow	 the	 rules	but	 also	when	 it’s	okay	 to	break
(or	 at	 least	 bend)	 them.	 But	 most	 important	 of	 all,	 great
programmers	 use	 their	 skill	 sets	 to	 their	 fullest,	 achieving
results	that	wouldn’t	be	possible	by	simply	thinking	inside	the
box.	Hackers	are	born,	software	engineers	are	made,	and	great
programmers	 are	 a	 bit	 of	 both.	 They	 have	 three	 main
characteristics:	a	genuine	love	for	the	work,	ongoing	education
and	 training,	 and	 the	 ability	 to	 think	 outside	 the	 box	 when
solving	problems.

Loving	What	You	Do,	Doing	What	You	Love

People	 tend	 to	 excel	 at	 tasks	 they	 love	 and	 do	 poorly	 on
activities	 they	 dislike.	 The	 bottom	 line	 is	 that	 if	 you	 hate
computer	 programming,	 you	 won’t	 make	 a	 very	 good
computer	programmer.	If	you	weren’t	born	with	 the	desire	 to
solve	 problems	 and	 overcome	 challenges,	 no	 amount	 of
education	and	training	will	change	your	disposition.	Thus,	the
most	 important	 prerequisite	 to	becoming	a	great	 programmer
is	that	you	really	love	to	write	computer	programs.

Prioritizing	Education	and	Training

Great	programmers	enjoy	the	types	of	tasks	the	field	demands,
but	 they	 also	 need	 something	 else—formal	 education	 and
training.	We’ll	discuss	education	and	training	in	greater	depth
in	 later	 chapters,	 but	 for	 now	 it	 suffices	 to	 say	 that	 great
programmers	 are	 well	 educated	 (perhaps	 possessing	 a
postsecondary	degree)	and	continue	their	education	throughout
their	careers.

Thinking	Outside	the	Box

As	 mentioned,	 following	 a	 predetermined	 set	 of	 rules	 to
produce	code	is	the	typical	expectation	of	a	software	engineer.
However,	 as	 you’ll	 see	 in	 Chapter	 1,	 to	 become	 a	 great
programmer	(a	“Grand	Master	Programmer”),	you	need	to	be
willing	 and	 able	 to	 devise	 new	programming	 techniques	 that
come	 only	 from	 divergent	 thinking	 rather	 than	 blindly
following	 rules.	Great	 programmers	 have	 an	 innate	 desire	 to
push	 boundaries	 and	 explore	 new	 solutions	 to	 the	 problems
they	face.

SO	YOU	WANT	TO	BE	A	GREAT
PROGRAMMER
To	summarize,	if	you	want	to	be	a	truly	great	programmer	and
inspire	awe	from	your	peers,	you’ll	need	the	following:

A	love	of	computer	programming	and	problem	solving

A	wide	 range	of	computer	 science	knowledge	based	on	a	college	or	university
degree

A	lifelong	commitment	to	education	and	training

The	ability	and	willingness	to	think	outside	the	box	when	exploring	solutions

The	personal	desire	and	motivation	to	excel	at	a	task	and	always	produce	the	best
possible	work

With	 these	 attributes,	 the	 only	 thing	 keeping	 you	 from
becoming	 a	 great	 programmer	 is	 more	 knowledge.	 That’s
where	this	book	comes	in.

A	FINAL	NOTE	ON	ETHICS	AND
CHARACTER
The	 software	 engineer’s	 job	 is	 to	 create	 the	 best	 possible
product	given	conflicting	requirements	by	making	appropriate

1

compromises	 in	 a	 system’s	 design.	 During	 this	 process,	 the
engineer	 must	 prioritize	 requirements	 and	 choose	 the	 best
solution	to	the	problem	given	the	project’s	constraints.	Ethics
and	 personal	 character	 often	 impact	 decisions	 individuals
make	 while	 working	 on	 complex	 projects,	 particularly
stressful	 ones.	 Being	 intellectually	 dishonest	 (for	 example,
fudging	 project	 estimates	 or	 claiming	 a	 piece	 of	 software
works	without	fully	testing	it),	pirating	software	development
tools	 (or	 other	 software),	 introducing	 undocumented	 features
in	 software	 (such	 as	 backdoors)	 without	 management
approval,	or	adopting	an	elitist	attitude	(thinking	you’re	better
than	 other	 team	 members)	 are	 all	 cases	 of	 software
engineering	 ethical	 lapses.	 Exercising	 sound	moral	 judgment
and	practicing	good	ethics	will	make	you	both	a	better	person
and	a	better	programmer.

FOR	MORE	INFORMATION
Barger,	Robert	N.	Computer	Ethics:	A	Case-Based	Approach.

Cambridge,	UK:	Cambridge	University	Press,	2008.

Floridi,	 Luciano,	 ed.	 The	 Cambridge	 Handbook	 of
Information	 and	 Computer	 Ethics.	 Cambridge,	 UK:
Cambridge	University	Press,	2006.

Forester,	 Tom,	 and	 Perry	 Morrison.	 Computer	 Ethics:
Cautionary	Tales	and	Ethical	Dilemmas	in	Computing.	2nd
ed.	Cambridge,	MA:	MIT	Press,	1993.

Parker,	Donn	B.	“Rules	of	Ethics	in	Information	Processing.”
Communications	 of	 the	 ACM	 11,	 no.	 3	 (1968):	 198–201.
https://dl.acm.org/doi/10.1145/362929.362987.

https://dl.acm.org/doi/10.1145/362929.362987

Wiener,	 Norbert.	 The	 Human	 Use	 of	 Human	 Beings:
Cybernetics	 and	 Society.	 Boston:	 Houghton	 Mifflin
Harcourt,	1950.

WikiWikiWeb.	 “Grand	 Master	 Programmer.”	 Last	 updated
November	 23,	 2014.	 http://c2.com/cgi/wiki?
GrandMasterProgrammer/.

http://c2.com/cgi/wiki?GrandMasterProgrammer/

PART	I
PERSONAL	SOFTWARE	ENGINEERING

1
SOFTWARE	DEVELOPMENT

METAPHORS

How	 do	 we	 define	 the	 software	 development	 process?	 This
might	 seem	 like	a	 silly	question.	Why	not	 just	 say	“software
development	 is	 software	 development”	 and	 leave	 it	 at	 that?
Well,	if	we	can	draw	analogies	between	software	development
tasks	 and	 other	 professional	 endeavors,	 we	 can	 gain	 insight
into	the	software	development	process.	Then	we	can	refine	the
process	by	studying	process	improvements	in	related	fields.	To
that	 end,	 this	 chapter	 explores	 some	of	 the	 common	ways	of
understanding	software	development.

1.1	WHAT	IS	SOFTWARE?
To	 better	 understand	 how	 programmers	 create	 software,	 we
can	compare	software	to	other	things	people	create.	Doing	so
will	 provide	 important	 insight	 into	 why	 certain	 creative
metaphors	apply,	or	don’t	apply,	to	software	development.

In	his	book,	Software	Engineering:	A	Beginner’s	Approach,

Robert	Pressman	identifies	several	characteristics	of	software.
This	 section	 explores	 those	 characteristics	 to	 illuminate	 the
nature	 of	 software	 and	 how	 it	 defines	 a	 computer
programmer’s	work.

1.1.1	Software	Is	Not	Manufactured

Software	 is	 developed	 or	 engineered;	 it	 is	 not
manufactured	in	the	classical	sense.

—Robert	Pressman

Compared	 to	hardware	products,	 the	manufacturing	cost	of	 a
software	product	is	very	low:	stamping	out	a	CD	or	DVD	costs
only	 a	 few	 pennies,	 plus	 a	 small	 amount	 for	 shipping	 and
handling	 (and	 electronic	 distribution	 is	 even	 less	 expensive).
Also,	the	software	design	has	very	little	impact	on	the	quality
or	 final	 cost	 of	 the	 manufactured	 CD/DVD.	 Assuming
reasonable	 quality	 controls	 at	 the	 manufacturing	 plant,	 a
computer	 programmer	 rarely	 has	 to	 consider	 manufacturing
issues	 when	 designing	 a	 software	 application. 	 Contrast	 this
with	other	engineering	professions	where	 the	engineer	has	 to
design	in	manufacturability	of	the	product.

1.1.2	Software	Doesn’t	Wear	Out
Both	 software	 and	hardware	 suffer	 from	 failures	due	 to	poor
design	 early	 in	 the	 products’	 lives.	 However,	 if	 we	 could
eliminate	design	flaws	in	the	products	(that	is,	deliver	a	defect-
free	 piece	 of	 software	 or	 hardware),	 the	 differences	 between
the	two	become	obvious.	Once	a	piece	of	software	is	correct,	it
doesn’t	 ever	 fail	 or	 “wear	 out.”	 As	 long	 as	 the	 underlying
computer	 system	 is	 functioning	 properly,	 the	 software	 will

1

2

continue	to	work. 	The	software	engineer,	unlike	the	hardware
engineer,	doesn’t	have	to	worry	about	designing	in	the	ability
to	easily	replace	components	that	fail	over	time.

1.1.3	Most	Software	Is	Custom

Most	 software	 is	 custom	 built	 rather	 than	 being
assembled	from	existing	[standard]	components.

—Robert	Pressman

Although	many	 attempts	 have	 been	made	 to	 create	 similarly
standardized	software	components	that	software	engineers	can
assemble	into	large	applications,	the	concept	of	a	software	IC
(that	 is,	 the	equivalent	of	an	electronic	 integrated	circuit)	has
never	 been	 realized.	 Software	 libraries	 and	 object-oriented
programming	 techniques	 encourage	 reusing	 prewritten	 code,
but	 the	 premise	 of	 constructing	 large	 software	 systems	 from
smaller	 preassembled	 components	 has	 failed	 to	 produce
anything	close	to	what’s	possible	in	hardware	design.

1.1.4	Software	Can	Be	Easily	Upgraded
In	many	cases,	 it’s	possible	 to	completely	replace	an	existing
software	application	in	the	field	with	a	new	version	(or	even	a
completely	 different	 application)	 without	 incurring	 a	 huge
cost. 	 The	 application’s	 end	 user	 can	 simply	 replace	 the	 old
software	with	the	new	and	enjoy	the	benefits	of	the	upgraded
version.	 In	 fact,	 most	 modern	 software	 systems	 and
applications	 auto-update	 via	 the	 internet	 during	 normal
operation.

1.1.5	Software	Is	Not	an	Independent	Entity
Software	 is	 not	 a	 stand-alone	product.	An	 electrical	 engineer

2

3

can	design	a	hardware	device	 that	can	operate	completely	on
its	 own.	 However,	 software	 depends	 upon	 something	 else
(typically	a	computer	system)	for	proper	operation.	Therefore,
a	software	developer	must	live	with	the	constraints	imposed	by
external	 systems	 (computer	 systems,	 operating	 systems,
programming	 languages,	 and	 so	 on)	 when	 designing	 and
implementing	a	software	application.

1.2	PARALLELS	TO	OTHER	FIELDS
Computer	 programmers	 are	 often	 compared	 to	 artists,
craftsmen,	 engineers,	 architects,	 and	 technicians.	 Although
computer	programming	doesn’t	match	any	of	these	professions
exactly,	we	can	draw	useful	parallels	 to	 these	 fields	and	gain
insight	from	the	techniques	they	employ.

1.2.1	Programmer	as	Artist
In	 the	 early	 days	 of	 computer	 programming,	 software
development	 was	 considered	 an	 art.	 The	 ability	 to	 write
software—to	 make	 sense	 of	 so	 much	 nonsense	 to	 create	 a
working	program—seemed	to	be	a	God-given	talent	exercised
by	a	 select	 few,	akin	 to	master	painters	or	musical	virtuosos.
(In	 fact,	 considerable	 anecdotal	 evidence	 suggests	 that
musicians	 and	 computer	 programmers	 use	 the	 same	 areas	 of
their	 brains	 for	 their	 creative	 activities,	 and	 a	 decent
percentage	of	programmers	were,	or	are,	musicians.)

But	 is	software	development	an	actual	art	 form?	An	artist
is	 typically	 defined	 as	 someone	 blessed	 with	 certain	 talents
and	the	skill	to	use	them	in	a	creative	way.	The	key	word	here
is	 talent,	 which	 is	 a	 natural	 ability.	 Because	 not	 everyone	 is
born	with	 the	 same	 talents,	not	 everyone	can	be	an	artist.	To

4

apply	 the	 analogy,	 it	 would	 seem	 that	 if	 you	 want	 to	 be	 a
programmer,	 you	 have	 to	 be	 born	 that	 way;	 indeed,	 some
people	 seem	 to	 be	 born	with	 a	 natural	 talent	 or	 aptitude	 for
programming.

The	“programmer	as	artist”	comparison	seems	 to	apply	 to
the	very	best	programmers.	Although	artists	follow	their	own
set	 of	 rules	 to	 produce	 quality	 art,	 they	 often	 produce	 their
most	exceptional	art	when	they	bend	the	rules	and	explore	new
creative	 ground.	 Similarly,	 the	 very	 best	 programmers	 are
familiar	 with	 good	 software	 development	 rules	 but	 are	 also
willing	 to	 experiment	with	 new	 techniques	 to	 try	 to	 improve
the	 development	 process.	 Just	 as	 true	 artists	 are	 not	 content
with	duplicating	existing	work	or	 styles,	 the	 “programmer	as
artist”	 is	 happier	 creating	new	applications	 than	grinding	out
yet	another	version	of	an	old	one.

NOTE

One	 of	 the	 most	 well-respected	 textbook	 series	 on	 computer	 science	 is
Donald	Knuth’s	The	Art	of	Computer	Programming.	Clearly,	 the	notion	of
programming	 as	 an	 art	 form	 is	well	 entrenched	 in	 the	 computer	 science
field.

1.2.2	Programmer	as	Architect
The	artist	metaphor	works	great	 for	 small	projects	where	 the
artist	creates	the	idea	and	implements	a	work	of	art,	much	like
a	 programmer	 designs	 and	 implements	 a	 small	 software
system.	 However,	 for	 larger	 software	 systems,	 the
“programmer	as	architect”	analogy	is	probably	a	better	fit.	An
architect	designs	the	structure	but	leaves	the	implementation	to
others	 (because	 often	 it’s	 logistically	 impossible	 for	 one
person	 to	 build	 it).	 In	 computer	 science,	 those	who	 design	 a

system	 for	 others	 to	 implement	 are	 often	 called
programmer/analysts.

An	 architect	 exercises	 large-scale	 creative	 control	 over	 a
project.	For	example,	 an	architect	designing	a	 fancy	building
defines	 how	 it	 will	 look,	 what	 materials	 to	 use,	 and	 the
guidelines	 for	 the	construction	workers	 to	 follow,	but	doesn’t
handle	the	construction	itself.	An	architect	might	supervise	the
build	(much	like	a	programmer/analyst	would	review	modules
others	 add	 to	 their	 software	 system);	 however,	 the	 architect
doesn’t	wield	a	hammer	or	operate	a	crane.

It	 might	 seem	 that	 this	 analogy	 doesn’t	 apply	 to	 small
projects,	but	it	can	if	you	allow	an	individual	to	“change	hats.”
That	 is,	during	 the	first	phase	of	 the	project,	 the	programmer
puts	on	their	architect/programmer/analyst	hat	and	creates	the
design	for	the	system.	Then	the	programmer	switches	hats	and
puts	on	their	programmer/coder	hat	to	implement	the	system.

What	 the	 “programmer	 as	 architect”	 paradigm	 adds	 over
and	above	the	“programmer	as	artist”	model	is	verification	and
safety	measures.	When	an	artist	paints	an	 image,	composes	a
piece	of	music,	or	sculpts	an	object,	they	generally	don’t	worry
about	 whether	 that	 work	 meets	 any	 requirements	 other	 than
their	own.	Also,	 they	don’t	have	 to	worry	about	how	 that	art
might	 physically	 hurt	 life	 or	 property. 	 An	 architect,	 on	 the
other	hand,	must	consider	physical	realities	and	the	fact	that	a
bad	 design	 can	 lead	 to	 injury	 or	 harm.	 The	 “programmer	 as
architect”	paradigm	introduces	personal	responsibility,	review
(testing),	and	safety	to	the	programmer’s	task.

1.2.3	Programmer	as	Engineer
A	NATO	conference	 in	1968	challenged	 the	notion	 that	good

5

programmers	are	born,	not	made.	As	mentioned	in	this	book’s
introduction,	 the	 world	 was	 facing	 a	 software	 crisis—new
software	 applications	 were	 needed	 faster	 than	 programmers
could	be	trained	to	create	them.	So	NATO	sponsored	the	1968
conference,	coining	the	term	software	engineering	to	describe
how	to	tackle	the	problem	by	applying	engineering	principles
to	the	wild	world	of	computer	programming.

Engineers	are	interested	in	solving	practical	problems	cost-
effectively,	 in	 terms	of	both	 the	design	effort	 and	 the	 cost	of
production.	 For	 this	 reason,	 coupled	 with	 the	 fact	 that	 the
engineering	profession	has	 been	 around	 for	 a	 very	 long	 time
(particularly	 mechanical	 and	 chemical	 engineering),	 a	 large
number	 of	 procedures	 and	 policies	 have	 been	 created	 for
engineers	over	the	years	to	streamline	their	work.

In	many	 engineering	 fields	 today,	 an	 engineer’s	 task	 is	 to
construct	 a	 large	 system	 from	 smaller,	 predesigned	 building
blocks.	An	electrical	engineer	who	wants	to	design	a	computer
system	doesn’t	 start	 by	 designing	 custom	 transistors	 or	 other
small	 components;	 instead,	 they	 use	 predesigned	 CPUs,
memory	 elements,	 and	 I/O	 devices,	 assembling	 them	 into	 a
complete	 system.	 Similarly,	 a	 mechanical	 engineer	 can	 use
predesigned	 trusses	 and	 pedestals	 to	 design	 a	 new	 bridge.
Design	reuse	is	the	hallmark	of	the	engineering	profession.	It’s
one	of	the	key	elements	to	producing	safe,	reliable,	functional,
and	cost-effective	designs	as	rapidly	as	possible.

Software	 engineers	 also	 follow	 a	 set	 of	 well-defined
procedures	 and	 policies	 to	 construct	 large	 systems	 from
smaller	predefined	systems.	 Indeed,	 the	Institute	of	Electrical
and	 Electronics	 Engineers	 (IEEE)	 defines	 software
engineering	as	follows:

The	 application	 of	 a	 systematic,	 disciplined,
quantifiable	 approach	 to	 development,	 operation,	 and
maintenance	 of	 software;	 that	 is,	 the	 application	 of
engineering	to	software.

1.2.4	Programmer	as	Craftsman
The	 craftsman	model	 lies	 somewhere	 between	 the	 artist	 and
the	 engineer.	 Central	 to	 this	 paradigm	 is	 the	 idea	 of
programmers	 as	 individuals;	 that	 is,	 the	 software	 craftsman
metaphor	 recognizes	 that	 people	 matter.	 Throwing	 more
people	 and	 restrictive	 rules	 at	 a	 problem	 doesn’t	 produce
higher-quality	 software,	 but	 training	 individuals	 better	 and
allowing	them	to	apply	their	natural	talents	and	skills	does.

There	 are	 parallels	 between	 the	 traditional	 craftsman’s
development	process	and	that	of	the	software	craftsman.	Like
all	 craftsmen,	a	 software	craftsman	starts	 as	an	apprentice	or
an	 intern.	 An	 apprentice	 works	 under	 the	 close	 guidance	 of
another	 craftsman.	 After	 learning	 the	 ropes,	 the	 apprentice
programmer	 becomes	 a	 journeyman,	 usually	 working	 with
teams	 of	 other	 programmers	 under	 the	 supervision	 of	 a
software	 craftsman.	 Ultimately,	 the	 programmer’s	 skills
increase	to	the	point	that	they	become	a	master	craftsman.

The	 craftsman	 model	 provides	 the	 best	 metaphor	 for
programmers	 intent	 upon	 becoming	 great	 programmers.	 I’ll
return	 to	 the	discussion	of	 this	metaphor	 later	 in	 this	chapter,
in	the	section	“Software	Craftsmanship”	on	page	13.

1.2.5	Artist,	Architect,	Engineer,	or	Craftsman?
To	 write	 great	 code,	 you	 must	 understand	 what	 makes	 code
great.	 You	 need	 to	 use	 the	 best	 tools,	 coding	 techniques,

procedures,	 processes,	 and	 policies	 when	 writing	 code.	 In
addition,	 you	 must	 constantly	 increase	 your	 knowledge	 and
improve	 the	 development	 processes	 you	 use	 to	 enhance	 the
quality	of	the	software	you	develop.	That’s	why	it’s	important
to	 consider	 different	 approaches	 to	 software	 development,
understand	 the	 software	 product,	 and	 choose	 the	 best
approach.

You	need	to	work	hard	to	learn	how	to	write	great	code	and
then	 work	 hard	 at	 actually	 writing	 it.	 A	 great	 software
developer	adopts	 ideas	 that	work	 from	each	of	 the	 fields	 just
discussed	 and	 dispenses	 with	 those	 that	 don’t	 work.	 To
summarize:

Great	 artists	 practice	 their	 skills	 to	 develop	 their	 talents.	 They	 engage	 in
divergent	thinking	to	explore	new	ways	of	presenting	their	message.

Great	 architects	 know	 how	 to	 build	 upon	 existing	 designs	 using	 standard
components	 to	 create	 custom	 objects.	 They	 understand	 cost	 constraints,	 safety
issues,	 requirements,	 and	 the	 need	 for	 overdesign	 to	 ensure	 reliable	 operation.
Great	architects	understand	the	relationship	between	form	and	function,	as	well
as	the	need	to	fulfill	customer	requirements.

Great	 engineers	 recognize	 the	 benefit	 of	 consistency.	 They	 document	 and
automate	 development	 steps	 to	 avoid	 missing	 steps	 in	 the	 process.	 Like
architects,	 engineers	 encourage	 the	 reuse	 of	 existing	 designs	 to	 deliver	 more
robust	and	cost-effective	solutions.	Engineering	provides	procedures	and	policies
to	help	overcome	personal	limitations	in	a	project.

Great	craftsmen	train	and	practice	skills	under	the	tutelage	of	a	master	with	the
ultimate	 goal	 of	 becoming	 a	master	 craftsman.	 This	metaphor	 emphasizes	 the
qualities	 of	 the	 individual	 such	 as	 their	 problem-solving	 and	 organizational
abilities.

1.3	SOFTWARE	ENGINEERING
Since	 its	 emergence	 in	 the	 late	 1960s,	 software	 engineering
has	 become	 an	 unqualified	 success.	 Today,	 few	 professional
programmers	 would	 accept	 the	 coding	 horrors	 that	 were

“standard	 procedure”	 at	 the	 dawn	 of	 the	 field.	Concepts	 that
modern	 programmers	 take	 for	 granted—such	 as	 structured
programming,	 proper	 program	 layout	 (like	 indentation),
commenting,	 and	 good	 naming	 policies—are	 all	 due	 to
software	 engineering	 research.	 Indeed,	 decades	 of	 such
research	 have	 greatly	 influenced	 modern	 programming
languages	and	other	programming	tools.

Software	engineering	has	been	around	for	so	long	and	has
had	 such	 an	 impact	 on	 all	 facets	 of	 computer	 programming
that	 many	 people	 assume	 the	 term	 software	 engineer	 is
synonymous	 with	 computer	 programmer.	 It’s	 certainly	 true
that	 any	 professional	 software	 engineer	 should	 also	 be	 a
capable	 computer	 programmer,	 but	 computer	 programming
constitutes	only	a	small	part	of	software	engineering.	Software
engineering	 largely	 involves	 economics	 and	 project
management.	Interestingly,	those	responsible	for	managing	the
projects,	 maintaining	 the	 schedules,	 choosing	 the
methodologies	 to	 use,	 and	 so	 on	 are	 not	 called	 software
engineers;	 they’re	 called	 managers,	 project	 leads,	 and	 other
titles	implying	a	position	of	authority.	Likewise,	the	people	we
call	 software	 engineers	 don’t	 actually	 do	 the	 software
engineering—they	 simply	 write	 the	 code	 specified	 by	 the
actual	 software	 engineers	 (managers	 and	 project	 leads).	 This
is,	 perhaps,	why	 there	 is	 so	much	confusion	around	 the	 term
software	engineering.

1.3.1	A	Formal	Definition
No	single	definition	of	software	engineering	 seems	 to	 satisfy
everyone.	Different	authors	add	their	own	“spin,”	making	their
definition	 slightly	 (or	 greatly)	 different	 than	 those	 found	 in

other	texts.	The	reason	this	book	is	titled	Engineering	Software
is	because	I	want	to	avoid	adding	yet	another	definition	to	the
mix.	As	a	reminder,	the	IEEE	defines	software	engineering	as

The	 application	 of	 a	 systematic,	 disciplined,
quantifiable	 approach	 to	 development,	 operation,	 and
maintenance	 of	 software;	 that	 is,	 the	 application	 of
engineering	to	software.

The	original	software	engineering	definition,	and	the	one	I
use,	is

Software	 engineering	 is	 the	 study	 of	 the	 development
and	management	of	large	software	systems.

The	 operative	 term	 here	 is	 large.	 Progress	 in	 software
engineering	has	mostly	been	funded	by	defense	contracts	and
the	 like,	 so	 it’s	 no	 surprise	 that	 software	 engineering	 is
synonymous	 with	 large	 systems.	 The	 IEEE	 definition	 could
apply	 to	 systems	of	nearly	 any	 size,	but	because	most	of	 the
research	 into	 software	 engineering	 deals	 with	 very	 large
systems,	I	prefer	the	second	definition.

NOTE

To	 avoid	 confusion	 with	 the	 generic	 term	 software	 engineering,	 I	 use	 a
more	 specialized	 term,	 personal	 software	 engineering,	 to	 describe	 those
processes	and	methodologies	 that	apply	 to	a	single	programmer	working
on	 a	 small	 project	 or	 a	 small	 part	 of	 a	 larger	 project.	 My	 intent	 is	 to
describe	what	computer	programmers	believe	 is	 the	essence	of	software
engineering	without	all	the	extraneous	detail	that	has	little	to	do	with	writing
great	code.

When	 it	 comes	 to	 software	 development,	 people	 have
completely	 different	 concepts	 of	 what	 “large”	 means.	 An

undergraduate	in	a	computer	science	program	might	think	that
a	program	containing	a	couple	thousand	lines	of	source	code	is
a	large	system.	To	a	project	manager	at	Boeing	(or	other	large
firm),	 a	 large	 system	 contains	well	 over	 one	million	 lines	 of
code.	 The	 last	 time	 I	 counted	 (which	was	 a	 long	 time	 ago),
Microsoft’s	 Windows	 operating	 system	 (OS)	 exceeded	 50
million	lines	of	source	code;	no	one	questions	that	Windows	is
a	large	system!

Because	 traditional	 software	 engineering	 definitions
generally	apply	to	large	software	systems,	we	need	to	come	up
with	 a	 reasonable	 definition	 of	 large	 (and	 small)	 software
systems.	Although	lines	of	code	(LOC)	 is	 the	metric	software
engineers	often	use	to	describe	the	size	of	a	software	system,	it
is	a	 low-quality	metric	with	almost	a	 two-order-of-magnitude
variance. 	This	book	will	often	use	 the	LOC	or	 thousands	of
lines	of	code	(KLOC)	metric.	But	it’s	not	a	good	idea	to	base	a
formal	definition	on	such	a	poor	metric.	Doing	so	weakens	the
definition.

1.3.2	Project	Size
A	 small	 project	 is	 one	 that	 an	 average	 programmer	 can
complete	 on	 their	 own	 in	 a	 reasonable	 amount	 of	 time	 (less
than	 two	 years).	 A	medium-sized	 project	 is	 too	 large	 for	 an
individual	to	complete	in	a	reasonable	time	frame,	but	a	small
team	of	 two	 to	 five	 programmers	 can	 accomplish	 it.	A	 large
project	requires	a	large	team	of	programmers	(more	than	five
members).	In	terms	of	LOC,	a	small	project	contains	about	50
to	100	KLOC;	medium-sized	projects	fall	into	the	50	to	1,000
KLOC	 (one	 million	 lines	 of	 source	 code)	 range;	 and	 large
projects	start	at	around	500	to	1,000	KLOC.

6

Small	projects	are	trivial	to	manage.	Because	small	projects
require	 no	 interaction	 between	 programmers	 and	 very	 little
interaction	 between	 the	 programmer	 and	 the	 outside	 world,
productivity	 depends	 almost	 solely	 upon	 the	 programmer’s
abilities.

Medium-sized	projects	 introduce	new	challenges.	Because
multiple	 programmers	 are	 working	 on	 the	 project,
communication	can	become	a	problem,	but	 the	 team	 is	 small
enough	 that	 this	 overhead	 is	 manageable.	 Nevertheless,	 the
group	dynamics	require	extra	support,	which	increases	the	cost
of	each	line	of	code	written.

Large	 projects	 require	 a	 large	 team	 of	 programmers.
Communication	and	other	overhead	often	consume	50	percent
of	each	engineer’s	productivity.	Effective	project	management
is	crucial.

Software	 engineering	 deals	 with	 the	 methodologies,
practices,	and	policies	needed	to	successfully	manage	projects
requiring	large	teams	of	programmers.	Unfortunately,	practices
that	work	well	for	individuals,	or	even	small	teams,	don’t	scale
up	to	 large	teams,	and	large-project	methodologies,	practices,
and	 policies	 don’t	 scale	 down	 to	 small	 and	 medium-sized
projects.	 Practices	 that	work	well	 for	 large	 projects	 typically
inject	 unreasonable	 overhead	 into	 small	 and	 medium-sized
projects,	reducing	the	productivity	of	those	small	teams.

Let’s	take	a	closer	look	at	some	benefits	and	drawbacks	of
projects	of	different	sizes.

1.3.2.1	Small	Projects

On	 small	 projects,	 a	 single	 software	 engineer	 is	 completely
responsible	 for	 system	 design,	 implementation,	 testing,

debugging,	 deployment,	 and	 documentation.	 On	 such	 a
project,	 the	 lone	 engineer	 is	 accountable	 for	 far	 more	 tasks
than	 a	 single	 engineer	would	 be	 on	 a	medium-sized	 or	 large
project.	 But	 the	 tasks	 are	 small	 and	 therefore	 manageable.
Because	 a	 small	 project	 requires	 an	 individual	 to	 perform	 a
wide	 range	 of	 tasks,	 the	 programmer	 must	 possess	 a	 varied
skill	set.	Personal	software	engineering	covers	all	the	activities
a	developer	would	do	on	a	small	project.

Small	projects	make	 the	most	efficient	use	of	engineering
resources.	 The	 engineer	 can	 employ	 the	 most	 productive
approach	to	solving	problems	because	they	don’t	have	to	reach
a	consensus	with	other	engineers	on	the	project.	The	engineer
can	 also	 optimize	 the	 time	 they	 spend	 on	 each	 development
phase.	 In	 a	 structured	 software	 design	 regimen,	 considerable
time	 is	 spent	 documenting	 operations,	 which	 doesn’t	 make
sense	 when	 there’s	 only	 a	 single	 programmer	 on	 a	 project
(though	a	different	programmer	might	need	 to	work	with	 the
code	later	in	the	product’s	lifetime).

The	 drawback,	 and	 the	 trap,	 of	 a	 small	 project	 is	 that	 an
engineer	 must	 be	 capable	 of	 handling	 all	 the	 different	 tasks
required.	Many	small	projects	 fail	 (or	 their	development	cost
is	 too	 high)	 because	 the	 engineer	 doesn’t	 have	 the	 proper
training	to	handle	an	entire	project.	More	than	any	other	goal,
the	 purpose	 of	 the	 Write	 Great	 Code	 series	 is	 to	 teach
programmers	how	to	do	small	projects	properly.

1.3.2.2	Medium-Sized	Projects

On	 a	 medium-sized	 project,	 personal	 software	 engineering
encompasses	 those	 aspects	 of	 the	 project	 for	 which	 a	 single
engineer	 is	 responsible.	This	 typically	 includes	 the	 design	 of

their	system	component,	 its	 implementation	(coding),	and	the
documentation	 for	 that	 module.	 Generally,	 they	 are	 also
responsible	for	testing	their	component	(unit	testing),	and	then
the	 team	 as	 a	 whole	 tests	 the	 entire	 system	 (integration
testing).	 Usually,	 there’s	 one	 engineer	 in	 charge	 of	 the
complete	system	design	(the	project	head	or	lead	programmer)
who	 also	 handles	 deployment.	 Depending	 on	 the	 project,	 a
technical	writer	might	handle	system	documentation.	Because
engineers	share	tasks	in	a	medium-sized	project,	specialization
is	possible,	and	the	project	doesn’t	require	each	engineer	to	be
capable	 of	 performing	 all	 the	 individual	 tasks.	 The	 lead
programmer	can	direct	the	activities	of	those	less	experienced
to	maintain	quality	throughout	the	project.

A	single	engineer	on	a	 small	project	 sees	 the	 total	picture
and	 can	 optimize	 certain	 activities	 based	 on	 their
understanding	of	the	entire	project.	On	a	large	project,	a	single
engineer	is	unaware	of	much	of	the	project	beyond	their	small
piece	 of	 it.	Medium-sized	 projects	 provide	 a	 hybrid	 of	 these
two	 extremes:	 individuals	 can	 see	much	of	 the	 entire	 project
and	adjust	their	approach	to	system	implementation.	They	can
also	 specialize	 on	 certain	 aspects	 of	 the	 system	 without
becoming	 overwhelmed	 by	 the	 details	 of	 the	 rest	 of	 the
system.

1.3.2.3	Large	Projects

On	 a	 large	 project,	 various	 team	 members	 have	 specialized
roles,	 from	 system	 design	 to	 implementation,	 testing,
documentation,	 deployment,	 and	 system	 enhancement	 and
maintenance.	As	with	medium-sized	projects,	in	large	projects
personal	 software	 engineering	 encompasses	 only	 those
activities	 for	which	 an	 individual	 programmer	 is	 responsible.

Software	engineers	on	a	large	project	generally	do	only	a	few
tasks	 (such	 as	 coding	 and	 unit	 testing);	 therefore,	 they	 don’t
require	 the	wide-ranging	 skill	 set	of	 a	 lone	programmer	on	a
small	project.

Beyond	 the	 scope	 of	 activity,	 the	 size	 of	 a	 project	 affects
the	productivity	of	its	engineers.	On	a	large	project,	engineers
can	become	very	specialized	and	concentrate	on	their	one	area
of	expertise.	This	allows	them	to	do	their	job	more	efficiently
than	if	they	had	to	use	a	more	generalized	skill	set.	However,
large	 projects	 must	 use	 a	 common	 software	 development
approach	 to	 be	 effective,	 and	 some	 engineers	may	 not	 be	 as
productive	if	they	don’t	like	the	approach.

1.3.3	Where	Software	Engineering	Fails
It’s	 possible	 to	 apply	 engineering	 techniques	 to	 software
development	 to	produce	applications	 in	a	more	cost-effective
manner.	 However,	 as	 Pete	 McBreen	 states	 in	 Software
Craftsmanship:	The	New	Imperative,	the	biggest	problem	with
software	 engineering	 is	 the	 assumption	 that	 a	 “systematic,
disciplined,	 quantifiable	 approach”	 is	 the	 only	 reasonable
approach.	 In	 fact,	 he	 raises	 a	 very	 good	 question:	 is	 it	 even
possible	 to	 make	 software	 development	 systematic	 and
quantified?	 Quoting	 http://www.controlchaos.com/,	 McBreen
says:

If	a	process	can	be	fully	defined,	with	all	things	known
about	 it	 so	 that	 it	 can	 be	 designed	 and	 run	 repeatedly
with	 predictable	 results,	 it	 is	 known	 as	 a	 defined
process,	 and	 it	 can	 be	 subjected	 to	 automation.	 If	 all
things	 about	 a	 process	 aren’t	 fully	 known—only	what
generally	happens	when	you	mix	these	inputs	and	what

http://www.controlchaos.com/

to	measure	and	control	to	get	the	desired	output—these
are	called	empirical	processes.

Software	 development	 is	 not	 a	 defined	 process;	 it’s	 an
empirical	 process.	As	 such,	 software	 development	 cannot	 be
fully	 automated,	 and	 it’s	 often	 difficult	 to	 apply	 engineering
principles	to	software	development.	Part	of	the	problem	is	that
practical	 engineering	 relies	 so	much	 on	 the	 reuse	 of	 existing
designs.	Although	a	considerable	amount	of	 reuse	 is	possible
in	 computer	 programming,	 too,	 it	 requires	 much	 more
customization	than	you	find	in	other	engineering	professions.

Another	significant	problem	with	software	engineering,	as
briefly	 discussed	 in	 the	 book’s	 introduction,	 is	 that	 software
engineering	treats	software	engineers	as	commodity	resources
that	a	manager	can	swap	arbitrarily	 into	and	out	of	a	project,
which	disregards	the	importance	of	an	individual’s	talents.	The
issue	isn’t	that	engineering	techniques	aren’t	ever	valuable,	but
that	 management	 attempts	 to	 apply	 them	 uniformly	 to
everyone	and	encourages	the	use	of	some	current	set	of	“best
practices”	 in	 software	 development.	 This	 approach	 can
produce	 quality	 software,	 but	 it	 doesn’t	 allow	 for	 thinking
outside	the	box	and	creating	new	practices	that	might	be	better.

1.4	SOFTWARE	CRAFTSMANSHIP
Software	 craftmanship,	 where	 a	 programmer	 trains	 and
practices	skills	under	the	tutelage	of	a	master,	is	about	lifelong
learning	 to	 be	 the	 best	 software	 developer	 you	 can	 be.
Following	 the	 craftmanship	 model,	 a	 programmer	 gets	 an
education,	 completes	 an	 apprenticeship,	 becomes	 a
journeyman	programmer,	and	strives	to	develop	a	masterpiece.

1.4.1	Education
Colleges	and	universities	provide	the	prerequisites	that	interns
need	 to	 be	 software	 craftsmen.	 If	 an	 internship	 exposed	 a
beginning	 programmer	 (intern/apprentice)	 to	 the	 same
information	 and	 challenges	 that	 a	 formal	 education	 does,	 the
internship	 might	 be	 equivalent	 to	 a	 formal	 education.
Unfortunately,	few	software	craftsmen	have	the	time	or	ability
to	 train	 an	 apprentice	 from	 scratch.	 They’re	 far	 too	 busy
working	 on	 real-world	 projects	 to	 devote	 the	 time	 needed	 to
teach	 an	 intern	 everything	 they	 need	 to	 know.	 Therefore,
education	 is	 the	 first	 step	 on	 the	 road	 to	 software
craftsmanship.

Additionally,	a	 formal	education	at	a	college	or	university
accomplishes	two	main	objectives:	first,	you’re	forced	to	study
those	 computer	 science	 topics	 that	 you’d	 probably	 just	 skip
over	 if	 you	 were	 studying	 the	 material	 on	 your	 own;	 and
second,	you	prove	to	the	world	that	you’re	capable	of	finishing
a	 major	 commitment	 that	 you’ve	 started.	 In	 particular,	 after
you’ve	completed	a	formal	computer	science	program,	you’re
ready	to	really	start	learning	about	software	development.

However,	 a	 college	 degree,	 no	 matter	 how	 advanced,
doesn’t	 automatically	qualify	you	as	a	 software	craftsman.	A
person	 with	 a	 graduate	 degree,	 which	 requires	 a	 deeper	 and
more	 specialized	 study	 of	 computer	 science,	 starts	 out	 as	 an
intern,	 just	 as	 someone	 with	 an	 undergraduate	 degree	 does.
The	 intern	with	 the	graduate	degree	might	spend	 fewer	years
as	an	apprentice	but	still	needs	considerable	training.

1.4.2	Apprenticeship
Completing	a	formal	computer	science	program	prepares	you

to	 start	 learning,	 at	 an	 apprentice	 level,	 how	 to	 become	 a
craftsman.	 A	 typical	 computer	 science	 program	 teaches	 you
about	 programming	 languages	 (their	 syntax	 and	 semantics),
data	structures,	and	the	theory	of	compilers,	operating	systems,
and	the	like,	but	doesn’t	teach	you	how	to	program	beyond	the
first-	 or	 second-semester	 Introduction	 to	 Programming
courses.	 An	 apprenticeship	 shows	 you	 what	 programming	 is
about	 when	 you	 enter	 the	 real	 world.	 The	 purpose	 of	 an
apprenticeship	 is	 to	get	 the	experience	necessary	 to	use	what
you’ve	learned	to	approach	problems	in	many	different	ways,
and	to	gain	as	many	different	experiences	as	possible.

An	 apprentice	 studies	 under	 someone	 who	 has	 mastered
advanced	programming	techniques.	This	person	can	be	either	a
software	 journeyman	 (see	 the	 next	 section)	 or	 a	 software
craftsman.	 The	 “master”	 assigns	 tasks	 to	 the	 apprentice,
demonstrates	 how	 to	 accomplish	 the	 task,	 and	 reviews	 the
apprentice’s	work,	making	appropriate	mid-course	corrections
to	 obtain	 high-quality	 work.	 Most	 important,	 the	 apprentice
also	reviews	their	master’s	work.	This	can	take	various	forms,
including	 testing,	 structured	 walk-throughs,	 and	 debugging.
The	 important	 factor	 is	 that	 the	 apprentice	 learns	 how	 the
master’s	code	operates. 	 In	doing	 so,	 the	apprentice	picks	up
programming	 techniques	 they	 would	 never	 master	 on	 their
own.

If	 an	 apprentice	 is	 lucky,	 they’ll	 have	 the	 opportunity	 to
study	under	several	masters	and	learn	solid	techniques	from	all
of	them.	With	each	project	completed	under	the	tutelage	of	an
advanced	 programmer,	 the	 apprentice	 nears	 the	 end	 of	 their
apprenticeship	and	moves	on	to	the	next	stage	in	the	software
craftsman’s	route:	the	software	journeyman.

7

In	 one	 sense,	 an	 apprenticeship	 never	 ends.	 You	 should
always	be	on	 the	 lookout	 for	new	 techniques	and	new	skills.
For	example,	consider	all	the	software	engineers	who	grew	up
on	 structured	 programming	 and	 had	 to	 learn	 object-oriented
programming.	 However,	 at	 some	 point,	 you	 reach	 the	 stage
where	 you’re	 using	 your	 existing	 skills	 more	 often	 than
developing	new	ones.	At	 that	point,	 you	 start	 imparting	your
wisdom	 to	 others	 rather	 than	 learning	 from	 others.	 It’s	 then
that	 the	 “masters”	 you’re	 working	 with	 feel	 you’re	 ready	 to
tackle	projects	on	your	own	without	assistance	or	supervision.
That’s	when	you	become	a	software	journeyman.

1.4.3	The	Software	Journeyman
Software	 journeymen	 handle	 the	 bulk	 of	 software
development.	As	the	name	suggests,	they	typically	move	from
project	 to	 project,	 applying	 their	 skills	 to	 solve	 application
problems.	Even	though	a	software	developer’s	education	never
ends,	 a	 software	 journeyman	 is	more	 focused	 on	 application
development	than	on	learning	how	to	develop	applications.

Another	important	task	that	software	journeymen	take	on	is
training	 new	 software	 apprentices.	 They	 review	 the	 work	 of
apprentices	on	their	project	and	share	programming	techniques
and	knowledge	with	them.

A	software	journeyman	constantly	looks	for	new	tools	and
techniques	 that	 can	 improve	 the	 software	 development
process.	 By	 adopting	 new	 (but	 proven)	 techniques	 early	 on,
they	stay	ahead	of	the	learning	curve	and	keep	up	with	current
trends	to	avoid	falling	behind.	Utilizing	industry	best	practices
to	create	efficient	and	cost-effective	solutions	for	customers	is
the	 hallmark	 of	 this	 stage	 of	 craftsmanship.	 Software

journeymen	 are	 productive,	 knowledgeable,	 and	 exactly	 the
type	of	software	developer	most	project	managers	hope	to	find
when	assembling	a	software	team.

1.4.4	The	Master	Craftsman
The	traditional	way	to	become	a	master	craftsman	is	to	create
a	masterpiece,	 a	 work	 that	 sets	 you	 apart	 from	 your	 peers.
Some	 (high-end)	 examples	 of	 software	 masterpieces	 include
VisiCalc, 	 the	Linux	operating	 system,	 and	 the	vi	 and	 emacs
text	 editors.	 These	 products	were	 initially	 the	 brainchild	 and
creation	 of	 a	 single	 person,	 even	 though	 they	 went	 on	 to
involve	 dozens	 or	 hundreds	 of	 different	 programmers.	 A
masterpiece	 doesn’t	 have	 to	 become	 famous,	 like	 Linux	 or
some	 GNU	 tool.	 However,	 your	 immediate	 peers	 must
recognize	your	masterpiece	as	a	useful	and	creative	solution	to
a	 problem.	 A	 masterpiece	 doesn’t	 have	 to	 be	 a	 stand-alone
original	piece	of	code,	either.	Writing	a	complex	device	driver
for	an	operating	system,	or	extending	some	other	program	 in
several	useful	ways,	could	very	well	qualify	as	a	masterpiece.
The	 purpose	 of	 the	masterpiece	 is	 to	 create	 an	 item	 in	 your
portfolio	 that	 tells	 the	 world:	 “I’m	 capable	 of	 producing
serious	software—take	me	seriously!”	A	masterpiece	work	lets
others	know	that	they	should	seriously	consider	your	opinions
and	trust	what	you	have	to	say.

Generally,	 the	 domain	 of	 the	 master	 craftsman	 is	 to
determine	what	current	best	practices	are	and	invent	new	ones.
Best	practices	describe	the	best	known	way,	not	necessarily	the
absolute	best	way,	to	accomplish	a	task.	The	master	craftsman
investigates	 whether	 there’s	 a	 better	 approach	 for	 designing
applications,	 recognizes	 the	 utility	 of	 a	 new	 technique	 or

8

methodology	as	it	applies	to	a	wide	spectrum	of	applications,
and	 verifies	 that	 a	 practice	 is	 best	 and	 communicates	 that
information	to	others.

1.4.5	Where	Software	Craftsmanship	Fails
Steve	 McConnell,	 in	 his	 classic	 software	 engineering	 book
Code	 Complete,	 claims	 that	 experience	 is	 one	 of	 those
characteristics	that	doesn’t	matter	as	much	as	people	think:	“If
a	 programmer	 hasn’t	 learned	C	 after	 a	 year	 or	 two,	 the	 next
three	 years	 won’t	make	much	 difference.”	 He	 then	 asks,	 “If
you	work	for	10	years,	do	you	get	10	years	of	experience	or	do
you	 get	 1	 year	 of	 experience	 10	 times?”	 McConnell	 even
suggests	 that	 book	 learning	 might	 be	 more	 important	 than
programming	experience.	He	claims	that	the	computer	science
field	 changes	 so	 fast	 that	 someone	 with	 10	 years	 of
programming	 experience	 has	 missed	 out	 on	 all	 the	 great
research	to	which	new	programmers	have	been	exposed	during
that	decade.

1.5	THE	PATH	TO	WRITING	GREAT
CODE
Writing	great	code	doesn’t	happen	because	you	follow	a	list	of
rules.	You	must	make	a	personal	decision	to	put	in	the	effort	to
ensure	 the	 code	 you’re	writing	 is	 truly	 great.	Violating	well-
understood	 software	 engineering	 principles	 is	 a	 good	way	 to
ensure	 that	your	code	 is	not	great,	but	 rigidly	 following	such
rules	 doesn’t	 guarantee	 greatness,	 either.	 A	 well-experienced
and	meticulous	developer,	or	software	craftsman,	can	navigate
both	 approaches:	 following	 established	 practices	 when	 it’s
required,	 but	 being	 unafraid	 to	 try	 a	 different	 technique	 or

strategy	when	the	need	arises.

Unfortunately,	 a	 book	 can	 only	 teach	 you	 the	 rules	 and
methodologies.	Creativity	and	wisdom	are	qualities	you	need
to	develop	on	your	own.	This	book	teaches	you	the	rules	and
suggests	 when	 you	might	 consider	 breaking	 them.	However,
it’s	still	up	to	you	to	decide	whether	to	do	so.

1.6	FOR	MORE	INFORMATION
Hunt,	 Andrew,	 and	 David	 Thomas.	 The	 Pragmatic
Programmer.	 Upper	 Saddle	 River,	 NJ:	 Addison-Wesley
Professional,	1999.

Kernighan,	 Brian,	 and	 Rob	 Pike.	 The	 Practice	 of
Programming.	 Upper	 Saddle	 River,	 NJ:	 Addison-Wesley
Professional,	1999.

McBreen,	Pete.	Software	Craftsmanship:	The	New	Imperative.
Upper	 Saddle	 River,	 NJ:	 Addison-Wesley	 Professional,
2001.

McConnell,	 Steve.	Code	Complete.	 2nd	 ed.	 Redmond,	WA:
Microsoft	Press,	2004.

———.	 Rapid	 Development:	 Taming	 Wild	 Software
Schedules.	Redmond,	WA:	Microsoft	Press,	1996.

Pressman,	 Robert	 S.	 Software	 Engineering,	 A	 Practitioner’s
Approach.	New	York:	McGraw-Hill,	2010.

2
PRODUCTIVITY

In	the	late	1960s,	it	was	clear	that	training	more	programmers
would	not	alleviate	the	software	crisis.	The	only	solution	was
to	 increase	programmer	productivity—that	 is,	 enable	existing
programmers	to	write	more	code—which	is	how	the	software
engineering	 field	 originated.	 Therefore,	 a	 good	 place	 to	 start
studying	 software	 engineering	 is	 with	 an	 understanding	 of
productivity.

2.1	WHAT	IS	PRODUCTIVITY?
Although	 the	 term	productivity	 is	commonly	described	as	 the
basis	for	software	engineering,	it’s	amazing	how	many	people
have	 a	 distorted	 view	 of	 it.	 Ask	 any	 programmer	 about
productivity,	 and	 you’re	 bound	 to	 hear	 “lines	 of	 code,”
“function	points,”	“complexity	metrics,”	and	so	on.	The	truth
is,	there	is	nothing	magical	or	mysterious	about	the	concept	of
productivity	on	a	software	project.	We	can	define	productivity
as:

The	number	of	unit	tasks	completed	in	a	unit	amount	of
time	or	completed	for	a	given	cost.

The	challenge	with	this	definition	is	specifying	a	unit	task.
One	convenient	unit	task	might	be	a	project;	however,	projects
vary	 wildly	 in	 terms	 of	 size	 and	 complexity.	 The	 fact	 that
programmer	A	has	completed	three	projects	in	a	given	amount
of	 time,	whereas	 programmer	B	has	worked	only	on	 a	 small
portion	 of	 a	 large	 project,	 tells	 us	 nothing	 about	 the	 relative
productivity	 of	 these	 two	 programmers.	 For	 this	 reason,	 the
unit	 task	 is	 usually	 much	 smaller	 than	 an	 entire	 project.
Typically,	it’s	something	like	a	function,	a	single	line	of	code,
or	an	even	smaller	component	of	the	project.	The	exact	metric
is	 irrelevant	 as	 long	 as	 the	 unit	 task	 is	 consistent	 between
various	projects	and	a	 single	programmer	would	be	expected
to	take	the	same	amount	of	time	to	complete	a	unit	task	on	any
project.	 In	 general,	 if	 we	 say	 that	 programmer	 A	 is	 n	 times
more	 productive	 than	 programmer	 B,	 programmer	 A	 can
complete	n	 times	 as	 many	 (equivalent)	 projects	 in	 the	 same
amount	 of	 time	 as	 it	 would	 take	 programmer	B	 to	 complete
one	of	those	projects.

2.2	PROGRAMMER
PRODUCTIVITY	VS.	TEAM
PRODUCTIVITY
In	 1968,	 Sackman,	 Erikson,	 and	 Grant	 published	 an	 eye-
opening	 article	 claiming	 that	 there	 was	 a	 10	 to	 20	 times
difference	in	productivity	among	programmers. 	Later	studies
and	 articles	 have	 pushed	 this	 difference	 even	 higher.	 This
means	 that	 certain	 programmers	 produce	 as	 much	 as	 20	 (or

1

more)	times	as	much	code	as	some	less	capable	programmers.
Some	 companies	 even	 claim	 a	 two-order-of-magnitude
difference	 in	 productivity	 between	 various	 software	 teams	 in
their	 organizations.	 This	 is	 an	 astounding	 difference!	 If	 it’s
possible	 for	 some	 programmers	 to	 be	 20	 times	 more
productive	 than	others	 (so-called	Grand	Master	Programmers
[GMPs]),	is	there	some	technique	or	methodology	we	can	use
to	 improve	 the	productivity	of	a	 typical	 (or	 low-productivity)
programmer?

Because	it’s	not	possible	to	train	every	programmer	to	raise
them	 to	 the	 GMP	 level,	 most	 software	 engineering
methodologies	 use	 other	 techniques,	 such	 as	 better
management	processes,	to	improve	the	productivity	of	a	large
team.	 This	 book	 series	 takes	 the	 other	 approach:	 rather	 than
attempting	 to	 increase	 the	 productivity	 of	 a	 team,	 it	 teaches
individual	 programmers	 how	 to	 increase	 their	 own
productivity	and	work	toward	becoming	a	GMP.

Although	 the	 productivity	 of	 individual	 programmers	 has
the	 largest	 impact	 on	 a	 project’s	 delivery	 schedule,	 the	 real
world	is	more	concerned	with	project	cost—how	long	it	takes
and	 how	 much	 it	 costs	 to	 complete	 the	 project—than	 with
programmer	 productivity.	 Except	 for	 small	 projects,	 the
productivity	of	the	team	takes	priority	over	the	productivity	of
a	team	member.

Team	 productivity	 isn’t	 simply	 the	 average	 of	 the
productivities	 of	 each	 member;	 it’s	 based	 on	 complex
interactions	 between	 team	 members.	 Meetings,
communications,	personal	interactions,	and	other	activities	can
all	have	a	negative	impact	on	team	members’	productivity,	as
can	bringing	new	or	less	knowledgeable	team	members	up	to

speed	 and	 reworking	 existing	 code.	 (The	 lack	 of	 overhead
from	 these	 activities	 is	 the	main	 reason	 a	 programmer	 is	 far
more	productive	when	working	on	a	small	project	 than	when
working	 on	 a	 medium-	 or	 large-sized	 project.)	 Teams	 can
improve	 their	 productivity	 by	 managing	 overhead	 for
communication	 and	 training,	 resisting	 the	 urge	 to	 rework
existing	 code	 unless	 it’s	 really	 necessary,	 and	 managing	 the
project	so	code	is	written	correctly	the	first	time	(reducing	the
need	to	rework	it).

2.3	MAN-HOURS	AND	REAL	TIME
The	 definition	 given	 earlier	 provides	 two	 measures	 for
productivity:	one	based	on	time	(productivity	is	the	number	of
unit	tasks	completed	in	a	unit	amount	of	time)	and	one	based
on	cost	(productivity	is	the	number	of	unit	tasks	completed	for
a	given	cost).	Sometimes	cost	is	more	important	than	time,	and
vice	versa.	To	measure	cost	and	 time,	we	can	use	man-hours
and	real	time,	respectively.

From	 a	 corporation’s	 view,	 the	 portion	 of	 a	 project’s	 cost
related	 to	programmer	productivity	 is	directly	proportional	 to
its	 man-hours,	 or	 the	 number	 of	 hours	 each	 team	 member
spends	working	on	the	project.	A	man-day	is	approximately	8
man-hours,	a	man-month	is	approximately	176	man-hours,	and
a	man-year	 is	approximately	2,000	man-hours.	The	 total	cost
of	 a	 project	 is	 the	 total	 number	 of	 man-hours	 spent	 on	 that
project	multiplied	 by	 the	 average	 hourly	 wage	 of	 each	 team
member.

Real	time	(also	known	as	calendar	time	or	wall	clock	time)
is	 just	 the	 progression	 of	 time	 during	 a	 project.	 Project

schedules	 and	delivery	of	 the	 final	product	 are	usually	based
on	real	time.

Man-hours	 are	 the	 product	 of	 real	 time	multiplied	 by	 the
number	of	team	members	concurrently	working	on	the	project,
but	 optimizing	 for	 one	 of	 these	 quantities	 doesn’t	 always
optimize	 for	 the	other.	For	example,	 suppose	you’re	working
on	 an	 application	 needed	 in	 a	 municipal	 election.	 The	 most
critical	quantity	in	this	case	is	real	time;	the	software	must	be
completely	 functional	 and	 deployed	 by	 the	 election	 date
regardless	of	 the	 cost.	 In	 contrast,	 a	 “basement	programmer”
working	on	the	world’s	next	killer	app	can	spend	more	time	on
the	project,	 thus	extending	 the	delivery	date	 in	 real	 time,	but
can’t	 afford	 to	 hire	 additional	 personnel	 to	 complete	 the	 app
sooner.

One	 of	 the	 biggest	 mistakes	 project	 managers	 make	 on
large	 projects	 is	 to	 confuse	man-hours	with	 real	 time.	 If	 two
programmers	can	complete	a	project	in	2,000	man-hours	(and
1,000	real	hours),	you	might	conclude	that	four	programmers
can	complete	the	project	in	500	real	hours.	In	other	words,	by
doubling	the	staff	on	the	project,	you	can	get	it	done	in	half	the
time	 and	 complete	 the	 project	 on	 schedule.	 In	 reality,	 this
doesn’t	 always	 work	 (just	 like	 adding	 a	 second	 oven	 won’t
bake	a	cake	any	faster).

Increasing	 staff	 to	 increase	 the	 number	 of	man-hours	 per
calendar	 hour	 is	 generally	more	 successful	 on	 large	 projects
than	 on	 small	 and	medium-sized	 projects.	 Small	 projects	 are
sufficiently	 limited	 in	 scope	 that	 a	 single	 programmer	 can
track	all	the	details	associated	with	the	project;	there’s	no	need
for	 the	 programmer	 to	 consult,	 coordinate	 with,	 or	 train
anyone	else	to	work	on	the	project.	Generally	speaking,	adding

programmers	 to	 a	 small	 project	 eliminates	 these	 advantages
and	 increases	 the	 costs	 dramatically	 without	 significantly
affecting	the	delivery	schedule.	On	medium-sized	projects,	the
balance	is	delicate:	two	programmers	may	be	more	productive
than	three, 	but	adding	more	programming	resources	can	help
get	an	understaffed	project	finished	sooner	(though,	perhaps,	at
a	greater	cost).	On	large	software	projects,	increasing	the	team
size	 reduces	 the	 project’s	 schedule	 accordingly,	 but	 once	 the
team	grows	beyond	a	certain	point,	you	might	have	to	add	two
or	three	people	to	do	the	amount	of	work	usually	done	by	one
person.

2.4	CONCEPTUAL	AND	SCOPE
COMPLEXITY
As	projects	become	more	complex, 	programmer	productivity
decreases,	 because	 a	 more	 complex	 project	 requires	 deeper
(and	 longer)	 thought	 to	 understand	 what	 is	 going	 on.	 In
addition,	 as	 project	 complexity	 increases,	 there’s	 a	 greater
likelihood	 that	 a	 software	 engineer	will	 introduce	 errors	 into
the	system,	and	that	defects	introduced	early	in	the	system	will
not	be	caught	until	 later,	when	 the	cost	of	 correcting	 them	 is
much	higher.

Complexity	 comes	 in	 a	 couple	 of	 forms.	 Consider	 the
following	two	definitions	of	complex:
1.	 Having	 a	 complicated,	 involved,	 or	 intricate	 arrangement	 of	 parts	 so	 as	 to	 be

hard	to	understand

2.	 Composed	of	many	interconnected	parts

We	can	call	 the	first	definition	conceptual	complexity.	For
example,	 consider	 a	 single	 arithmetic	 expression	 in	 a	 high-

2

3

level	 language	 (HLL),	 such	 as	 C/C++,	 which	 can	 contain
intricate	 function	 calls,	 several	 weird	 arithmetic/logical
operators	 with	 varying	 levels	 of	 precedence,	 and	 lots	 of
parentheses	that	make	the	expression	difficult	to	comprehend.
Conceptual	complexity	can	occur	in	any	software	project.

We	can	call	the	second	definition	scope	complexity,	which
occurs	when	there	is	too	much	information	for	a	human	mind
to	 easily	 digest.	 Even	 if	 the	 individual	 components	 of	 the
project	 are	 simple,	 the	 sheer	 size	 of	 the	 project	 makes	 it
impossible	 for	 one	 person	 to	 understand	 the	 whole	 thing.
Scope	complexity	occurs	in	medium-	and	large-scale	projects
(indeed,	 it’s	 this	 form	 of	 complexity	 that	 differentiates	 small
projects	from	the	others).

Conceptual	complexity	affects	programmer	productivity	in
two	ways.	First,	complex	constructs	require	more	thought	(and
therefore	 more	 time)	 to	 produce	 than	 simple	 constructs.
Second,	complex	constructs	are	more	likely	to	contain	defects
that	must	be	corrected	later,	producing	a	corresponding	loss	in
productivity.

Scope	complexity	introduces	different	problems.	When	the
project	 reaches	 a	 certain	 size,	 a	 programmer	 on	 the	 project
might	 be	 completely	 unaware	 of	 what	 is	 going	 on	 in	 other
parts	 of	 the	 project,	 and	might	 duplicate	 code	 already	 in	 the
system.	 Clearly,	 this	 reduces	 programmer	 productivity,
because	 the	 programmer	 wasted	 time	 writing	 that	 code.
Inefficient	use	of	system	resources	can	also	occur	as	a	result	of
scope	 complexity.	When	working	 on	 a	 part	 of	 the	 system,	 a
small	team	of	engineers	might	be	testing	their	piece	by	itself,
but	 they	 don’t	 see	 its	 interaction	with	 the	 rest	 of	 the	 system
(which	 might	 not	 even	 be	 ready	 yet).	 As	 a	 result,	 problems

4

with	system	resource	usages	(such	as	CPU	cycles	or	memory)
might	not	be	uncovered	until	later.

With	 good	 software	 engineering	 practices,	 it’s	 possible	 to
mitigate	some	of	this	complexity.	But	the	general	result	is	the
same:	 as	 systems	 become	more	 complex,	 people	must	 spend
more	time	thinking	about	them	and	the	opportunity	for	defects
increases	dramatically.	The	end	result	is	reduced	productivity.

2.5	PREDICTING	PRODUCTIVITY
Productivity	 is	 a	 project	 attribute	 that	 you	 can	 measure	 and
attempt	to	predict.	When	a	project	is	complete,	it’s	fairly	easy
to	 determine	 the	 team’s	 (and	 its	 members’)	 productivity,
assuming	 the	 team	 kept	 accurate	 records	 of	 the	 tasks
accomplished	during	project	development.	Though	success	or
failure	on	past	projects	doesn’t	guarantee	success	or	failure	on
future	projects,	past	performance	is	the	best	indicator	available
to	predict	a	software	team’s	future	performance.	If	you	want	to
improve	the	software	development	process,	you	need	to	track
the	 techniques	 that	work	well	 and	 those	 that	 don’t,	 so	 you’ll
know	what	to	do	(or	not	to	do)	on	future	projects.	To	track	this
information,	 programmers	 and	 their	 support	 personnel	 must
document	 all	 software	development	 activities.	This	 is	 a	good
example	of	pure	overhead	introduced	by	software	engineering:
the	documentation	does	almost	nothing	to	help	get	the	current
project	 out	 the	 door	 or	 improve	 its	 quality,	 but	 it’s	 an
investment	 in	 future	 projects	 to	 help	 predict	 (and	 improve)
productivity.

Watts	 S.	 Humphrey’s	 A	 Discipline	 for	 Software
Engineering	 (Addison-Wesley	 Professional,	 1994)	 is	 a	 great

read	 for	 those	 interested	 in	 learning	 about	 tracking
programmer	 productivity.	 Humphrey	 teaches	 a	 system	 of
forms,	guidelines,	and	procedures	for	developing	software	that
he	 calls	 the	Personal	 Software	 Process	 (PSP).	 Although	 the
PSP	 is	 targeted	 at	 individuals,	 it	 offers	 valuable	 insight	 into
where	 a	 programmer’s	 problems	 lie	 in	 the	 software
development	 process.	 In	 turn,	 this	 can	 greatly	 help	 them	 to
determine	how	to	attack	their	next	major	project.

2.6	METRICS	AND	WHY	WE	NEED
THEM
The	 problem	 with	 predicting	 a	 team’s	 or	 an	 individual’s
productivity	 by	 looking	 at	 their	 past	 performance	 on	 similar
projects	 is	 that	 it	 applies	 only	 to	 similar	 projects.	 If	 a	 new
project	 is	 significantly	 different	 than	 a	 team’s	 past	 projects,
past	 performance	 might	 not	 be	 a	 good	 indicator.	 Because
projects	 vary	 greatly	 in	 size,	 measuring	 productivity	 across
whole	 projects	 might	 not	 provide	 sufficient	 information	 to
predict	 future	 performance.	 Therefore,	 some	 system	 of
measurement	 (a	metric)	 at	 a	 granularity	 level	 below	 a	whole
project	is	needed	to	better	evaluate	teams	and	team	members.
An	ideal	metric	is	independent	of	the	project	(team	members,
programming	 language	 chosen,	 tools	 used,	 and	 other	 related
activities	and	components);	 it	must	be	usable	across	multiple
projects	 to	 allow	 for	 comparison	 between	 them.	 Several
metrics	do	exist,	but	none	is	perfect—or	even	very	good.	Still,
a	 poor	metric	 is	 better	 than	no	metric,	 so	 software	 engineers
will	 continue	 to	 use	 them	 until	 a	 better	measurement	 comes
along.	In	this	section,	I’ll	discuss	several	of	the	more	common
metrics	and	the	problems	and	benefits	of	each.

2.6.1	Executable	Size	Metric
One	simple	metric	that	programmers	use	to	specify	a	software
system’s	complexity	is	the	size	of	the	executables	in	the	final
system. 	 The	 assumption	 is	 that	 complex	 projects	 produce
large	executable	files.

The	advantages	of	this	metric	are:

It	 is	 trivial	 to	compute	 (typically,	you	need	only	 look	at	a	directory	 listing	and
compute	the	sum	of	one	or	more	executable	files).

It	doesn’t	require	access	to	the	original	source	code.

Unfortunately,	 the	 executable	 size	 metric	 also	 has
deficiencies	that	disqualify	it	for	most	projects:

Executable	 files	 often	 contain	 uninitialized	 data	whose	 contribution	 to	 the	 file
size	have	little	or	nothing	to	do	with	the	complexity	of	the	system.

Library	 functions	 add	 to	 the	 executable’s	 size,	 yet	 they	 actually	 reduce	 the
complexity	of	the	project.

The	 executable	 file	 size	 metric	 is	 not	 language-independent.	 For	 example,
assembly	 language	 programs	 tend	 to	 be	 much	 more	 compact	 than	 HLL
executables,	yet	most	people	consider	assembly	programs	much	more	complex
than	equivalent	HLL	programs.

The	 executable	 file	 size	 metric	 is	 not	 CPU-independent.	 For	 example,	 an
executable	for	an	80x86	CPU	is	usually	smaller	than	the	same	program	compiled
for	an	ARM	(or	other	RISC)	CPU.

2.6.2	Machine	Instructions	Metric
A	major	failing	of	the	executable	file	size	metric	is	that	certain
executable	 file	 formats	 include	 space	 for	 uninitialized	 static
variables,	which	means	trivial	changes	to	the	input	source	file
can	 dramatically	 alter	 the	 executable	 file	 size.	 One	 way	 to
solve	this	problem	is	to	count	only	the	machine	instructions	in
a	 source	 file	 (either	 the	 size,	 in	 bytes,	 of	 the	 machine
instructions	 or	 the	 total	 number	 of	 machine	 instructions).

5

6

While	 this	 metric	 solves	 the	 problem	 of	 uninitialized	 static
arrays,	it	still	exhibits	all	the	other	problems	of	the	executable
file	 size	metric:	 it’s	 CPU-dependent,	 it	 counts	 code	 (such	 as
library	 code)	 that	wasn’t	written	by	 the	programmer,	 and	 it’s
language-dependent.

2.6.3	Lines	of	Code	Metric
The	 lines	 of	 code	 (LOC,	 or	KLOC	 for	 thousands	 of	 lines	 of
code)	metric	is	the	most	common	software	metric	in	use	today.
As	 its	 name	 suggests,	 it’s	 a	 count	 of	 the	 number	 of	 lines	 of
source	code	in	a	project.	The	metric	has	several	good	qualities,
as	well	as	some	bad	ones.

Simply	counting	 the	number	of	source	 lines	appears	 to	be
the	most	popular	form	of	using	the	LOC	metric.	Writing	a	line
count	program	is	fairly	trivial,	and	most	word	count	programs
available	 for	 operating	 systems	 like	 Linux	 will	 compute	 the
line	count	for	you.

Here	are	some	common	claims	about	the	LOC	metric:

It	 takes	 about	 the	 same	 amount	 of	 time	 to	 write	 a	 single	 line	 of	 source	 code
regardless	of	the	programming	language	in	use.

The	 LOC	metric	 is	 not	 affected	 by	 the	 use	 of	 library	 routines	 (or	 other	 code
reuse)	in	a	project	(assuming,	of	course,	you	don’t	count	the	number	of	lines	in
the	prewritten	library	source	code).

The	LOC	metric	is	independent	of	the	CPU.

The	LOC	metric	does	have	some	drawbacks:

It	 doesn’t	 provide	 a	 good	 indication	 of	 how	much	 work	 the	 programmer	 has
accomplished.	One	 hundred	 lines	 of	 code	 in	 a	VHLL	 accomplishes	more	 than
100	lines	of	assembly	code.

It	assumes	 that	 the	cost	of	each	 line	of	source	code	 is	 the	same.	However,	 this
isn’t	the	case.	Blank	lines	have	a	trivial	cost,	simple	data	declarations	have	a	low
conceptual	complexity,	and	statements	with	complex	Boolean	expressions	have	a
very	high	conceptual	complexity.

2.6.4	Statement	Count	Metric
The	 statement	 count	 metric	 counts	 the	 number	 of	 language
statements	 in	 a	 source	 file.	 It	 does	 not	 count	 blank	 lines	 or
comments,	nor	does	 it	count	a	single	statement	spread	across
multiple	lines	as	separate	entities.	As	a	result,	it	does	a	better
job	than	LOC	of	calculating	the	amount	of	programmer	effort.

Although	the	statement	count	metric	provides	a	better	view
of	program	complexity	than	lines	of	code,	it	suffers	from	many
of	 the	 same	 problems.	 It	 measures	 effort	 rather	 than	 work
accomplished,	 it	 isn’t	 as	 language-independent	 as	 we’d	 like,
and	it	assumes	that	each	statement	in	the	program	requires	the
same	amount	of	effort	to	produce.

2.6.5	Function	Point	Analysis
Function	 point	 analysis	 (FPA)	 was	 originally	 devised	 as	 a
mechanism	for	predicting	the	amount	of	work	a	project	would
require	 before	 any	 source	 code	 was	 written.	 The	 basic	 idea
was	 to	consider	 the	number	of	 inputs	a	program	requires,	 the
number	of	outputs	 it	 produces,	 and	 the	basic	 computations	 it
must	perform,	and	use	this	information	to	determine	a	project
schedule.

FPA	offers	 several	 advantages	over	 simplistic	metrics	 like
line	 or	 statement	 count.	 It	 is	 truly	 language-	 and	 system-
independent.	It	depends	upon	the	functionality	of	the	software
rather	than	its	implementation.

FPA	 does	 have	 a	 few	 serious	 drawbacks,	 though.	 First,
unlike	 line	 count	 or	 even	 statement	 count,	 it’s	 not
straightforward	to	compute	the	number	of	“function	points”	in
a	program.	The	analysis	is	subjective:	the	person	analyzing	the
program	 must	 decide	 on	 the	 relative	 complexity	 of	 each

7

function.	 Additionally,	 FPA	 has	 never	 been	 successfully
automated.	 How	 would	 such	 a	 program	 decide	 where	 one
calculation	 ends	 and	 another	 begins?	 How	 would	 it	 apply
different	complexity	values	(again,	a	subjective	assignment)	to
each	 function	 point?	 Because	 this	 manual	 analysis	 is	 rather
time-consuming	and	expensive,	FPA	is	not	as	popular	as	other
metrics.	 Largely,	 FPA	 is	 a	 postmortem	 (end-of-project)	 tool
applied	 at	 the	 completion	 of	 a	 project	 rather	 than	 during
development.

2.6.6	McCabe’s	Cyclomatic	Complexity	Metric
As	mentioned	 earlier,	 a	 fundamental	 failure	 of	 the	 LOC	 and
statement	count	metrics	is	that	they	assume	each	statement	has
equivalent	complexity.	FPA	fares	a	little	better	but	requires	an
analyst	 to	 assign	 a	 complexity	 rating	 to	 each	 statement.
Unfortunately,	these	metrics	don’t	accurately	reflect	the	effort
that	went	into	the	work	being	measured,	and,	therefore	fail	to
document	programmer	productivity.

Thomas	 McCabe	 developed	 a	 software	 metric	 known	 as
cyclomatic	 complexity	 to	 measure	 the	 complexity	 of	 source
code	 by	 counting	 the	 number	 of	 paths	 through	 it.	 It	 begins
with	 a	 flowchart	 of	 the	program.	The	nodes	 in	 the	 flowchart
correspond	 to	 statements	 in	 the	 program,	 and	 the	 edges
between	the	nodes	correspond	to	nonsequential	control	flow	in
the	 program.	 A	 simple	 calculation	 involving	 the	 number	 of
nodes,	 the	 number	 of	 edges,	 and	 the	 number	 of	 connected
components	 in	 the	 flowchart	 provides	 a	 single	 cyclomatic
complexity	 rating	 for	 the	 code.	 Consider	 a	 1,000-line	 printf
program	(with	nothing	else);	the	cyclomatic	complexity	would
be	1,	because	there	is	a	single	path	through	the	program.	Now

consider	 a	 second	 example,	 with	 a	 large	 mixture	 of	 control
structures	and	other	statements;	 it	would	have	a	much	higher
cyclomatic	complexity	rating.

The	cyclomatic	complexity	metric	is	useful	because	it’s	an
objective	 measure,	 and	 it’s	 possible	 to	 write	 a	 program	 to
compute	 this	 value.	 Its	 drawback	 is	 that	 the	 bulk	 size	 of	 a
program	 is	 irrelevant;	 that	 is,	 it	 treats	a	 single	printf	 statement
the	 same	 as	 1,000	 printf	 statements	 in	 a	 row,	 even	 though	 the
second	version	clearly	 requires	more	work	(even	 if	 that	extra
work	is	just	a	bunch	of	cut-and-paste	operations).

2.6.7	Other	Metrics
There’s	 no	 shortage	 of	 metrics	 we	 could	 devise	 to	 measure
some	 facet	 of	 programmer	productivity.	One	 common	metric
is	to	count	the	number	of	operators	in	a	program.	This	metric
recognizes	 and	 adjusts	 for	 the	 fact	 that	 some	 statements
(including	 those	 that	 don’t	 involve	 control	 paths)	 are	 more
complex	 than	 others,	 taking	 more	 time	 to	 write,	 test,	 and
debug.	Another	metric	is	to	count	the	number	of	tokens	(such
as	 identifiers,	 reserved	 words,	 operators,	 constants,	 and
punctuation)	 in	 a	 program.	 No	 matter	 the	 metric,	 though,	 it
will	have	shortcomings.

Many	people	attempt	to	use	a	combination	of	metrics	(such
as	 line	 count	 multiplied	 by	 cyclomatic	 complexity	 and
operator	 count)	 to	 create	 a	 more	 “multidimensional”	 metric
that	better	measures	the	amount	of	work	involved	in	producing
a	 bit	 of	 code.	Unfortunately,	 as	 the	 complexity	 of	 the	metric
increases,	it	becomes	more	difficult	to	use	on	a	given	project.
LOC	 has	 been	 successful	 because	 you	 can	 use	 the	 Unix	 wc
(word	 count)	 utility,	 which	 also	 counts	 lines,	 to	 get	 a	 quick

idea	of	program	size.	Computing	a	value	for	one	of	these	other
metrics	 usually	 requires	 a	 specialized,	 language-dependent
application	 (assuming	 the	 metric	 is	 automatable).	 For	 this
reason,	 although	 people	 have	 proposed	 a	 large	 number	 of
metrics,	few	have	become	as	universally	popular	as	LOC.

2.6.8	The	Problem	with	Metrics
Metrics	that	roughly	measure	the	amount	of	source	code	for	a
project	provide	a	good	indication	of	the	time	spent	on	a	project
if	we	assume	that	each	line	or	statement	in	the	program	takes
some	 average	 amount	 of	 time	 to	 write,	 but	 only	 a	 tenuous
relationship	 exists	 between	 lines	 of	 code	 (or	 statements)	 and
the	work	accomplished.	Unfortunately,	metrics	measure	some
physical	 attributes	 of	 the	 program	 but	 rarely	 measure	 what
we’re	 really	 interested	 in	 knowing:	 the	 intellectual	 effort
needed	to	write	the	code	in	the	first	place.

Another	 failure	 of	 almost	 every	 metric	 is	 that	 they	 all
assume	 that	 more	 work	 produces	 more	 (or	 more	 complex)
code.	 This	 is	 not	 always	 true.	 For	 example,	 a	 great
programmer	 will	 often	 expend	 effort	 to	 refactor	 their	 code,
making	 it	 smaller	 and	 less	 complex.	 In	 this	 case,	more	work
produces	less	code	(and	less	complex	code).

Metrics	 also	 fail	 to	 consider	 environmental	 issues
concerning	the	code.	For	example,	are	10	lines	of	code	written
for	 a	 bare-metal	 embedded	 device	 equivalent	 to	 10	 lines	 of
code	written	for	a	SQL	database	application?

All	 these	 metrics	 fail	 to	 consider	 the	 learning	 curve	 for
certain	projects.	Are	10	 lines	of	Windows	device	driver	code
equivalent	to	10	lines	of	Java	code	in	a	web	applet?	The	LOC
values	for	these	two	projects	are	incomparable.

Ultimately,	 most	 metrics	 fail	 because	 they	 measure	 the
wrong	thing.	They	measure	the	amount	of	code	a	programmer
produces	rather	than	the	programmer’s	overall	contribution	to
the	 complete	 project	 (productivity).	 For	 example,	 one
programmer	could	use	a	single	statement	to	accomplish	a	task
(such	as	a	standard	library	call),	whereas	a	second	programmer
could	 write	 several	 hundred	 lines	 of	 code	 to	 accomplish	 the
same	 task.	 Most	 metrics	 would	 suggest	 the	 second
programmer	is	the	more	productive	of	the	two.

For	 these	 very	 reasons,	 even	 the	 most	 complex	 software
metrics	 currently	 in	 use	have	 fundamental	 flaws	 that	 prevent
them	 from	being	 completely	 effective.	Therefore,	 choosing	 a
“better”	metric	 often	 produces	 results	 that	 are	 no	 better	 than
using	a	 “flawed”	metric.	This	 is	 yet	 another	 reason	 the	LOC
metric	continues	to	be	so	popular	(and	why	this	book	uses	it).
It’s	 an	 amazingly	 bad	metric,	 but	 it’s	 not	 a	 whole	 lot	 worse
than	many	of	 the	other	existing	metrics,	and	it’s	very	easy	 to
compute	without	writing	special	software.

2.7	HOW	DO	WE	BEAT	10	LINES
PER	DAY?
Early	 texts	on	 software	engineering	claim	 that	 a	programmer
on	a	major	product	produces	 an	average	of	 ten	 lines	of	 code
per	day.	In	a	1977	article,	Walston	and	Felix	report	about	274
LOC	 per	 month	 per	 developer. 	 Both	 numbers	 describe	 the
production	 of	 debugged	 and	 documented	 code	 over	 the
lifetime	of	that	product	(that	is,	LOC	divided	by	the	amount	of
time	 all	 the	 programmers	 spent	 on	 the	 product	 from	 first
release	 to	 retirement),	 rather	 than	 simply	 time	 spent	 writing

8

code	from	day	to	day.	Even	so,	the	numbers	seem	low.	Why?

At	the	start	of	a	project,	programmers	might	quickly	crank
out	1,000	lines	of	code	per	day,	then	slow	down	to	research	a
solution	to	a	particular	portion	of	the	project,	test	the	code,	fix
bugs,	 rewrite	 half	 their	 code,	 and	 then	 document	 their	work.
By	the	product’s	first	release,	productivity	has	dropped	tenfold
since	that	first	day	or	two:	from	1,000	LOC	per	day	to	fewer
than	100.	Once	the	first	release	is	out	the	door,	work	generally
begins	on	 the	second	 release,	 then	 the	 third,	and	so	on.	Over
the	 product’s	 lifetime,	 several	 different	 developers	 will
probably	work	on	the	code.	By	the	time	the	project	is	retired,	it
has	 been	 rewritten	 several	 times	 (a	 tremendous	 loss	 in
productivity),	 and	 several	 programmers	 have	 spent	 valuable
time	 learning	 how	 the	 code	 operates	 (also	 sapping	 their
productivity).	 Therefore,	 over	 the	 lifetime	 of	 the	 product,
programmer	productivity	is	down	to	10	LOC	per	day.

One	 of	 the	 most	 important	 results	 from	 software
engineering	 productivity	 studies	 is	 that	 the	 best	 way	 to
improve	 productivity	 is	 not	 by	 inventing	 some	 scheme	 that
allows	programmers	to	write	twice	as	many	lines	of	code	per
unit	time,	but	to	reduce	the	time	wasted	on	debugging,	testing,
documenting,	 and	 rewriting	 the	 code,	 and	 on	 educating	 new
programmers	about	 the	code	once	 the	 first	 version	exists.	To
reduce	that	loss,	it’s	much	easier	to	improve	the	processes	that
programmers	use	on	the	project	than	it	is	to	train	them	to	write
twice	 as	much	 code	 per	 unit	 time.	 Software	 engineering	 has
always	recognized	 this	problem	and	has	attempted	 to	solve	 it
by	 reducing	 the	 time	 spent	 by	 all	 programmers.	 Personal
software	 engineering’s	 goal	 is	 to	 reduce	 the	 time	 spent	 by
individual	programmers	on	their	portion	of	the	project.

2.8	ESTIMATING	DEVELOPMENT
TIME
As	 noted	 earlier,	 while	 productivity	 is	 of	 interest	 to
management	 for	 awarding	 bonuses,	 pay	 raises,	 or	 verbal
praise,	 the	 real	 purpose	 for	 tracking	 it	 is	 to	 predict
development	 times	 on	 future	 projects.	 Past	 results	 don’t
guarantee	future	performance,	so	you	also	need	to	know	how
to	estimate	a	project	schedule	(or	at	least	the	schedule	for	your
portion	of	a	project).	As	an	individual	software	engineer,	you
typically	 don’t	 have	 the	 background,	 education,	 and
experience	 to	 determine	 what	 goes	 into	 a	 schedule,	 so	 you
should	 meet	 with	 your	 project	 manager,	 have	 them	 explain
what	 needs	 to	 be	 considered	 in	 the	 schedule	 (which	 is	more
than	 just	 the	 time	 required	 to	write	 code),	 and	 then	build	 the
estimate	 that	way.	 Though	 all	 the	 details	 needed	 to	 properly
estimate	a	project	are	beyond	the	scope	of	this	book	(see	“For
More	 Information”	 on	 page	 37	 for	 suggested	 resources),	 it’s
worthwhile	 to	 briefly	 describe	 how	 development	 time
estimates	 differ	 depending	 on	 whether	 you’re	 working	 on	 a
small,	medium,	or	large	project,	or	just	a	portion	of	a	project.

2.8.1	Estimating	Small	Project	Development	Time
By	 definition,	 a	 small	 project	 is	 one	 that	 a	 single	 engineer
works	on.	The	major	influence	on	the	project	schedule	will	be
the	ability	and	productivity	of	that	software	engineer.

Estimating	 development	 time	 for	 small	 projects	 is	 much
easier	 and	 more	 accurate	 than	 for	 larger	 projects.	 Small
projects	won’t	involve	parallel	development,	and	the	schedule
only	has	to	consider	a	single	developer’s	productivity.

Without	 question,	 the	 first	 step	 in	 estimating	 the

development	 time	 for	 a	 small	 project	 is	 to	 identify	 and
understand	all	the	work	that	needs	to	be	done.	If	some	parts	of
the	 project	 are	 undefined	 at	 that	 point,	 you	 introduce
considerable	 error	 in	 the	 schedule	 when	 the	 undefined
components	inevitably	take	far	more	time	than	you	imagined.

For	 estimating	 a	 project’s	 completion	 time,	 the	 design
documentation	 is	 the	 most	 important	 part	 of	 the	 project.
Without	 a	 detailed	 design,	 it’s	 impossible	 to	 know	 what
subtasks	make	 up	 the	 project	 and	 how	much	 time	 each	 will
take	to	accomplish.	Once	you’ve	broken	down	the	project	into
suitably	sized	subtasks	(a	suitable	size	is	where	it’s	clear	how
long	 it	will	 take	 to	 complete),	 all	 you	 need	 to	 do	 is	 add	 the
times	for	all	the	subtasks	to	produce	a	decent	first	estimate.

One	of	the	biggest	mistakes	people	make	when	estimating
small	 projects,	 however,	 is	 that	 they	 add	 the	 times	 for	 the
subtasks	and	call	that	their	schedule,	forgetting	to	include	time
for	 meetings,	 phone	 calls,	 emails,	 and	 other	 administrative
tasks.	 They	 also	 forget	 to	 add	 in	 testing	 time,	 plus	 time	 to
correct	 (and	 retest)	 the	 software	 when	 defects	 are	 found.
Because	it’s	difficult	to	estimate	how	many	defects	will	be	in
the	 software,	 and	 thus	how	much	 time	 it	will	 take	 to	 resolve
them,	most	managers	scale	a	schedule’s	first	approximation	by
a	factor	of	2	to	4.	Assuming	the	programmer	(team)	maintains
reasonable	productivity	on	the	project,	this	formula	produces	a
good	estimate	for	a	small	project.

2.8.2	Estimating	Medium	and	Large	Project
Development	Time
Conceptually,	 medium	 and	 large	 projects	 consist	 of	 many
small	 projects	 (assigned	 to	 individual	 team	 members)	 that

combine	to	form	the	final	result.	So	a	first	approximation	on	a
large	 project	 schedule	 is	 to	 break	 it	 down	 into	 a	 bunch	 of
smaller	 projects,	 develop	 estimates	 for	 each	 of	 those
subprojects,	and	then	combine	(add)	the	estimates.	It’s	sort	of
a	bigger	version	of	 the	 small	project	 estimate.	Unfortunately,
in	real	life,	this	form	of	estimate	is	fraught	with	error.

The	 first	 problem	 is	 that	 medium	 and	 large	 projects
introduce	problems	that	don’t	exist	 in	small	projects.	A	small
project	 typically	 has	 one	 engineer,	 and,	 as	 noted	 previously,
the	 schedule	 completely	 depends	 upon	 that	 person’s
productivity	 and	 availability.	 In	 a	 larger	 project,	 multiple
people	 (including	 many	 nonengineers)	 affect	 the	 estimated
schedule.	 One	 software	 engineer	 who	 has	 a	 key	 piece	 of
knowledge	 might	 be	 on	 vacation	 or	 sick	 for	 several	 days,
holding	 up	 a	 second	 engineer	who	 needs	 that	 information	 to
make	 progress.	 Engineers	 on	 larger	 projects	 usually	 have
several	meetings	a	week	(unaccounted	for	 in	most	schedules)
that	take	them	offline—that	is,	they’re	not	programming—for
several	 hours.	 The	 team	 composition	 can	 change	 on	 large
projects;	 some	 experienced	 programmers	 leave	 and	 someone
else	 has	 to	 pick	 up	 and	 learn	 the	 subtasks,	 and	 new
programmers	join	the	project	and	need	time	to	get	up	to	speed.
Sometimes	even	getting	a	computer	workstation	for	a	new	hire
can	 take	 weeks	 (for	 example,	 in	 a	 large	 company	 with	 a
bureaucratic	 IT	department).	Waiting	 for	 software	 tools	 to	be
purchased,	hardware	to	be	developed,	and	support	from	other
parts	of	the	organization	also	creates	scheduling	problems.	The
list	 goes	 on	 and	 on.	 Few	 schedule	 estimates	 can	 accurately
predict	how	the	time	will	be	consumed	in	these	myriad	ways.

Ultimately,	 creating	 medium	 and	 large	 project	 schedule

estimates	 involves	 four	 tasks:	breaking	down	 the	project	 into
smaller	 projects,	 running	 the	 small	 project	 estimations	 on
those,	 adding	 in	 time	 for	 integration	 testing	 and	 debugging
(that	 is,	 combining	 the	 small	 tasks	 and	getting	 them	 to	work
properly	together),	and	then	applying	a	multiplicative	factor	to
that	sum.	They’re	not	precise,	but	 they’re	about	as	good	as	 it
gets	today.

2.8.3	Problems	with	Estimating	Development	Time
Because	 project	 schedule	 estimates	 involve	 predicting	 a
development	 team’s	 future	 performance,	 few	 people	 believe
that	 a	 projected	 schedule	 will	 be	 totally	 accurate.	 However,
typical	 software	 development	 schedule	 projections	 are
especially	bad.	Here	are	some	of	the	reasons	why:

They’re	 research	 and	 development	 projects.	 R&D
projects	 involve	 doing	 something	 you’ve	 never	 done
before.	 They	 require	 a	 research	 phase	 during	 which	 the
development	 team	 analyzes	 the	 problem	 and	 tries	 to
determine	solutions.	Usually,	there’s	no	way	to	predict	how
long	the	research	phase	will	take.

Management	has	preconceived	 schedules.	Typically,	 the
marketing	 department	 decides	 that	 it	 wants	 to	 have	 a
product	 to	 sell	 by	a	 certain	date,	 and	management	 creates
project	 schedules	 by	 working	 backward	 from	 that	 date.
Before	 asking	 the	 programming	 team	 for	 their	 time
estimates	 of	 the	 subtasks,	 management	 already	 has	 some
preconceived	 notions	 about	 how	 long	 each	 task	 should
take.

The	 team’s	 done	 this	 before.	 It’s	 common	 for

management	 to	 assume	 that	 if	 you’ve	 done	 something
before,	 it	 will	 be	 easier	 the	 second	 time	 around	 (and
therefore	 will	 take	 less	 time).	 In	 certain	 cases,	 there’s	 an
element	 of	 truth	 to	 this:	 if	 a	 team	 works	 on	 an	 R&D
project,	 it	will	be	easier	 to	do	a	second	 time	because	 they
only	have	to	do	the	development	and	can	skip	(at	least	most
of)	the	research.	However,	the	assumption	that	a	project	is
always	easier	the	second	time	is	rarely	correct.

There	 isn’t	 enough	 time	 or	 money.	 In	 many	 cases,
management	 sets	 some	 sort	 of	 monetary	 or	 time	 limit
within	with	a	project	must	be	completed	or	else	 it	will	be
canceled.	That’s	the	wrong	thing	to	say	to	someone	whose
paycheck	depends	on	the	project	moving	forward.	If	given
a	choice	between	saying,	“Yes,	we	can	meet	that	schedule,”
or	looking	for	a	new	job,	most	people—even	knowing	the
odds	are	against	them—will	opt	for	the	first.

Programmers	overstate	their	efficiency.	Sometimes	when
a	software	engineer	is	asked	if	they	can	complete	a	project
within	a	certain	timeframe,	they	don’t	lie	about	how	long	it
will	 take,	 but	 instead	 make	 optimistic	 estimates	 of	 their
performance—which	rarely	hold	up	during	the	actual	work.
When	 asked	 how	 much	 they	 can	 produce	 when	 really
pushed,	 most	 software	 engineers	 give	 a	 figure	 that
represents	 their	 maximum	 output	 ever	 achieved	 over	 a
short	period	of	time	(for	example,	while	working	in	“crisis
mode”	 and	 putting	 in	 60–70	 hours	 per	 week)	 and	 don’t
consider	unexpected	hindrances	(such	as	a	really	nasty	bug
that	comes	along).

Schedules	 rely	 on	 extra	 hours.	 Management	 (and

engineers)	often	assume	 that	programmers	can	always	put
in	“a	few	extra	hours”	when	the	schedule	starts	to	slip.	As	a
result,	 schedules	 tend	 to	 be	 more	 aggressive	 than	 they
should	 be	 (ignoring	 the	 negative	 repercussions	 of	 having
engineers	put	in	massive	overtime).

Engineers	 are	 like	 building	blocks.	A	 common	problem
with	project	 schedules	 is	 that	management	 assumes	 it	 can
add	programmers	to	a	project	 to	achieve	an	earlier	release
date.	However,	 as	mentioned	 earlier,	 this	 isn’t	 necessarily
true.	You	can’t	add	or	remove	engineers	from	a	project	and
expect	a	proportional	change	in	the	project	schedule.

Subproject	 estimates	 are	 inaccurate.	 Realistic	 project
schedules	are	developed	in	a	top-down	fashion.	The	whole
project	 is	 divided	 into	 smaller	 subprojects.	 Then	 those
subprojects	are	divided	into	sets	of	sub-subprojects,	and	so
on	 until	 the	 subproject	 size	 is	 so	 small	 that	 someone	 can
accurately	 predict	 the	 time	 needed	 for	 each	 tiny	 part.
However,	there	are	three	challenges	with	this	approach:

Being	willing	 to	 put	 in	 the	 effort	 to	 create	 a	 schedule	 this	way	 (that	 is,	 to
provide	a	correct	and	accurate	top-down	analysis	of	the	project)

Obtaining	 accurate	 estimates	 for	 the	 tiny	 subprojects	 (particularly	 from
software	engineers	who	may	not	have	the	appropriate	management	training	to
understand	what	must	go	into	their	schedule	estimates)

Accepting	the	results	the	schedule	predicts

2.9	CRISIS	MODE	PROJECT
MANAGEMENT
Despite	 the	 best	 intentions	 of	 everyone	 involved,	 many
projects	 fall	 significantly	 behind	 schedule	 and	 management

must	 accelerate	 development	 to	 meet	 some	 important
milestone.	 To	 achieve	 the	 deadline,	 engineers	 often	 are
expected	 to	 put	 in	 more	 time	 each	 week	 to	 reduce	 the	 (real
time)	delivery	date.	When	this	occurs,	the	project	is	said	to	be
in	“crisis	mode.”

Crisis	mode	engineering	can	be	effective	for	short	bursts	to
handle	 (rapidly)	 approaching	 deadlines,	 but	 in	 general,	 crisis
mode	is	never	that	effective,	and	results	in	lower	productivity,
because	 most	 people	 have	 things	 to	 take	 care	 of	 outside	 of
work,	 and	need	 time	off	 to	 rest,	 decompress,	 and	 allow	 their
brains	 to	 sort	 out	 all	 the	 problems	 they’ve	 been	 collecting
while	putting	in	long	hours.	Working	while	you’re	tired	leads
to	mistakes	 that	 often	 take	 far	more	 time	 to	 correct	 later	 on.
It’s	more	efficient	in	the	long	run	to	forgo	the	crisis	mode	and
stick	to	40-hour	weeks.

The	 best	 way	 to	 handle	 crisis	 mode	 schedules	 is	 to	 add
milestones	throughout	the	project	to	generate	a	series	of	“small
crises”	rather	than	one	big	crisis	at	the	end.	Putting	in	an	extra
day	or	a	couple	of	long	days	once	a	month	is	infinitely	better
than	having	to	put	in	several	seven-day	weeks	at	the	end	of	the
project.	Working	one	or	 two	16-hour	days	to	meet	a	deadline
won’t	 adversely	 affect	 the	quality	of	your	 life	or	 lead	you	 to
the	point	of	exhaustion.

Beyond	 the	 health	 and	 productivity	 issues,	 operating	 in
crisis	mode	can	cause	scheduling,	ethical,	and	legal	problems:

A	poor	schedule	can	affect	future	projects	as	well.	If	you	work	60-hour	weeks,
management	 will	 assume	 that	 future	 projects	 can	 also	 be	 done	 in	 the	 same
amount	 of	 (real)	 time,	 expecting	 this	 pace	 from	you	 in	 the	 future	without	 any
additional	compensation.

Technical	 staff	 turnover	 is	 high	on	projects	 that	 operate	 for	 lengthy	periods	 of
time	in	crisis	mode,	further	reducing	team	productivity.

There	is	also	the	legal	issue	of	putting	in	lots	of	extra	hours	without	being	paid
overtime.	Several	high-profile	 lawsuits	 in	 the	video	game	 industry	have	shown
that	 engineers	 are	 entitled	 to	 overtime	 pay	 (they	 are	 not	 salary	 exempt
employees).	Even	if	your	company	can	survive	such	lawsuits,	the	rules	for	time
reporting,	administrative	overhead,	and	work	schedules	will	become	much	more
restrictive,	leading	to	productivity	drops.

Again,	operating	 in	crisis	mode	can	help	you	meet	certain
deadlines	if	managed	properly.	But	the	best	solution	is	to	work
out	better	schedules	to	avoid	crisis	mode	altogether.

2.10	HOW	TO	BE	MORE
PRODUCTIVE
This	chapter	has	spent	considerable	time	defining	productivity
and	metrics	for	measuring	it.	But	it	hasn’t	devoted	much	time
to	 describing	 how	 a	 programmer	 can	 increase	 their
productivity	to	become	a	great	programmer.	Whole	books	can
be	 (and	 have	 been)	 written	 on	 this	 subject.	 This	 section
provides	 an	 overview	 of	 techniques	 you	 can	 use	 to	 improve
your	productivity	on	individual	and	team	projects.

2.10.1	Choose	Software	Development	Tools	Wisely
As	 a	 software	 developer,	 you’ll	 spend	 most	 of	 your	 time
working	with	 software	 development	 tools,	 and	 the	 quality	 of
your	tools	can	have	a	huge	impact	on	your	productivity.	Sadly,
the	main	criterion	for	selecting	development	tools	seems	to	be
familiarity	with	a	tool	rather	than	the	applicability	of	the	tool
to	the	current	project.

Keep	in	mind	when	choosing	your	tools	at	 the	start	of	the
project	that	you’ll	probably	have	to	live	with	them	for	the	life
of	the	project	(and	maybe	beyond	that).	For	example,	once	you

start	using	a	defect	tracking	system,	it	might	be	very	difficult
to	switch	to	a	different	one	because	of	 incompatible	database
file	 formats;	 the	 same	 goes	 for	 source	 code	 control	 systems.
Fortunately,	software	development	tools	(especially	IDEs)	are
relatively	mature	 these	days,	and	a	 large	number	of	 them	are
interoperable,	so	 it’s	hard	 to	make	a	bad	choice.	Still,	careful
thought	 at	 the	 beginning	 of	 a	 project	 can	 spare	 you	 a	 lot	 of
problems	down	the	road.

The	 most	 significant	 tool	 choice	 for	 a	 software
development	 project	 is	 which	 programming	 language	 and
which	 compilers/interpreters/translators	 to	 use.	 Optimal
language	 choice	 is	 a	 difficult	 problem	 to	 solve.	 It’s	 easy	 to
justify	 some	 programming	 language	 because	 you’re	 familiar
with	 it	 and	you	won’t	 lose	 productivity	 learning	 it;	 however,
future	 engineers	 new	 to	 the	 product	 might	 be	 far	 less
productive	 because	 they’re	 learning	 the	 programming
language	while	trying	to	maintain	the	code.	Furthermore,	some
language	 choices	 could	 streamline	 the	 development	 process,
sufficiently	 improving	 productivity	 to	make	 up	 for	 lost	 time
learning	the	language.	As	noted	earlier,	a	poor	language	choice
could	 result	 in	wasted	development	 time	using	 that	 language
until	 it	becomes	clear	 that	 it	 is	unsuitable	 for	 the	project	and
you	have	to	start	over.

Compiler	performance	(how	many	lines	per	second	it	takes
to	process	a	common	source	file)	can	have	a	huge	 impact	on
your	 productivity.	 If	 your	 compiler	 takes	 two	 seconds	 to
compile	an	average	source	file	rather	than	two	minutes,	you’ll
probably	 be	 far	 more	 productive	 using	 the	 faster	 compiler
(though	 the	 faster	 compiler	 might	 be	 missing	 some	 features
that	completely	kill	your	productivity	in	other	ways).	The	less

time	your	tools	take	to	process	your	code,	the	more	time	you’ll
have	 for	 designing,	 testing,	 debugging,	 and	 polishing	 your
code.

It’s	 also	 important	 to	 use	 a	 set	 of	 tools	 that	 work	 well
together.	 Today,	 we	 take	 for	 granted	 integrated	 development
environments	 (IDEs),	 which	 combine	 an	 editor,	 compiler,
debugger,	 source	 code	 browser,	 and	 other	 tools	 into	 a	 single
program.	 Being	 able	 to	 quickly	 make	 small	 changes	 in	 an
editor,	recompile	a	source	code	module,	and	run	the	result	in	a
debugger	 all	 within	 the	 same	 window	 onscreen	 provides	 a
phenomenal	boost	in	productivity.

However,	you’ll	often	have	to	work	on	parts	of	your	project
outside	the	IDE.	For	example,	some	IDEs	don’t	support	source
code	 control	 facilities	 or	 defect	 tracking	 directly	 in	 the	 IDE
(though	many	do).	Most	IDEs	don’t	provide	a	word	processor
for	 writing	 documentation,	 nor	 do	 they	 provide	 simple
database	or	 spreadsheet	 capabilities	 to	maintain	 requirements
lists,	 design	 documentation,	 or	 user	 documentation.	 Most
likely,	you’ll	have	to	use	a	few	programs	outside	your	IDE—
word	 processing,	 spreadsheet,	 drawing/graphics,	web	 design,
and	 database	 programs,	 to	 name	 a	 few—to	 do	 all	 the	 work
needed	on	your	project.

Running	 programs	 outside	 an	 IDE	 isn’t	 a	 problem.	 Just
make	 sure	 the	 applications	 you	 choose	 are	 compatible	 with
your	 development	 process	 and	 the	 files	 your	 IDE	 produces
(and	vice	versa).	Your	productivity	will	decrease	 if	you	must
constantly	 run	 a	 translator	 program	 when	 moving	 files
between	your	IDE	and	an	external	application.

Can	I	recommend	tools	for	you	to	use?	No	way.	There	are
too	many	projects	with	different	needs	 to	even	consider	 such

suggestions	here.	My	 recommendation	 is	 to	 simply	be	 aware
of	the	issues	at	the	start	of	the	project.

But	one	recommendation	I	can	make	 is	 to	avoid	 the	“Gee
whiz,	why	don’t	we	try	 this	new	technology”	approach	when
choosing	a	development	tool.	Discovering	that	a	development
tool	can’t	do	the	job	after	spending	six	months	working	with	it
(and	basing	your	source	code	on	it)	can	be	disastrous.	Evaluate
your	tools	apart	from	your	product	development,	and	work	in
new	tools	only	after	you’re	confident	that	they’ll	work	for	you.
A	 classic	 example	 of	 this	 is	 Apple’s	 Swift	 programming
language.	Until	Swift	v5.0	was	released	(about	four	years	after
Swift	 was	 first	 introduced),	 using	 Swift	 was	 an	 exercise	 in
frustration.	Every	year	Apple	would	release	a	new	version	that
was	 source	 code–incompatible	 with	 earlier	 releases,	 forcing
you	 to	 go	 back	 and	 change	 old	 programs.	 In	 addition,	many
features	were	missing	 in	 early	 versions	 of	 the	 language,	 and
several	 features	 weren’t	 quite	 ready	 for	 “prime	 time.”	 By
version	 5.0	 (released	 as	 this	 book	 was	 being	 written),	 the
language	seems	relatively	stable.	However,	the	poor	souls	who
jumped	on	the	Swift	bandwagon	early	on	paid	the	price	for	the
immature	development	of	the	language.

Sadly,	 you	 don’t	 get	 to	 choose	 the	 development	 tools	 on
many	projects.	That	decision	is	an	edict	from	on	high,	or	you
inherit	 tools	 from	 earlier	 products.	 Complaining	 about	 it
wastes	 time	 and	 energy,	 and	 reduces	 your	 productivity.
Instead,	make	the	best	of	the	tool	set	you	have,	and	become	an
expert	at	using	it.

2.10.2	Manage	Overhead
On	any	project,	we	 can	 divide	 the	work	 into	 two	 categories:

9

work	 that	 is	 directly	 associated	 with	 the	 project	 (such	 as
writing	 lines	 of	 code	 or	 documentation	 for	 the	 project)	 and
work	that	is	indirectly	related	to	the	project.	Indirect	activities
include	meetings,	 reading	 and	 replying	 to	 emails,	 filling	 out
time	 cards,	 and	 updating	 schedules.	 These	 are	 overhead
activities:	 they	 add	 time	 and	 money	 to	 a	 project’s	 cost	 but
don’t	directly	contribute	to	getting	the	work	done.

By	 following	 Watts	 S.	 Humphrey’s	 Personal	 Software
Engineering	 guidelines,	 you	can	 track	where	you	 spend	your
time	during	a	project	and	easily	see	how	much	is	spent	directly
on	the	project	versus	on	overhead	activities.	If	your	overhead
climbs	 above	 10	 percent	 of	 your	 total	 time,	 reconsider	 your
daily	activities.	Try	to	decrease	or	combine	those	activities	to
reduce	 their	 impact	 on	 your	 productivity.	 If	 you	 don’t	 track
your	 time	 outside	 the	 project,	 you’ll	miss	 the	 opportunity	 to
improve	your	productivity	by	managing	overhead.

2.10.3	Set	Clear	Goals	and	Milestones
It’s	a	natural	human	tendency	to	relax	when	no	deadlines	are
looming,	 and	 then	 go	 into	 “hypermode”	 as	 one	 approaches.
Without	goals	to	achieve,	very	little	productive	work	ever	gets
done.	Without	deadlines	to	meet,	rarely	is	there	any	motivation
to	 achieve	 those	 goals	 in	 a	 timely	 manner.	 Therefore,	 to
improve	 your	 productivity,	 be	 sure	 to	 have	 clear	 goals	 and
subgoals,	and	attach	hard	milestones	to	them.

From	 a	 project	 management	 viewpoint,	 a	 milestone	 is	 a
marker	 in	 a	 project	 that	 determines	 how	 far	 work	 has
progressed.	A	good	manager	always	sets	goals	and	milestones
in	 the	 project	 schedule.	 However,	 few	 schedules	 provide
useful	 goals	 for	 individual	 programmers.	 This	 is	 where

personal	 software	 engineering	 comes	 into	 play.	To	 become	 a
superproductive	 programmer,	 micromanage	 your	 own	 goals
and	milestones	on	your	(portion	of	the)	project.	Simple	goals,
such	 as	 “I’ll	 finish	 this	 function	before	 I	 take	 lunch”	or	 “I’ll
find	 the	 source	 of	 this	 error	 before	 going	 home	 today”	 can
keep	you	focused.	Larger	goals,	such	as	“I’ll	finish	testing	this
module	 by	 next	 Tuesday”	 or	 “I’ll	 run	 at	 least	 20	 test
procedures	 today”	 help	 you	 gauge	 your	 productivity	 and
determine	if	you’re	achieving	what	you	want.

2.10.4	Practice	Self-Motivation
Improving	 your	 productivity	 is	 all	 about	 attitude.	 Although
others	can	help	you	manage	your	time	better	and	aid	you	when
you’re	 stuck,	 the	 bottom	 line	 is	 that	 you	 must	 have	 the
initiative	to	better	yourself.	Always	be	conscious	of	your	pace
and	 constantly	 strive	 to	 improve	 your	 performance.	 By
keeping	track	of	your	goals,	efforts,	and	progress,	you’ll	know
when	 you	 need	 to	 “psych	 yourself	 up”	 and	 work	 harder	 to
improve	your	productivity.

A	 lack	 of	 motivation	 can	 be	 one	 of	 the	 greatest
impediments	 to	 your	 productivity.	 If	 your	 attitude	 is	 “Ugh,	 I
have	to	work	on	 that	 today,”	it	will	probably	take	you	longer
to	 complete	 the	 task	 than	 if	 your	 attitude	 is	 “Oh!	This	 is	 the
best	part!	This	will	be	fun!”

Of	course,	not	 every	 task	you	work	on	will	be	 interesting
and	fun.	This	is	one	area	where	personal	software	engineering
kicks	 in.	 If	 you	 want	 to	 maintain	 higher-than-average
productivity,	 you	 need	 to	 have	 considerable	 self-motivation
when	 a	 project	makes	you	 feel	 “less	 than	motivated.”	Try	 to
create	 reasons	 to	 make	 the	 work	 appealing.	 For	 example,

create	 mini-challenges	 for	 yourself	 and	 reward	 yourself	 for
achieving	 them.	 A	 productive	 software	 engineer	 constantly
practices	self-motivation:	 the	 longer	you	remain	motivated	 to
do	a	project,	the	more	productive	you’ll	be.

2.10.5	Focus	and	Eliminate	Distractions
Staying	 focused	 on	 a	 task	 and	 eliminating	 distractions	 is
another	way	to	dramatically	improve	your	productivity.	Be	“in
the	 zone.”	 Software	 engineers	 operating	 this	 way	 are	 more
productive	 than	 those	 who	 are	 mentally	 multitasking.	 To
increase	your	productivity,	concentrate	on	a	single	task	for	as
long	as	possible.

Focusing	on	a	task	is	easiest	in	a	quiet	environment	without
any	 visual	 stimulation	 (other	 than	 your	 display	 screen).
Sometimes,	 work	 environments	 aren’t	 conducive	 to	 an
extreme	 focus.	 In	 such	 cases,	 putting	 on	 headphones	 and
playing	background	music	might	help	remove	the	distractions.
If	music	 is	 too	 distracting,	 try	 listening	 to	white	 noise;	 there
are	several	white	noise	apps	available	online.

Whenever	you’re	interrupted	in	the	middle	of	a	task,	it	will
take	time	to	get	back	in	the	zone.	In	fact,	it	could	take	as	long
as	half	an	hour	to	become	fully	refocused	on	your	work.	When
you	need	 to	 focus	 and	 complete	 a	 task,	 put	 up	 a	 sign	 saying
that	you	should	only	be	interrupted	for	urgent	business,	or	post
“office	 hours”—times	 when	 you	 can	 be	 interrupted—near
your	workstation;	 for	 example,	you	could	allow	 interruptions
at	the	top	of	the	hour	for	five	minutes.	Saving	your	coworkers
10	 minutes	 by	 answering	 a	 question	 they	 could	 figure	 out
themselves	could	cost	you	half	an	hour	of	productivity.	You	do
have	 to	 work	 as	 part	 of	 the	 team	 and	 be	 a	 good	 teammate;

however,	 it’s	 just	 as	 important	 to	 ensure	 that	 excessive	 team
interactions	don’t	impair	your	(and	others’)	productivity.

During	 a	 typical	 workday,	 there	 will	 be	 many	 scheduled
interruptions:	 meal	 breaks,	 rest	 breaks,	 meetings,
administrative	sessions	(for	example,	handling	emails	and	time
accounting),	 and	 more.	 If	 possible,	 try	 to	 schedule	 other
interruptions	 around	 these	 events.	 For	 example,	 turn	 off	 any
email	alerts;	answering	emails	within	a	few	seconds	 is	rarely
imperative,	and	someone	can	find	you	in	person	or	call	you	if
it’s	an	emergency.	Set	an	alarm	to	remind	you	to	check	email
at	 fixed	 times	 if	 people	 do	 expect	 quick	 responses	 from	you
(ditto	with	 text	messages	and	other	 interruptions).	 If	you	can
get	away	with	it,	consider	silencing	your	phone	if	you	get	a	lot
of	nonurgent	phone	calls,	checking	your	messages	every	hour
or	so	during	your	breaks.	What	works	for	you	depends	on	your
personal	and	professional	life.	But	the	fewer	interruptions	you
have,	the	more	productive	you’ll	become.

2.10.6	If	You’re	Bored,	Work	on	Something	Else
Sometimes,	 no	matter	 how	 self-motivated	 you	 are,	 you’ll	 be
bored	with	what	you’re	working	on	and	have	trouble	focusing;
your	productivity	will	plummet.	If	you	can’t	get	into	the	zone
and	 focus	 on	 the	 task,	 take	 a	 break	 from	 it	 and	 work	 on
something	else.	Don’t	use	boredom	as	an	excuse	to	flitter	from
task	 to	 task	 without	 accomplishing	 much.	 But	 when	 you’re
really	stuck	and	can’t	move	forward,	switch	to	something	you
can	be	productive	doing.

2.10.7	Be	as	Self-Sufficient	as	Possible
As	 much	 as	 possible,	 you	 should	 try	 to	 handle	 all	 tasks
assigned	 to	 you.	 This	 won’t	 improve	 your	 productivity;

however,	 if	 you’re	 constantly	 seeking	 help	 from	 other
engineers,	 you	 might	 be	 damaging	 their	 productivity
(remember,	they	need	to	stay	focused	and	avoid	interruptions,
too).

If	you’re	working	on	a	 task	 that	requires	more	knowledge
than	you	currently	possess,	 and	you	don’t	want	 to	 constantly
interrupt	other	engineers,	you	have	a	few	options:

Spend	time	educating	yourself	so	you	can	do	the	task.	Although	you	might	hurt
your	short-term	productivity,	the	knowledge	you	gain	will	help	you	with	similar
future	tasks.

Meet	with	 your	manager	 and	 explain	 the	 problems	you’re	 having.	Discuss	 the
possibility	 of	 their	 reassigning	 the	 task	 to	 someone	 more	 experienced	 and
assigning	you	a	task	you’re	better	able	to	handle.

Arrange	 with	 your	 manager	 to	 schedule	 a	 meeting	 to	 get	 help	 from	 other
engineers	at	a	time	that	won’t	impact	their	productivity	as	much	(for	example,	at
the	beginning	of	the	workday).

2.10.8	Recognize	When	You	Need	Help
You	 can	 take	 the	 self-supporting	 attitude	 a	 little	 too	 far.	You
can	spend	an	inordinate	amount	of	time	working	on	a	problem
that	a	teammate	could	solve	in	just	a	few	minutes.	One	aspect
of	being	a	great	programmer	is	recognizing	when	you’re	stuck
and	need	help	 to	move	 forward.	When	you’re	stuck,	 the	best
approach	 is	 to	 set	 a	 timer	 alarm.	 After	 some	 number	 of
minutes,	hours,	or	even	days	being	stuck	on	the	problem,	seek
help.	If	you	know	who	to	ask	for	help,	seek	that	help	directly.
If	 you’re	 not	 sure,	 talk	 to	 your	 manager.	 Most	 likely,	 your
manager	 can	 direct	 you	 to	 the	 right	 person	 so	 you	 don’t
interrupt	others	who	wouldn’t	be	able	to	help	you	anyway.

Team	meetings	(daily	or	weekly)	are	a	good	place	to	seek
help	 from	 team	members.	 If	 you	 have	 several	 tasks	 on	 your
plate	and	you’re	stuck	on	one	particular	task,	set	it	aside,	work

on	other	tasks	(if	possible),	and	save	your	questions	for	a	team
meeting.	 If	 you	 run	 out	 of	work	 before	 a	meeting,	 ask	 your
manager	 to	 keep	 you	 busy	 so	 you	 don’t	 have	 to	 interrupt
anyone.	 Further,	 while	 working	 on	 other	 tasks,	 the	 solution
just	might	come	to	you.

2.10.9	Overcome	Poor	Morale
Nothing	 can	 kill	 a	 project	 faster	 than	 an	 infestation	 of	 bad
morale	 among	 team	members.	Here	 are	 some	 suggestions	 to
help	you	overcome	poor	morale:

Understand	the	business	value	of	your	project.	By	learning	about,	or	reminding
yourself	of,	the	real-world	practical	applications	of	your	project,	you’ll	become
more	invested	and	interested	in	the	project.

Take	ownership	and	responsibility	for	(your	portion	of)	a	project.	When	you	own
the	 project,	 your	 pride	 and	 reputation	 are	 on	 the	 line.	Regardless	 of	what	 else
might	happen,	ensure	that	you	can	always	talk	about	the	contributions	you	made
to	the	project.

Avoid	becoming	emotionally	 invested	 in	 those	project	 components	over	which
you	have	no	control.	For	example,	if	management	has	made	some	poor	decisions
that	affect	the	project’s	schedule	or	design,	work	as	best	as	you	can	within	those
confines.	Don’t	 just	 sit	 around	 thinking	bad	 thoughts	 about	management	when
you	could	be	putting	that	effort	into	solving	problems.

If	 you’re	 faced	with	 personality	 differences	 that	 are	 creating	morale	 problems,
discuss	 those	 issues	 with	 your	 manager	 and	 other	 affected	 personnel.
Communication	 is	key.	Allowing	problems	 to	continue	will	only	 lead	 to	 larger
morale	problems	down	the	road.

Always	be	on	the	lookout	for	situations	and	attitudes	that	could	damage	morale.
Once	morale	 on	 a	 project	 begins	 to	 decline,	 it’s	 often	 very	 difficult	 to	 restore
what	was	 lost.	The	sooner	you	deal	with	morale	 issues,	 the	easier	 it	will	be	 to
resolve	them.

Sometimes,	 financial,	 resource,	 or	 personnel	 issues
decrease	morale	among	the	project’s	participants.	Your	job	as
a	 great	 programmer	 is	 to	 step	 in,	 rise	 above	 the	 issues,	 and
continue	 writing	 great	 code—and	 encourage	 those	 on	 the

project	to	do	the	same.	This	isn’t	always	easy,	but	no	one	ever
said	that	becoming	a	great	programmer	was	easy.

2.11	FOR	MORE	INFORMATION
Bellinger,	Gene.	“Project	Systems.”	Systems	Thinking,	2004.
http://systems-thinking.org/prjsys/prjsys.htm.

Heller,	 Robert,	 and	 Tim	 Hindle.	 Essential	 Managers:
Managing	Meetings.	New	York:	DK	Publishing,	1998.

Humphrey,	Watts	 S.	A	 Discipline	 for	 Software	 Engineering.
Upper	 Saddle	 River,	 NJ:	 Addison-Wesley	 Professional,
1994.

Kerzner,	Harold.	Project	Management:	 A	 Systems	 Approach
to	 Planning,	 Scheduling,	 and	 Controlling.	 Hoboken,	 NJ:
Wiley,	2003.

Lencioni,	Patrick.	Death	by	Meeting:	A	Leadership	Fable	.	.	.
About	Solving	 the	Most	Painful	Problem	 in	Business.	San
Francisco:	Jossey-Bass,	2004.

Levasseur,	 Robert	 E.	 Breakthrough	 Business	 Meetings:
Shared	Leadership	in	Action.	Lincoln,	NE:	iUniverse.com,
Inc.,	2000.

Lewis,	 James	 P.	Project	 Planning,	 Scheduling,	 and	 Control.
New	York:	McGraw-Hill,	2000.

McConnell,	 Steve.	 Software	 Project	 Survival	 Guide.
Redmond,	WA:	Microsoft	Press,	1997.

Mochal,	Tom.	“Get	Creative	to	Motivate	Project	Teams	When
Morale	 Is	 Low.”	 TechRepublic,	 September,	 21,	 2001.

http://systems-thinking.org/prjsys/prjsys.htm
http://iUniverse.com

http://www.techrepublic.com/article/get-creative-to-
motivate-project-teams-when-morale-is-low/.

Wysocki,	 Robert	 K.,	 and	 Rudd	 McGary.	 Effective	 Project
Management.	Indianapolis:	Wiley,	2003.

http://www.techrepublic.com/article/get-creative-to-motivate-project-teams-when-morale-is-low/

3
SOFTWARE	DEVELOPMENT

MODELS

You	don’t	write	great	code	by	following	a	fixed	set	of	rules	for
every	 project.	 For	 some	projects,	 hacking	out	 a	 few	hundred
lines	 of	 code	 might	 be	 all	 you	 need	 to	 produce	 a	 great
program.	 Other	 projects,	 however,	 could	 involve	millions	 of
code	lines,	hundreds	of	project	engineers,	and	several	layers	of
management	 or	 other	 support	 personnel;	 in	 these	 cases,	 the
software	development	 process	 you	use	will	 greatly	 affect	 the
project’s	success.

In	 this	 chapter,	we’ll	 look	at	various	development	models
and	when	to	use	them.

3.1	THE	SOFTWARE
DEVELOPMENT	LIFE	CYCLE

During	its	 life,	a	piece	of	software	generally	goes	 through
eight	phases,	collectively	known	as	the	Software	Development
Life	Cycle	(SDLC):

1.	 Product	conceptualization

2.	 Requirement	development	and	analysis

3.	 Design

4.	 Coding	(implementation)

5.	 Testing

6.	 Deployment

7.	 Maintenance

8.	 Retirement

Let’s	look	at	each	phase	in	turn.

Product	conceptualization

A	customer	or	manager	develops	an	idea	for	some	software
and	creates	a	business	case	justifying	its	development.

Often,	a	nonengineer	envisions	a	need	for	the	software
and	approaches	a	company	or	individual	who	can
implement	it.

Requirement	development	and	analysis

Once	you	have	a	product	concept,	the	product	requirements
must	 be	 outlined.	 Project	 managers,	 stakeholders,	 and
clients	 (users)	 meet	 to	 discuss	 and	 formalize	 what	 the
software	 system	 must	 do	 to	 satisfy	 everyone.	 Of	 course,
users	 will	 want	 the	 software	 to	 do	 everything	 under	 the
sun.	 Project	managers	 will	 temper	 this	 expectation	 based
on	 the	 available	 resources	 (for	 example,	 programmers),
estimated	 development	 times,	 and	 costs.	 Other
stakeholders	 might	 include	 venture	 capitalists	 (others
financing	 the	 project),	 regulatory	 agencies	 (for	 example,
the	Nuclear	Regulatory	Commission	 if	 you’re	 developing
software	 for	 a	 nuclear	 reactor),	 and	 marketing	 personnel
who	might	provide	input	on	the	design	to	make	it	saleable.

By	meeting,	discussing,	negotiating,	and	so	on,	the
interested	parties	develop	requirements	based	on	questions
like	the	following:

For	whom	is	the	system	intended?

What	inputs	should	be	provided	to	the	system?

What	output	should	the	system	produce	(and	in	what	format)?

What	types	of	calculations	will	be	involved?

If	there	is	a	video	display,	what	screen	layouts	should	the	system	use?

What	are	the	expected	response	times	between	input	and	output?

From	this	discussion,	the	developers	will	put	together
the	System	Requirements	Specification	(SyRS)	document,
which	specifies	all	the	major	requirements	for	hardware,
software,	and	so	on.	Then	the	program	management	and
system	analysts	use	the	SyRS	to	produce	a	Software
Requirements	Specification	(SRS)	document, 	which	is	the
end	result	of	this	phase.	As	a	rule,	the	SRS	is	for	internal
consumption	only,	used	by	the	software	development	team,
whereas	the	SyRS	is	an	external	document	for	customer
reference.	The	SRS	extracts	all	the	software	requirements
from	the	SyRS	and	expands	on	them.	Chapter	10	discusses
these	two	documents	in	detail	(see	“The	System
Requirements	Specification	Document”	on	page	193	and
“The	Software	Requirements	Specification	Document”	on
page	194).

Design

The	software	design	architect	(software	engineer)	uses	the
software	 requirements	 from	 the	 SRS	 to	 prepare	 the
Software	 Design	 Description	 (SDD).	 The	 SDD	 provides
some	combination,	but	not	necessarily	all,	of	the	following
items:

1

A	system	overview

Design	goals

The	data	(via	a	data	dictionary)	and	databases	used

A	data	flow	(perhaps	using	data	flow	diagrams)

An	 interface	design	(how	the	software	 interacts	with	other	software	and	 the
software’s	users)

Any	standards	that	must	be	followed

Resource	 requirements	 (for	 example,	 memory,	 CPU	 cycles,	 and	 disk
capacity)

Performance	requirements

Security	requirements

See	Chapter	11	for	further	details	on	the	contents	of	the
SDD.	The	design	documentation	becomes	the	input	for	the
next	phase,	coding.

Coding

Coding—writing	 the	 actual	 software—is	 the	 step	 most
familiar	and	fun	to	software	engineers.	A	software	engineer
uses	the	SDD	to	write	the	software.	WGC5:	Great	Coding
will	be	dedicated	to	this	phase.

Testing

In	this	phase,	the	code	is	tested	against	 the	SRS	to	ensure
the	product	solves	the	problems	listed	in	the	requirements.
There	are	several	components	in	this	phase,	including:

Unit	testing	Checks	the	individual	statements	and	modules
in	the	program	to	verify	that	they	behave	as	expected.	This
actually	occurs	during	coding	but	 logically	belongs	 in	 the
testing	phase.

Integration	testing	Verifies	that	the	individual	subsystems
in	the	software	work	well	together.	This	also	occurs	during
the	coding	phase,	usually	toward	the	end.

System	 testing	 Validates	 the	 implementation;	 that	 is,	 it
shows	that	the	software	correctly	implements	the	SRS.

Acceptance	testing	Demonstrates	 to	 the	customer	that	 the
software	is	suitable	for	its	intended	purpose.

WGC6:	Testing,	Debugging,	and	Quality	Assurance
will	cover	the	testing	phase	in	detail.	Chapter	12	describes
the	software	test	case	and	software	test	procedure
documents	you’ll	create	to	guide	testing.

Deployment

The	 software	 product	 is	 delivered	 to	 the	 customer(s)	 for
their	use.

Maintenance

Once	 customers	 begin	 using	 the	 software,	 chances	 are
fairly	 high	 that	 they’ll	 discover	 defects	 and	 request	 new
functionality.	 During	 this	 time,	 the	 software	 engineers
might	 fix	 the	 defects	 or	 add	 the	 new	 enhancements,	 and
then	 deploy	 new	 versions	 of	 the	 software	 to	 the
customer(s).

Retirement

Eventually	in	some	software’s	life,	development	will	cease,
perhaps	 because	 the	 development	 organization	 decides	 to
no	longer	support	or	work	on	it,	it	is	replaced	by	a	different
version,	the	company	making	it	goes	out	of	business,	or	the
hardware	on	which	it	runs	becomes	obsolete.

3.2	THE	SOFTWARE
DEVELOPMENT	MODEL

A	software	development	model	describes	how	all	the	phases	of
the	SDLC	combine	in	a	software	project.	Different	models	are
suitable	 for	 different	 circumstances:	 some	 emphasize	 certain
phases	 and	 deemphasize	 others,	 some	 repeat	 various	 phases
throughout	 the	 development	 process,	 and	 others	 skip	 some
phases	entirely.

There	 are	 eight	 well-respected	 software	 development
models	 and	 dozens,	 if	 not	 hundreds,	 of	 variations	 of	 these
eight	models	in	use	today.	Why	don’t	developers	just	pick	one
popular	model	and	use	it	for	everything?	The	reason,	as	noted
in	Chapter	1,	is	that	practices	that	work	well	for	individuals	or
small	 teams	 don’t	 scale	 up	 well	 to	 large	 teams.	 Likewise,
techniques	that	work	well	for	large	projects	rarely	scale	down
well	for	small	projects.	This	book	will	focus	on	techniques	that
work	well	for	individuals,	but	great	programmers	must	be	able
to	work	within	 all	 design	 processes	 if	 they	want	 to	 be	 great
programmers	on	projects	of	all	sizes.

In	this	chapter	I’ll	describe	the	eight	major	software	models
—their	 advantages,	 disadvantages,	 and	 how	 to	 apply	 them
appropriately.	However,	in	practice,	none	of	these	models	can
be	 followed	 blindly	 or	 expected	 to	 guarantee	 a	 successful
project.	 This	 chapter	 also	 discusses	 what	 great	 programmers
can	 do	 to	work	 around	 the	 limitations	 of	 a	model	 forced	 on
them	and	still	produce	great	code.

3.2.1	The	Informal	Model
The	 Informal	 model	 describes	 software	 development	 with
minimal	 process	 or	 discipline:	 no	 formal	 design,	 no	 formal
testing,	 and	 a	 lack	 of	 project	 management.	 This	 model	 was
originally	 known	 as	 hacking 	 and	 those	 who	 engaged	 in	 it2

were	 known	 as	 hackers.	 However,	 as	 those	 original	 hackers
grew	 up	 and	 gained	 experience,	 education,	 and	 skills,	 they
proudly	 retained	 the	 name	 “hacker,”	 so	 the	 term	 no	 longer
refers	 to	an	 inexperienced	or	unskilled	programmer. 	 I’ll	 still
use	the	term	hacking	to	mean	an	informal	coding	process,	but
I’ll	 use	 informal	 coder	 to	 describe	 a	 person	who	 engages	 in
hacking.	 This	will	 avoid	 confusion	with	 differing	 definitions
of	hacker.

In	 the	 Informal	 model,	 the	 programmer	 moves	 directly
from	product	 conceptualization	 to	coding,	 “hacking	away”	at
the	program	until	something	is	working	(often	not	well),	rather
than	designing	a	robust,	flexible,	readable	program.

Hacking	has	a	few	advantages:	it’s	fun,	done	independently
(though	certainly	many	people	participate	in	group	events	like
hackathons),	 and	 the	 programmer	 is	 responsible	 for	 most
design	decisions	and	for	moving	the	project	along,	so	they	can
often	 get	 something	 working	 faster	 than	 could	 a	 software
engineer	following	a	formal	development	process.

The	problem	with	the	Informal	model	is	that	its	conscious
lack	of	design	may	 lead	 to	 an	 invalid	 system	 that	doesn’t	do
what	 end	 users	 want,	 because	 their	 requests	 weren’t
considered	in	the	requirements	and	software	specifications—if
those	 even	 exist—and	 often	 the	 software	 isn’t	 tested	 or
documented,	which	makes	it	difficult	for	anyone	other	than	the
original	programmer	to	use	it.

Thus,	 the	 Informal	 model	 works	 for	 small,	 throwaway
programs	intended	for	use	only	by	the	programmer	who	coded
them.	For	such	projects,	it’s	far	cheaper	and	more	efficient	to
bang	out	a	couple	hundred	lines	of	code	for	limited	and	careful
use	than	to	go	through	the	full	software	development	process.

3

(Unfortunately,	some	“throwaway”	programs	can	take	on	a	life
of	 their	 own	 and	 become	 popular	 once	 users	 discover	 them.
Should	 this	 happen,	 the	 program	 should	 be	 redesigned	 and
reimplemented	so	it	can	be	maintained	properly.)

Hacking	 is	 also	 useful	 for	 developing	 small	 prototypes,
especially	screen	displays	 intended	 to	demonstrate	a	program
in	development	to	a	prospective	customer.	One	sticky	problem
here,	 though,	 is	 that	 clients	 and	 managers	 may	 look	 at	 the
prototype	and	assume	that	a	large	amount	of	code	is	already	in
place,	meaning	 they	may	push	 to	 further	 develop	 the	 hacked
code	 rather	 than	 start	 the	 development	 process	 from	 the
beginning,	which	will	lead	to	problems	down	the	road.

3.2.2	The	Waterfall	Model
The	 Waterfall	 model	 is	 the	 granddaddy	 of	 software
development	models,	and	most	models	are	a	variation	of	it.	In
the	 Waterfall	 model,	 each	 step	 of	 the	 SDLC	 is	 executed
sequentially	from	beginning	to	end	(see	Figure	3-1),	with	 the
output	from	each	step	forming	the	input	for	the	next	step.

Figure	3-1:	The	Waterfall	model

You	 begin	 the	 Waterfall	 model	 by	 producing	 the	 SyRS.
Once	 the	 system	requirements	are	 specified,	you	produce	 the
SRS	 from	 the	 SyRS.	 When	 the	 software	 requirements	 are
specified,	 you	 produce	 the	 SDD	 from	 the	 SRS.	 You	 then
produce	source	code	from	the	SDD	and	test	the	software.	Then
you	 deploy	 and	 maintain	 the	 software.	 Everything	 in	 the
SLDC	happens	in	that	order,	without	deviation.

As	 the	 original	 SDLC	 model,	 the	 Waterfall	 model	 is
usually	 very	 simple	 to	 understand	 and	 apply	 to	 a	 software
development	 project	 because	 each	 step	 is	 distinct,	with	well-
understood	inputs	and	deliverables.	It’s	also	relatively	easy	to
review	work	 performed	 using	 this	model	 and	 verify	 that	 the
project	is	on	track.

However,	 the	 Waterfall	 model	 suffers	 from	 some	 huge
problems.	 The	 most	 important	 is	 that	 it	 assumes	 that	 you
perform	 each	 step	 perfectly	 before	 progressing	 to	 the	 next
step,	 and	 that	 you’ll	 find	 errors	 early	 in	 one	 step	 and	 make

repairs	 before	 proceeding.	 In	 reality,	 this	 is	 rarely	 the	 case:
defects	 in	 the	requirements	or	design	phases	are	 typically	not
caught	until	testing	or	deployment.	At	that	point,	it	can	be	very
expensive	 to	 back	 up	 through	 the	 system	 and	 correct
everything.

Another	 disadvantage	 is	 that	 the	Waterfall	 model	 doesn’t
allow	 you	 to	 produce	 a	 working	 system	 for	 customers	 to
review	until	very	late	in	the	development	process.	I	can’t	count
the	number	of	 times	I’ve	shown	a	client	static	screenshots	or
diagrams	of	how	code	would	work,	received	their	buy-in,	and
then	had	them	reject	the	running	result.	That	major	disconnect
in	 expectations	 could	 have	 been	 avoided	 had	 I	 produced	 a
working	 prototype	 of	 the	 code	 that	 would	 have	 allowed
customers	 to	 experiment	 with	 certain	 aspects	 of	 the	 system
during	the	requirements	phase.

Ultimately,	this	model	is	very	risky.	Unless	you	can	exactly
specify	what	 the	 system	will	do	before	you	start	 the	process,
the	Waterfall	model	is	likely	inappropriate	for	your	project.

The	Waterfall	 model	 is	 appropriate	 for	 small	 projects	 of,
say,	less	than	a	few	tens	of	thousands	of	code	lines	involving
only	a	couple	of	programmers;	for	very	large	projects	(because
nothing	else	works	at	that	level);	or	when	the	current	project	is
similar	 to	 a	 previous	 product	 that	 employed	 the	 Waterfall
model	 during	 development	 (so	 you	 can	 use	 the	 existing
documentation	as	a	template).

3.2.3	The	V	Model
The	 V	 model,	 shown	 in	 Figure	 3-2,	 follows	 the	 same	 basic
steps	as	the	Waterfall	model	but	emphasizes	the	development
of	 testing	 criteria	 early	 in	 the	development	 life	 cycle.	The	V

model	 is	 organized	 so	 the	 earlier	 steps,	 requirements	 and
design,	 produce	 two	 sets	 of	 outputs:	 one	 for	 the	 step	 that
follows	and	one	for	a	parallel	step	during	the	testing	phase.

Figure	3-2:	The	V	model

In	 Figure	 3-2,	 the	 items	 on	 the	 left	 side	 of	 the	 V	 link
straight	 across	 to	 the	 items	 on	 the	 right	 side:	 at	 each	 design
stage,	 the	 programmer	 is	 thinking	 about	 how	 to	 test	 and	 use
the	 concepts	 being	 modeled.	 For	 example,	 during	 the
requirements	 and	 architecture	 phase,	 the	 system	 architect
designs	 the	 system	 acceptance	 tests	 that	 will	 verify	 that	 the
software	correctly	implements	all	the	requirements.	During	the
design	 phase,	 the	 system	designer	 implements	 the	 software’s
unit	and	integration	tests.

The	big	difference	here	from	the	Waterfall	model	is	that	the
engineer	implements	test	cases	and	procedures	early	on,	so	by

the	time	coding	begins,	the	software	engineer	can	use	existing
test	 procedures	 to	 verify	 the	 code’s	 behavior	 during
development.	 Known	 as	 test-driven	 development	 (TDD),	 in
this	approach	the	programmer	constantly	runs	tests	throughout
the	 development	 process.	 Continuous	 testing	 allows	 you	 to
find	 bugs	 much	 sooner	 and	 makes	 it	 cheaper	 and	 faster	 to
correct	them.

That	said,	the	V	model	is	far	from	perfect.	Like	its	parent,
the	Waterfall	model,	 the	V	model	 is	 too	simple,	and	 requires
too	 much	 perfection	 in	 the	 early	 stages	 in	 order	 to	 prevent
disasters	 in	 the	 later	 stages.	 For	 example,	 a	 defect	 in	 the
requirements	 and	 architecture	 phase	 might	 not	 surface	 until
system	 testing	 and	 validation,	 resulting	 in	 expensive
backtracking	through	the	development.	For	this	reason,	the	V
model	doesn’t	work	well	for	projects	whose	requirements	are
subject	to	change	throughout	a	product’s	lifetime.

The	model	often	encourages	verification	at	 the	expense	of
validation.	 Verification	 ensures	 that	 a	 product	 meets	 certain
requirements	 (such	 as	 its	 software	 requirements).	 It’s	 easy	 to
develop	tests	that	show	the	software	is	fulfilling	requirements
laid	 out	 in	 the	 SRS	 and	 SyRS.	 In	 contrast,	 validation	 shows
that	the	product	meets	the	needs	of	its	end	users.	Being	more
open-ended,	validation	is	more	difficult	to	achieve.

It’s	difficult,	 for	example,	 to	 test	 that	 the	software	doesn’t
crash	because	it	tries	to	process	a	NULL	pointer.	For	this	reason,
validation	 tests	 are	 often	 entirely	 missing	 in	 the	 test
procedures.	 Most	 test	 cases	 are	 requirements-driven,	 and
rarely	are	there	requirements	like	“no	divisions	by	zero	in	this
section	of	code”	or	“no	memory	 leaks	 in	 this	module”	(these
are	 known	 as	 requirement	 gaps;	 coming	 up	 with	 test	 cases

without	any	requirements	to	base	them	on	can	be	challenging,
especially	for	novices).

3.2.4	The	Iterative	Model
Sequential	models	like	Waterfall	and	V	rely	on	the	assumption
that	 specification,	 requirements,	 and	 design	 are	 all	 perfect
before	 coding	 occurs,	 meaning	 users	 won’t	 discover	 design
problems	until	the	software	is	first	deployed.	By	then	it’s	often
too	 costly	 (or	 too	 late)	 to	 repair	 the	 design,	 correct	 the
software,	 and	 test	 it.	 The	 Iterative	 model	 overcomes	 this
problem	 by	 taking	 multiple	 passes	 over	 the	 development
model.

The	hallmark	of	 the	 Iterative	model	 is	user	 feedback.	The
system	designers	start	with	a	general	idea	of	the	product	from
the	 users	 and	 stakeholders	 and	 create	 a	 minimal	 set	 of
requirements	 and	 design	 documentation.	 The	 coders
implement	 and	 test	 this	 minimal	 implementation.	 The	 users
then	play	with	this	implementation	and	provide	feedback.	The
system	 designers	 produce	 a	 new	 set	 of	 requirements	 and
designs	 based	 on	 the	 user	 feedback,	 and	 the	 programmers
implement	 and	 test	 the	 changes.	 Finally,	 users	 are	 given	 a
second	version	for	their	evaluation.	This	process	repeats	until
the	users	are	satisfied	or	the	software	meets	the	original	goals.

One	 big	 advantage	 of	 the	 Iterative	model	 is	 that	 it	works
reasonably	well	 when	 it’s	 difficult	 to	 completely	 specify	 the
software’s	behavior	at	the	beginning	of	the	development	cycle.
System	architects	can	work	from	a	general	road	map	to	design
enough	of	the	system	for	end	users	to	play	with	and	determine
which	 new	 features	 are	 necessary.	 This	 avoids	 spending
considerable	 effort	 producing	 features	 end	 users	 want

implemented	differently	or	don’t	want	at	all.

Another	advantage	is	that	the	Iterative	model	reduces	time
to	 market	 risk.	 To	 get	 the	 product	 to	 market	 quickly,	 you
decide	on	a	subset	of	features	the	final	product	will	have	and
develop	 those	 first,	 get	 the	 product	working	 (in	 a	minimalist
fashion),	and	ship	this	minimum	viable	product	(MVP).	Then,
you	add	functionality	 to	each	new	iteration	 to	produce	a	new
enhanced	version	of	the	product.

Advantages	of	the	Iterative	model	include:

You	can	achieve	minimal	functionality	very	rapidly.

Managing	 risk	 is	 easier	 than	 in	 sequential	 models	 because	 you	 don’t	 have	 to
complete	the	entire	program	to	determine	that	it	won’t	do	the	job	properly.

Managing	 the	 project	 as	 it	 progresses	 (toward	 completion)	 is	 easier	 and	more
obvious	than	with	sequential	models.

Changing	requirements	is	supported.

Changing	requirements	costs	less.

Parallel	 development	 is	 possible	with	 two	 (or	more)	 sets	 of	 teams	working	on
alternate	versions.

Here	are	some	disadvantages	of	the	Iterative	model:

Managing	the	project	is	more	work.

It	doesn’t	scale	down	to	smaller	projects	very	well.

It	might	take	more	resources	(especially	if	parallel	development	takes	place).

Defining	the	iterations	might	require	a	“grander”	road	map	of	the	system	(that	is,
going	back	to	specifying	all	the	requirements	before	development	starts).

There	 might	 be	 no	 limit	 on	 the	 number	 of	 iterations;	 hence,	 it	 could	 be
impossible	to	predict	when	the	project	will	be	complete.

3.2.5	The	Spiral	Model
The	Spiral	model	 is	 also	 an	 iterative	model	 that	 repeats	 four
phases:	 planning,	 design,	 evaluation/risk	 analysis,	 and
construction	(see	Figure	3-3).

Figure	3-3:	The	Spiral	model

The	 Spiral	 model	 is	 heavily	 risk-based:	 each	 iteration
assesses	 the	 risks	 of	 going	 forward	 with	 the	 project.
Management	 chooses	 which	 features	 to	 add	 and	 omit	 and
which	 approaches	 to	 take	 by	 analyzing	 the	 risk	 (that	 is,	 the

likelihood	of	failure).

The	Spiral	is	often	called	a	model	generator	or	meta	model
because	 you	 can	 use	 further	 development	models—the	 same
type	or	a	different	one—on	each	spiral.	The	drawback	is	 that
the	resulting	model	becomes	specific	to	that	project,	making	it
difficult	to	apply	to	others.

One	key	advantage	of	 the	Spiral	model	 is	 that	 it	 involves
end	 users	 with	 the	 software	 early	 and	 continuously	 during
development	 by	 producing	 working	 prototypes	 on	 a	 regular
basis.	The	end	user	can	play	with	these	prototypes,	determine
if	 development	 is	 on	 the	 right	 track,	 and	 redirect	 the
development	process	if	needed.	This	addresses	one	of	the	great
shortcomings	of	the	Waterfall	and	V	models.

A	drawback	of	 this	 approach	 is	 that	 it	 rewards	“just	good
enough”	design.	If	the	code	can	be	written	“just	fast	enough”
or	“just	small	enough,”	further	optimization	is	delayed	until	a
later	phase	when	it’s	necessary.	Similarly,	testing	is	done	only
to	a	level	sufficient	to	achieve	a	minimal	amount	of	confidence
in	 the	code.	Additional	 testing	 is	considered	a	waste	of	 time,
money,	 and	 resources.	 The	 Spiral	 model	 often	 leads	 to
compromises	in	the	early	work,	particularly	when	it’s	managed
poorly,	which	leads	to	problems	later	in	development.

Another	 downside	 is	 that	 the	 Spiral	 model	 increases
management	 complexity.	 This	 model	 is	 complex,	 so	 project
management	 requires	 risk	analysis	experts.	Finding	managers
and	engineers	with	 this	expertise	 is	difficult,	 and	 substituting
someone	without	appropriate	experience	is	usually	a	disaster.

The	Spiral	model	 is	suitable	only	for	 large,	 risky	projects.
The	 effort	 (especially	 with	 respect	 to	 documentation)
expended	 is	 hard	 to	 justify	 for	 low-risk	 projects.	 Even	 on

larger	 projects,	 the	 Spiral	 model	 might	 cycle	 indefinitely,
never	 producing	 the	 final	 product,	 or	 the	 budget	 might	 be
completely	 consumed	 while	 development	 is	 still	 on	 an
intermediate	spiral.

Another	concern	is	that	engineers	spend	considerable	time
developing	prototypes	and	other	code	needed	for	intermediate
versions	 that	 don’t	 appear	 in	 the	 final	 software	 release,
meaning	 the	 Spiral	 model	 often	 costs	 more	 than	 developing
software	with	other	methodologies.

Nevertheless,	the	Spiral	model	offers	some	big	advantages:

The	 requirements	don’t	need	 to	be	 fully	 specified	before	 the	project	 starts;	 the
model	is	ideal	for	projects	with	changing	requirements.

It	produces	working	code	early	in	the	development	cycle.

It	works	extremely	well	with	rapid	prototyping	(see	the	next	section,	“The	Rapid
Application	Development	Model”),	affording	customers	and	other	stakeholders	a
good	level	of	comfort	with	the	application	early	in	its	development.

Development	 can	 be	 divided	 up	 and	 the	 riskier	 portions	 can	 be	 created	 early,
reducing	the	overall	development	risk.

Because	 requirements	 can	 be	 created	 as	 they’re	 discovered,	 they	 are	 more
accurate.

As	in	the	Iterative	model,	functionality	can	be	spread	out	over	time,	enabling	the
addition	 of	 new	 features	 as	 time/budget	 allows	 without	 impacting	 the	 initial
release.

3.2.6	The	Rapid	Application	Development	Model
Like	 the	 Spiral	 model,	 the	 Rapid	 Application	 Development
(RAD)	 model	 emphasizes	 continuous	 interaction	 with	 users
during	development.	Devised	by	James	Martin,	a	researcher	at
IBM	 in	 the	 1990s,	 the	 original	RAD	model	 divides	 software
development	into	four	phases	(see	Figure	3-4).

Figure	3-4:	The	RAD	model

Requirements	 planning	 A	 project’s	 stakeholders	 come
together	 to	discuss	business	needs,	 scope,	constraints,	and
system	requirements.

User	design	End	users	interact	with	the	development	team
to	produce	models	and	prototypes	for	the	system	(detailing
inputs,	 outputs,	 and	 computations),	 typically	 using
computer-aided	software	engineering	(CASE)	tools.

Construction	 The	 development	 team	 builds	 the	 software
using	 tools	 to	 automatically	 generate	 code	 from	 the
requirements	 and	 user	 design.	 Users	 remain	 involved
during	 this	 phase,	 suggesting	 changes	 as	 the	UI	 comes	 to
life.

Cutover	The	software	is	deployed.

RAD	 is	 more	 lightweight	 than	 Spiral,	 with	 fewer	 risk
mitigation	 techniques	 and	 fairly	 light	 documentation	 needs,

meaning	 it	 works	 well	 for	 small	 to	 medium-sized	 projects.
Unlike	 other	 models,	 traditional	 RAD	 heavily	 depends	 on
very-high-level	 languages	 (VHLLs),	 user	 interface	 modeling
tools,	complex	libraries	and	frameworks	of	existing	code,	and
CASE	tools	to	automatically	generate	code	from	requirements
and	 user	 interface	models.	 In	 general,	RAD	 is	 practical	 only
when	 there	 are	CASE	 tools	 available	 for	 the	 specific	 project
problems.	 Today,	 many	 generic	 language	 systems	 support	 a
high	 degree	 of	 automatic	 code	 generation,	 including
Microsoft’s	Visual	Basic	and	Visual	Studio	packages,	Apple’s
Xcode/Interface	 Builder	 package,	 Free	 Pascal/Lazarus,	 and
Embarcadero’s	Delphi	(Object	Pascal)	package.

The	advantages	of	 the	RAD	model	are	similar	 to	 those	of
the	Spiral	model:

The	customer	is	involved	with	the	product	throughout	development,	resulting	in
less	risk.

RAD	 reduces	 development	 time	 because	 less	 time	 is	 spent	 writing
documentation	 that	 must	 be	 rewritten	 later	 when	 the	 specifications	 inevitably
change.

The	RAD	model	encourages	the	fast	delivery	of	working	code,	and	testing	(and
defect	 mitigation)	 is	 more	 efficient.	 Developers	 spend	 more	 time	 running	 the
code,	testing	for	problems.

Like	 any	 development	 model,	 RAD	 has	 some
disadvantages	as	well:

RAD	requires	Grand	Master–level	software	engineers	who	have	the	experience
to	 short-circuit	 much	 of	 the	 heavyweight	 development	 process	 found	 in	 other
models.	Such	resources	are	scarce	in	many	organizations.

RAD	 requires	 continuous	 interaction	with	 end	users,	which	may	be	 limited	on
many	projects.

RAD	may	be	 difficult	 to	 schedule	 and	 control.	Managers	who	 live	 and	die	 by
Microsoft	Project	will	find	it	difficult	to	deal	with	the	uncertainties	in	the	RAD
model.

Unless	 carefully	 managed,	 RAD	 can	 rapidly	 devolve	 into	 hacking.	 Software
engineers	might	 forgo	 formal	 design	methodologies	 and	 just	 hack	 away	 at	 the
code	to	make	changes.	This	can	be	especially	troublesome	when	end	users	start
making	suggestions	“just	to	see	what	the	result	will	look	like.”

RAD	doesn’t	work	well	for	large	system	development.

3.2.7	The	Incremental	Model
The	Incremental	model	 is	very	similar	 to	 the	Iterative	model,
with	the	main	difference	being	in	planning	and	design.	In	the
Iterative	model,	the	system	design	is	created	first	and	software
engineers	 implement	 various	 pieces	 at	 each	 iteration;	 the
initial	 design	 defines	 only	 the	 first	 piece	 of	 working	 code.
Once	 the	 program	 is	 running,	 new	 features	 are	 designed	 and
added	incrementally.

The	 Incremental	 model	 emphasizes	 the	 “keep	 the	 code
working”	 concept.	 When	 a	 base	 product	 is	 operational,	 the
development	 team	 adds	 a	 minimal	 amount	 of	 new
functionality	 at	 each	 iteration,	 and	 the	 software	 is	 tested	 and
kept	 functional.	By	 limiting	new	features,	 the	 team	can	more
easily	locate	and	solve	development	problems.

The	advantage	of	the	Incremental	model	is	that	you	always
maintain	a	working	product.	The	model	also	comes	naturally
to	 programmers,	 especially	 on	 small	 projects.	 The
disadvantage	 is	 that	 it	 doesn’t	 consider	 the	 product’s	 full
design	in	the	beginning.	Often,	new	features	are	simply	hacked
on	to	the	existing	design.	This	could	result	in	problems	down
the	 road	 when	 end	 users	 request	 features	 that	 were	 never
considered	 in	 the	 original	 design.	 The	 Incremental	 model	 is
sufficient	 for	 small	 projects	 but	 doesn’t	 scale	 well	 to	 large
projects,	where	the	Iterative	model	might	be	a	better	choice.

4

3.3	SOFTWARE	DEVELOPMENT
METHODOLOGIES
A	 software	 development	model	 describes	what	 work	 is	 done
but	 leaves	 considerable	 leeway	 as	 to	 how	 it	 is	 done.	 This
section	 looks	 at	 some	 development	 methodologies	 and
processes	you	can	apply	to	many	of	the	models	just	discussed.

The	 Belitsoft	 company	 blog 	 describes	 software
methodology	as	follows:

A	 system	 of	 principles,	 as	 well	 as	 a	 set	 of	 ideas,
concepts,	methods,	techniques,	and	tools	that	define	the
style	of	software	development.

Thus,	we	can	reduce	 the	concept	of	software	methodology	to
one	word:	 style.	 There	 are	 various	 styles	 you	 can	 use	 when
developing	software.

3.3.1	Traditional	(Predictive)	Methodologies
The	 traditional	 methodology	 is	 predictive,	 meaning	 that
management	 predicts	 which	 activities	 will	 take	 place,	 when
they	 will	 take	 place,	 and	 who	 will	 do	 them.	 These
methodologies	 work	 hand	 in	 hand	 with	 linear/sequential
development	models,	like	the	Waterfall	or	V	model.	You	could
use	 prediction	 with	 other	 models,	 but	 those	 are	 designed	 to
purposely	 avoid	 the	 problems	 that	 predictive	 methodologies
are	prone	to.

Predictive	 methodologies	 fail	 when	 it’s	 impossible	 to
predict	 changes	 in	 future	 requirements,	 key	 personnel,	 or
economic	 conditions	 (for	 example,	 did	 the	 company	 receive
the	 expected	 additional	 financing	 at	 some	 milestone	 in	 the
project?).

5

3.3.2	Adaptive	Methodologies
The	 Spiral,	 RAD,	 Incremental,	 and	 Iterative	 models	 came
about	 specifically	 because	 it’s	 usually	 difficult	 to	 correctly
predict	 requirements	 for	 a	 large	 software	 system.	 Adaptive
methodologies	 handle	 these	 unpredictable	 changes	 in	 the
workflow	 and	 emphasize	 short-term	 planning.	 After	 all,	 if
you’re	planning	only	30	days	in	advance	on	a	large	project,	the
worst	 that	 can	 happen	 is	 you	 have	 to	 replan	 for	 the	 next	 30
days;	this	is	nowhere	near	the	disaster	you’d	face	in	the	middle
of	 a	 large	Waterfall/Predictive-based	 project,	 when	 a	 change
would	force	you	to	resync	the	entire	project.

3.3.3	Agile
Agile	is	an	incremental	methodology	that	focuses	on	customer
collaboration,	 short	 development	 iterations	 that	 respond	 to
changes	 quickly,	 working	 software,	 and	 support	 for
individuals’	 contributions	 and	 interactions.	 The	 Agile
methodology	 was	 created	 as	 an	 umbrella	 to	 cover	 several
different	“lightweight”	(that	is,	nonpredictive)	methodologies,
including	 Extreme	 Programming,	 Scrum,	 Dynamic	 System
Development	 Model	 (DSDM),	 Adaptive	 Software
Development	 (ASD),	 Crystal,	 Feature-Driven	 Development
(FDD),	 Pragmatic	 Programming,	 and	 others.	 Most	 of	 these
methodologies	 are	 considered	 “Agile,”	 although	 they	 often
cover	 different	 aspects	 of	 the	 software	 development	 process.
Agile	has	largely	proven	itself	on	real-world	projects,	making
it	 one	 of	 the	 currently	most	 popular	methodologies,	 so	we’ll
dedicate	a	fair	amount	of	space	to	it	here.

NOTE

For	a	detailed	list	of	the	principles	behind	Agile,	see	the	Agile	Manifesto	at
http://agilemanifesto.org/.

3.3.3.1	Agile	Is	Incremental	in	Nature

Agile	development	 is	 incremental,	 iterative,	 and	evolutionary
in	 nature,	 and	 so	 works	 best	 with	 Incremental	 or	 Iterative
models	 (using	 Spiral	 or	 RAD	 is	 also	 possible).	 A	 project	 is
broken	down	into	tasks	that	a	team	can	complete	in	one	to	four
weeks,	which	 is	often	called	a	sprint.	During	each	sprint,	 the
development	team	plans,	creates	requirements,	designs,	codes,
unit-tests,	 and	 acceptance-tests	 the	 software	 with	 the	 new
features.

At	the	end	of	the	sprint,	the	deliverable	is	a	working	piece
of	 software	 that	 demonstrates	 the	 new	 functionality	 with	 as
few	defects	as	possible.

3.3.3.2	Agile	Requires	Face-to-Face	Communication

Throughout	 the	 sprint,	 a	 customer	 representative	 must	 be
available	 to	 answer	 questions	 that	 arise.	 Without	 this,	 the
development	process	can	easily	veer	off	in	the	wrong	direction
or	get	bogged	down	while	the	team	waits	for	responses.

Efficient	 communication	 in	 Agile	 requires	 a	 face-to-face
conversation. 	 When	 a	 developer	 demonstrates	 a	 product
directly	 to	 the	 customer,	 that	 customer	 often	 raises	 questions
that	would	never	come	up	in	an	email	or	if	they’d	just	tried	the
feature	on	 their	own.	Sometimes,	offhand	 remarks	 in	a	demo
can	 result	 in	 a	 burst	 of	 divergent	 thinking	 that	 would	 never
happen	if	the	conversation	weren’t	in	person.

3.3.3.3	Agile	Is	Focused	on	Quality

Agile	 emphasizes	 various	 quality-enhancing	 techniques,	 such

6

http://agilemanifesto.org/

as	 automated	 unit	 testing,	 TDD,	 design	 patterns,	 pair
programming,	 code	 refactoring,	 and	 other	 well-known	 best
software	 practices.	 The	 idea	 is	 to	 produce	 code	with	 as	 few
defects	as	possible	(during	initial	design	and	coding).

Automated	 unit	 testing	 creates	 a	 test	 framework	 that	 a
developer	 can	 automatically	 run	 to	 verify	 that	 the	 software
runs	correctly.	It’s	also	important	for	regression	testing,	which
tests	to	ensure	the	code	still	works	properly	after	new	features
have	 been	 added.	 Manually	 running	 regression	 tests	 is	 too
labor-intensive,	so	it	generally	won’t	happen.

In	TDD,	developers	write	automated	 tests	prior	 to	writing
the	 code,	 which	 means	 that	 the	 test	 will	 initially	 fail.	 The
developer	 runs	 the	 tests,	 picks	 a	 test	 that	 fails,	 writes	 the
software	to	fix	that	failure,	and	then	reruns	the	tests.	As	soon
as	a	test	succeeds,	the	developer	moves	on	to	the	next	failing
test.	 Successfully	 eliminating	 all	 the	 failed	 tests	 verifies	 that
the	software	meets	the	requirements.

Pair	 programming,	 one	 of	 Agile’s	 more	 controversial
practices,	involves	two	programmers	working	on	each	section
of	 code	 together.	One	 programmer	 enters	 the	 code	while	 the
other	 watches,	 catching	 mistakes	 onscreen,	 offering	 design
tips,	 providing	 quality	 control,	 and	 keeping	 the	 first
programmer	focused	on	the	project.

3.3.3.4	Agile	Sprints	(Iterations)	Are	Short

Agile	methodologies	work	best	when	the	iterations	are	short—
from	one	week	to	(at	most)	a	couple	of	months.	This	is	a	nod
to	 the	 old	 adage	 “If	 it	 weren’t	 for	 the	 last	 minute,	 nothing
would	 ever	 get	 done.”	 By	 keeping	 iterations	 short,	 software
engineers	are	always	working	during	the	last	minute,	reducing

fatigue	and	procrastination	and	increasing	project	focus.

Hand	in	hand	with	short	sprints	are	short	feedback	cycles.
A	 common	 Agile	 feature	 is	 a	 brief	 daily	 stand-up	 meeting,
typically	 no	 more	 than	 15	 minutes, 	 where	 programmers
concisely	 describe	 what	 they’re	 working	 on,	 what	 they’re
stuck	 on,	 and	 what	 they’ve	 finished.	 This	 allows	 project
management	 to	 rearrange	 resources	 and	 provide	 help	 if	 the
schedule	 is	 slipping.	 The	meetings	 catch	 any	 problems	 early
rather	 than	wasting	 several	 weeks	 before	 the	 issue	 comes	 to
project	management’s	attention.

3.3.3.5	Agile	Deemphasizes	Heavyweight	Documentation

One	 of	 the	 Waterfall	 model’s	 biggest	 problems	 is	 that	 it
produces	 reams	 of	 documentation	 that	 is	 never	 again	 read.
Overly	comprehensive,	heavyweight	documentation	has	a	few
problems:

Documentation	must	be	maintained.	Whenever	a	change	is	made	in	the	software,
the	 documentation	 must	 be	 updated.	 Changes	 in	 one	 document	 have	 to	 be
reflected	in	many	other	documents,	increasing	workload.

Many	 documents	 are	 difficult	 to	write	 prior	 to	 the	 code.	More	 often	 than	 not,
such	documents	are	updated	after	the	code	is	written	and	then	never	read	again	(a
waste	of	time	and	money).

An	iterative	development	process	quickly	destroys	coherence	between	code	and
documentation.	 Therefore,	 properly	 maintaining	 the	 documentation	 at	 each
iteration	doesn’t	fit	well	with	the	Agile	methodology.

Agile	 emphasizes	 just	 barely	 good	 enough	 (JBGE)
documentation—that	 is,	 enough	 documentation	 so	 the	 next
programmer	can	pick	up	where	you	 left	 off,	 but	no	more	 (in
fact,	 Agile	 emphasizes	 JBGE	 for	 most	 concepts,	 including
design/modeling).

Many	books	have	been	written	on	Agile	development	(see

7

“For	More	Information”	on	page	69).	This	is	not	one	of	them,
but	we’ll	look	at	a	couple	of	the	different	methodologies	under
the	 Agile	 umbrella.	 These	 methodologies	 are	 not	 mutually
exclusive;	two	or	more	can	be	combined	and	used	on	the	same
project.

3.3.4	Extreme	Programming
Extreme	Programming	 (XP)	 is	perhaps	 the	most	widely	used
Agile	 methodology.	 It	 aims	 to	 streamline	 development
practices	 and	 processes	 to	 deliver	 working	 software	 that
provides	the	desired	feature	set	without	unnecessary	extras.

XP	is	guided	by	five	values:

Communication	 Good	 communication	 between	 the
customer	and	the	team,	among	team	members,	and	between
the	team	and	management	is	essential	for	success.

Simplicity	XP	strives	to	produce	the	simplest	system	today,
even	 if	 it	 costs	 more	 to	 extend	 it	 tomorrow,	 rather	 than
producing	a	complicated	product	 that	 implements	 features
that	might	never	be	used.

Feedback	XP	depends	upon	continuous	feedback:	unit	and
functional	 tests	provide	programmers	with	 feedback	when
they	 make	 changes	 to	 their	 code;	 the	 customer	 provides
immediate	 feedback	 when	 a	 new	 feature	 is	 added;	 and
project	 management	 tracks	 the	 development	 schedule,
providing	feedback	about	estimates.

Respect	 XP	 requires	 that	 team	 members	 respect	 one
another.	A	programmer	will	never	commit	a	change	to	the
code	base	that	breaks	the	compilation	or	existing	unit	tests
(or	do	anything	else	that	will	delay	the	work	of	other	team
members).

Courage	 XP’s	 rules	 and	 practices	 don’t	 line	 up	 with
traditional	software	development	practices.	XP	requires	the
commitment	 of	 resources	 (such	 as	 an	 “always	 available”
customer	 representative	 or	 pair	 programmers)	 that	 can	 be
expensive	 or	 difficult	 to	 justify	 in	 older	 methodologies.
Some	XP	 policies	 like	 “refactor	 early,	 refactor	 often”	 run
counter	to	common	practice	such	as	“if	it	ain’t	broke,	don’t
fix	it.”	Without	the	courage	to	fully	implement	its	extreme
policies,	XP	becomes	less	disciplined	and	can	devolve	into
hacking.

3.3.4.1	The	XP	Team

Paramount	to	the	XP	process	is	the	XP	whole	team	concept:	all
members	 of	 the	 team	 work	 together	 to	 produce	 the	 final
product.	 Team	members	 are	 not	 specialists	 in	 one	 field,	 but
often	 take	 on	 different	 responsibilities	 or	 roles,	 and	 different
team	members	might	perform	the	same	role	at	different	times.
An	 XP	 team	 fills	 the	 following	 roles	 with	 various	 team
members.

A	customer	representative

The	customer	representative	is	responsible	for	keeping	the
project	 on	 the	 right	 track,	 providing	 validation,	 writing
user	 stories	 (requirements,	 features,	 and	 use	 cases)	 and
functional	 tests,	 and	 deciding	 the	 priorities	 (release
planning)	 for	 new	 functionality.	 The	 customer
representative	must	be	available	whenever	 the	 team	needs
them.

Not	having	an	available	customer	representative	is	one
of	the	largest	impediments	to	successful	XP	projects.
Without	continuous	feedback	and	direction	from	the

customer,	XP	degenerates	into	hacking.	XP	doesn’t	rely	on
requirements	documentation;	instead,	the	representative	is
a	“living	version”	of	that	documentation.

Programmers

Programmers	have	several	responsibilities	on	an	XP	team:
working	with	 the	customer	 representative	 to	produce	user
stories,	 estimating	 how	 resources	 should	 be	 allocated	 for
those	 stories,	 estimating	 timelines	and	costs	 to	 implement
stories,	 writing	 unit	 tests,	 and	 writing	 the	 code	 to
implement	the	stories.

Testers

Testers	 (programmers	 who	 implement	 or	 modify	 a	 given
unit	 run	unit	 tests)	 run	 the	 functional	 tests.	Often,	at	 least
one	of	the	testers	is	the	customer	representative.

Coach

The	 coach	 is	 the	 team	 leader,	 typically	 the	 lead
programmer,	 whose	 job	 is	 to	 make	 sure	 the	 project
succeeds.	The	coach	ensures	 the	 team	has	 the	appropriate
work	 environment;	 fosters	 good	 communication;	 shields
the	team	from	the	rest	of	the	organization	by,	for	example,
acting	 as	 a	 liaison	 to	 upper	 management;	 helps	 team
members	 maintain	 self-discipline;	 and	 ensures	 the	 team
maintains	 the	XP	process.	When	 a	 programmer	 is	 having
difficulty,	 coaches	 provide	 resources	 to	 help	 them
overcome	the	problem.

Manager/tracker

The	 XP	 project	 manager	 is	 responsible	 for	 scheduling

meetings	 and	 recording	 their	 results.	The	 tracker	 is	often,
but	not	always,	the	same	as	the	manager,	and	is	responsible
for	tracking	the	project’s	progress	and	determining	whether
the	 current	 iteration’s	 schedule	 can	 be	met.	To	 do	 so,	 the
tracker	checks	with	each	programmer	a	couple	of	 times	a
week.

Different	XP	 configurations	 often	 include	 additional	 team
roles,	 such	 as	 analysts,	 designers,	 doomsayers,	 and	 so	 on.
Because	 of	 the	 small	 size	 of	 XP	 teams	 (typically	 around	 15
members)	 and	 the	 fact	 that	 (paired)	 programmers	 constitute
the	majority	of	the	team,	most	roles	are	shared.	See	“For	More
Information”	on	page	69	for	additional	references.

3.3.4.2	XP	Software	Development	Activities

XP	 uses	 four	 basic	 software	 development	 activities:	 coding,
testing,	listening,	and	designing.

Coding

XP	considers	 code	 to	 be	 the	only	 important	 output	 of	 the
development	 process.	 Contrary	 to	 the	 “think	 first,	 code
later”	 philosophy	 of	 serial	 models	 like	 Waterfall,	 XP
programmers	 start	 writing	 code	 at	 the	 beginning	 of	 the
software	 development	 cycle.	After	 all,	 “at	 the	 end	 of	 the
day,	there	has	to	be	a	working	program.”

XP	programmers	don’t	immediately	start	coding,	but
are	given	a	list	of	small	and	simple	features	to	implement.
They	work	on	a	basic	design	for	a	particular	feature	and
then	code	that	feature	and	make	sure	it’s	working	before
expanding	in	increments,	with	each	increment	working
correctly	to	ensure	that	the	main	body	of	code	is	always

8

running.	Programmers	make	only	small	changes	to	the
project	before	integrating	those	changes	into	the	larger
system.	XP	minimizes	all	noncode	output,	such	as
documentation,	because	there	is	very	little	benefit	to	it.

Testing

XP	emphasizes	TDD	using	automated	unit	 and	 functional
tests.	 This	 allows	 XP	 engineers	 to	 develop	 the	 product
right	(verification	via	automated	unit	tests)	and	develop	the
right	 product	 (validation	 via	 functional	 tests).	 WGC6:
Testing,	Debugging,	and	Quality	Assurance	will	deal	more
exclusively	 with	 testing,	 so	 we	 won’t	 go	 too	 far	 into	 it
here;	 just	 know	 that	 TDD	 is	 very	 important	 to	 the	 XP
process	 because	 it	 ensures	 that	 the	 system	 is	 always
working.

Testing	in	XP	is	always	automated.	If	adding	one
feature	breaks	an	unrelated	feature	for	some	reason,	it’s
critical	to	immediately	catch	that.	By	running	a	full	set	of
unit	(and	functional)	tests	when	adding	a	new	feature,	you
can	ensure	that	your	new	code	doesn’t	cause	a	regression.

Listening

XP	 developers	 communicate	 almost	 constantly	 with	 their
customers	 to	 ensure	 they’re	 developing	 the	 right	 product
(validation).

XP	is	a	change-driven	process,	meaning	it	expects
changes	in	requirements,	resources,	technology,	and
performance,	based	on	feedback	from	customers	as	they
test	the	product	throughout	the	process.

Designing

Design	 occurs	 constantly	 throughout	 the	 XP	 process—
during	release	planning,	iteration	planning,	refactoring,	and
so	 on.	 This	 focus	 prevents	 XP	 from	 devolving	 into
hacking.

3.3.4.3	The	XP	Process

Each	 cycle	 of	 XP	 produces	 a	 software	 release.	 Frequent
releases	 ensure	 constant	 feedback	 from	 the	 customer.	 Each
cycle	 consists	 of	 a	 couple	 of	 fixed-period	 blocks	 of	 time
known	as	iterations	(with	no	more	than	a	couple	of	weeks	for
each	iteration).	Cycles,	as	shown	in	Figure	3-5,	are	necessary
for	 planning;	 the	middle	 box	 in	 this	 figure	 represents	 one	 or
more	iterations.

Figure	3-5:	An	XP	cycle

In	the	planning	game,	the	XP	team	decides	which	features
to	 implement,	 estimates	 their	 costs,	 and	 plans	 the	 release.
During	 the	 exploration	 step,	 the	 customer	defines	 the	 feature

set	 and	 developers	 estimate	 costs	 and	 time	 requirements	 for
those	 features.	 The	 next	 section	 (under	 “User	 stories”)
describes	the	mechanism	customers	use	to	specify	features.

During	 release	 planning,	 the	 customer	 negotiates	with	 the
developers	on	the	features	to	implement	in	the	given	iteration.
The	developers	commit	to	the	release	plan,	and	engineers	are
assigned	 various	 tasks.	 At	 the	 end	 of	 release	 planning,	 the
process	 enters	 the	 steering	 phase,	 during	which	 the	 customer
ensures	that	the	project	remains	on	track.

After	 the	 overall	 plan	 is	 determined,	 the	 process	 for	 the
current	 release	enters	 an	 inner	 loop	consisting	of	 three	 steps:
iteration	 planning,	 implementation,	 and	 functional	 testing.
Iteration	 planning	 is	 the	 planning	 game	 scaled	 down	 for	 a
single	feature.

The	 implementation	 step	 is	 the	 coding	 and	unit	 testing	of
the	 feature.	 The	 developer	 writes	 a	 set	 of	 unit	 tests,
implements	 just	 enough	 code	 to	make	 the	 unit	 tests	 succeed,
refactors	the	code	as	necessary,	and	integrates	the	changes	into
the	common	code	base.

During	 the	 last	 step	 of	 the	 iteration,	 customers	 perform
functional	 testing.	 Then	 the	 process	 repeats	 for	 the	 next
iteration,	or	a	release	is	produced	if	all	iterations	are	completed
for	the	current	release.

3.3.4.4	XP	Software	Development	Rules

XP	 implements	 the	 four	 software	 development	 activities—
coding,	 testing,	 listening,	 and	 designing—using	 12	 simple
rules:

User	stories	(planning	game)

Small	releases	(building	blocks)

9

Metaphors	(standardized	naming	schemes)

Collective	ownership

Coding	standard

Simple	design

Refactoring

Testing

Pair	programming

Onsite	customer

Continuous	integration

Sustainable	pace

Each	rule	 is	described	next,	along	with	 its	advantages	and
disadvantages.

User	stories

User	stories	describe	a	simplified	set	of	use	cases,	written
by	the	customer,	that	define	the	system’s	requirements.	The
project	 team	 uses	 this	 set,	 which	 should	 provide	 only
enough	 detail	 to	 estimate	 how	 long	 it	 will	 take	 to
implement	 the	 feature,	 to	 estimate	 the	 cost	 and	 plan	 the
system’s	development.

At	the	beginning	of	a	project,	the	customer	generates	50
to	100	user	stories	to	use	during	a	release	planning	session.
Then	the	customer	and	the	team	negotiate	which	features
the	team	will	implement	in	the	next	release.	The	customer,
possibly	with	help	from	a	developer,	also	creates	functional
tests	from	the	user	stories.

Small	releases

Once	a	piece	of	software	 is	 functional,	 the	 team	adds	one
feature	 at	 a	 time.	 Other	 features	 are	 not	 added	 until	 that
new	feature	 is	written,	 tested,	debugged,	and	incorporated
into	 the	main	 build.	 The	 team	 creates	 a	 new	build	 of	 the

system	for	each	feature	it	adds.

Metaphors

XP	 projects	 revolve	 around	 a	 story	 about	 the	 system’s
operation	 that	 all	 stakeholders	 can	understand.	Metaphors
are	naming	conventions	used	within	the	software	to	ensure
that	 operations	 are	 obvious	 to	 everyone;	 they	 replace	 a
complex	 business	 process	 name	with	 a	 simple	 name.	 For
example,	 “train	 conductor”	 might	 describe	 how	 a	 data
acquisition	system	operates.

Collective	ownership

In	XP,	the	entire	team	owns	and	maintains	all	source	code.
At	 any	 time,	 any	 team	 member	 can	 check	 out	 code	 and
modify	it.	During	reviews,	no	one	is	singled	out	for	coding
mistakes.	 Collective	 code	 ownership	 prevents	 delays	 and
means	one	person’s	absence	doesn’t	hinder	progress.

Coding	standard

All	XP	members	must	adhere	to	common	coding	standards
concerning	 styles	 and	 formats.	 The	 team	 can	 develop	 the
standards	 or	 they	 can	 come	 from	 an	 outside	 source,	 but
everyone	 must	 follow	 them.	 Coding	 standards	 make	 the
system	 easier	 to	 read	 and	 understand,	 especially	 for
newcomers	getting	up	 to	 speed	with	 the	project,	 and	help
the	 team	 avoid	 having	 to	waste	 time	 later	 refactoring	 the
code	to	bring	it	into	compliance.

Simple	design

The	 simplest	 design	 that	 meets	 all	 the	 requirements	 is
always	 chosen.	 At	 no	 time	 does	 the	 design	 anticipate

features	 that	 have	 yet	 to	 be	 added—for	 example,	 adding
“hooks”	or	application	programming	interfaces	(APIs)	that
allow	future	code	to	interface	with	the	current	code.	Simple
design	means	just	enough	to	get	the	current	job	done.	The
simplest	code	will	pass	all	the	tests	for	the	current	iteration.
This	 runs	 counter	 to	 traditional	 software	 engineering,
where	 software	 is	 designed	 as	 generically	 as	 possible	 to
handle	any	future	enhancements.

Refactoring

Refactoring	 code	 is	 the	 process	 of	 restructuring	 or
rewriting	 the	code	without	changing	 its	external	behavior,
to	make	the	code	simpler,	more	readable,	or	better	by	some
other	improvement	metric.

WGC5:	Great	Coding	will	go	into	refactoring	in	much
greater	detail.	See	“For	More	Information”	on	page	69	for
additional	references	on	refactoring.

Testing

XP	 uses	 a	 TDD	 methodology,	 as	 discussed	 in	 “XP
Software	Development	Activities”	on	page	57.

Pair	programming

In	 pair	 programming,	 one	programmer	 (the	driver)	 enters
code,	and	the	second	programmer	(the	navigator)	 reviews
each	line	of	code	as	it’s	written.	The	two	engineers	change
roles	 throughout	 and	 pairs	 are	 often	 created	 and	 broken
apart.

It’s	often	difficult	to	convince	management	that	two
programmers	working	together	on	the	same	code	are	more
productive	than	they	are	working	separately	on	different

pieces	of	code.	XP	evangelists	argue	that	because	the
navigator	is	constantly	reviewing	the	driver’s	code,	a
separate	review	session	isn’t	needed,	among	other
benefits:

Economic	benefits	Pairs	spend	about	15	percent	more	time
on	programs	than	individuals,	but	 the	code	has	15	percent
fewer	defects.

Design	quality	Two	programmers	produce	a	better	design
because	 they	 bring	more	 experiences	 to	 the	 project.	 They
think	about	the	problem	in	different	ways,	and	they	devise
the	 solution	 differently	 based	 on	 their	 driver/navigator
roles.	 A	 better	 design	 means	 the	 project	 requires	 less
backtracking	and	redesign	throughout	its	life	cycle.

Satisfaction	A	majority	of	programmers	enjoy	working	in
pairs	 rather	 than	 alone.	 They	 feel	more	 confident	 in	 their
work	and,	as	a	result,	produce	better	code.

Learning	Pair	programming	allows	pair	members	to	learn
from	 each	 other,	 increasing	 their	 respective	 skills.	 This
cannot	happen	in	solo	programming.

Team	building	and	communication	Team	members	share
problems	and	solutions,	which	helps	spread	the	intellectual
property	(IP)	around	and	makes	it	easier	for	others	to	work
on	a	given	code	section.

Overall,	the	research	on	the	effectiveness	of	pair
programming	is	a	mixed	bag.	Most	published	papers	from
industry	sources	talk	about	how	well	pair	programming	has
worked,	but	papers	describing	its	failure	in	industry	(versus
academic)	settings	generally	don’t	get	published.	Research
by	Kim	Man	Lui	and	Andreas	Hofer	considers	three	types
of	pairings	in	pair	programming:	expert–expert,	novice–

10

11

novice,	and	expert–novice.

Expert–expert	pairing	can	produce	effective	results,	but
two	expert	programmers	are	likely	to	use	“tried	and	true”
methods	without	introducing	any	new	insight,	meaning	the
effectiveness	of	this	pairing	versus	two	solo	expert
programmers	is	questionable.

Novice–novice	pairing	is	often	more	effective	than
having	the	partners	work	on	solo	projects.	Novices	will
have	greatly	varying	backgrounds	and	experiences,	and
their	knowledge	is	more	likely	to	be	complementary	than
overlapping	(as	is	the	case	for	expert	pairs).	Two	novices
working	together	are	likely	to	work	faster	on	two	projects
serially	rather	than	they	would	working	independently	on
their	own	project	in	parallel.

Expert–novice	pairing	is	commonly	called	mentoring.
Many	XP	adherents	don’t	consider	this	to	be	pair
programming,	but	mentoring	is	an	efficient	way	to	get	a
junior	programmer	up	to	speed	with	the	code	base.	In
mentoring,	it’s	best	to	have	the	novice	act	as	the	driver	so
they	can	interact	with	and	learn	from	the	code.

GUIDELINES	FOR	SIMPLE	DESIGN

Common	phrases	associated	with	simple	design
include:

Don’t	 repeat	 yourself	 (DRY)	 Duplicate	 code	 is
complex	code.

Once	 and	 only	 once	 (OAOO)	 All	 unique
functionality	 should	 exist	 as	 some	 method/procedure

in	the	code	and	appear	only	once	in	the	code	(this	last
point	is	DRY).

You	aren’t	gonna	need	it	(YAGNI)	Avoid	speculative
coding.	 When	 adding	 a	 feature	 to	 your	 code	 base,
make	sure	it’s	specified	by	a	user	story	(requirement).
Don’t	add	code	in	anticipation	of	future	requirements.

Limit	APIs	and	 (published)	 interfaces	 If	 your	 code
interfaces	 with	 other	 systems	 by	 publishing	 an	 API,
limiting	the	number	of	interfaces	to	the	bare	minimum
will	make	 it	 easier	 to	modify	your	 code	 in	 the	 future
(without	breaking	external	code).

Simple	 design	 is	 amazingly	 difficult	 to	 achieve.
More	often	than	not,	you	accomplish	it	only	by	writing
complex	 code	 and	 then	 refactoring	 it	 repeatedly	 until
you’re	happy	with	the	result.	A	few	quotes	from	some
famous	 computer	 scientists	 will	 help	 drive	 this	 point
home:

There	are	two	ways	of	constructing	a	software	design:	one
way	is	to	make	it	so	simple	that	there	are	obviously	no

deficiencies,	and	the	other	way	is	to	make	it	so
complicated	that	there	are	no	obvious	deficiencies.

—C.	A.	R.	Hoare

The	cheapest,	fastest,	and	most	reliable	components	are
those	that	aren’t	there.

—Gordon	Bell

Deleted	code	is	debugged	code.

—Jeff	Sickle

Debugging	is	twice	as	hard	as	writing	the	code	in	the	first

place.	Therefore,	if	you	write	the	code	as	cleverly	as
possible,	you	are,	by	definition,	not	smart	enough	to	debug

it.

—Brian	Kernighan	and	P.	J.	Plauger

Any	program	that	tries	to	be	so	generalized	and
configurable	that	it	could	handle	any	kind	of	task	will
either	fall	short	of	this	goal	or	will	be	horribly	broken.

—Chris	Wenham

The	cost	of	adding	a	feature	isn’t	just	the	time	it	takes	to
code	it.	The	cost	also	includes	the	addition	of	an	obstacle
to	future	expansion.	The	trick	is	to	pick	the	features	that

don’t	fight	each	other.

—John	Carmack

Simplicity	is	hard	to	build,	easy	to	use,	and	hard	to	charge
for.	Complexity	is	easy	to	build,	hard	to	use,	and	easy	to

charge	for.

—Chris	Sacca

Though	supporting	evidence	for	pair	programming	is
anecdotal	and	essentially	unproven,	XP	depends	on	pair
programming	to	replace	formal	code	reviews,	structured
walk-throughs,	and—to	a	limited	extent—design
documentation,	so	it	can’t	be	forgone.	As	is	common	in	the
XP	methodology,	certain	heavyweight	processes	like	code
reviews	are	often	folded	into	other	activities	like	pair
programming.	Trying	to	eliminate	one	rule	or	subprocess
will	likely	open	a	gap	in	the	overall	methodology.

Not	all	XP	activities	are	done	in	pairs.	Many
nonprogramming	activities	are	done	solo—for	example,

reading	(and	writing)	documentation,	dealing	with	emails,
and	doing	research	on	the	web—and	some	are	always	done
solo,	like	writing	code	spikes	(throwaway	code	needed	to
test	a	theory	or	idea).	Ultimately,	pair	programming	is
essential	for	successful	XP	ventures.	If	a	team	cannot
handle	pair	programming	well,	it	should	use	a	different
development	methodology.

Onsite	customer

As	noted	many	times	previously,	in	XP	the	customer	is	part
of	the	development	team	and	must	be	available	at	all	times.

The	onsite	customer	rule	is	probably	the	most	difficult
to	follow.	Most	customers	aren’t	willing	or	able	to	provide
this	resource.	However,	without	the	continuous	availability
of	a	customer	representative,	the	software	could	go	off
track,	encounter	delays,	or	regress	from	previous	working
versions.	These	problems	are	all	solvable,	but	their	solution
destroys	the	benefits	of	using	XP.

Continuous	integration

In	 a	 traditional	 software	 development	 system	 like
Waterfall,	individual	components	of	the	system,	written	by
different	developers,	are	not	tested	together	until	some	big
milestone	 in	 the	 project,	 and	 the	 integrated	 software	may
fail	 spectacularly.	The	problem	 is	 that	 the	unit	 tests	 don’t
behave	 the	 same	as	 the	code	 that	must	be	 integrated	with
the	 units,	 typically	 due	 to	 communication	 problems	 or
misunderstood	requirements.

There	will	always	be	miscommunication	and
misunderstandings,	but	XP	makes	integration	problems
easier	to	solve	via	continuous	integration.	As	soon	as	a

new	feature	is	implemented,	it’s	merged	with	the	main
build	and	tested.	Some	tests	might	fail	because	a	feature
has	not	yet	been	implemented,	but	the	entire	program	is
run,	testing	linkages	with	other	units	in	the	application.
Software	builds	are	created	frequently	(several	times	per
day).	As	a	result,	you’ll	discover	integration	problems
early	when	they’re	less	costly	to	correct.

Sustainable	pace

Numerous	studies	show	that	creative	people	produce	their
best	results	when	they’re	not	overworked.	XP	dictates	a	40-
hour	workweek	for	software	engineers.	Sometimes	a	crisis
might	arise	that	requires	a	small	amount	of	overtime.	But	if
management	keeps	its	programming	team	in	constant	crisis
mode,	 the	 quality	 of	 the	 work	 suffers	 and	 the	 overtime
becomes	counterproductive.

3.3.4.5	Other	Common	Practices

In	addition	to	the	previous	12	rules,	XP	promotes	several	other
common	practices:

Open	workspace	and	collocation

The	 XP	 methodology	 suggests	 open	 work	 areas	 for	 the
entire	 team,	 who	 work	 in	 pairs	 at	 adjacent	 workstations.
Having	 everyone	 together	 promotes	 constant
communication	 and	 keeps	 the	 team	 focused. 	Questions
can	 be	 quickly	 asked	 and	 answered,	 and	 other
programmers	 can	 inject	 comments	 into	 a	 discussion	 as
appropriate.

But	open	workspaces	have	their	challenges.	Some
people	are	more	easily	distracted	than	others.	Loud	noise

12

and	conversations	can	be	very	annoying	and	break
concentration.

Open	workspaces	are	a	“best	practice”	in	XP,	not	an
absolute	rule.	If	this	setup	doesn’t	work	for	a	particular
pair,	they	can	use	an	office	or	cubicle	and	work	without
distractions.

Retrospectives/debriefings

When	a	project	is	complete,	the	team	meets	to	discuss	the
successes	 and	 failures,	 disseminating	 the	 information	 to
help	improve	the	next	project.

Self-directed	teams

A	self-directed	 team	works	on	a	project	without	 the	usual
managerial	 levels	 (project	 leads,	 senior	 and	 junior	 level
engineers,	 and	 so	 forth).	 The	 team	 makes	 decisions	 on
priorities	 by	 consensus.	 XP	 teams	 aren’t	 completely
unmanaged,	 but	 the	 idea	 here	 is	 that	 given	 a	 set	 of	 tasks
and	 appropriate	 deadlines,	 the	 team	 can	manage	 the	 task
assignments	and	project	progress	on	its	own.

3.3.4.6	Problems	with	XP

XP	 is	 not	 a	 panacea.	 There	 are	 several	 problems	 with	 it,
including:

Detailed	specifications	aren’t	created	or	preserved.	This	makes	it	difficult	to	add
new	 programmers	 later	 in	 the	 project	 or	 for	 a	 separate	 programming	 team	 to
maintain	the	project.

Pair	programming	is	required,	even	if	 it	doesn’t	work.	In	some	cases,	 it	can	be
overkill.	Having	two	programmers	work	on	a	relatively	simple	piece	of	code	can
double	your	development	costs.

To	be	practical,	XP	typically	requires	that	all	team	members	be	GMPs	in	order	to
handle	 the	 wide	 range	 of	 roles	 each	 member	 must	 support.	 This	 is	 rarely

achievable	in	real	life,	except	on	the	smallest	of	projects.

Constant	refactoring	can	introduce	as	many	problems	(new	bugs)	as	it	solves.	It
can	also	waste	time	when	programmers	refactor	code	that	doesn’t	need	it.

No	Big	Design	Up	Front	(that	is,	non-Waterfall-like	development)	often	leads	to
excessive	redesign.

A	customer	representative	is	necessary.	Often,	the	customer	will	assign	a	junior-
level	person	to	this	position	because	of	the	perceived	costs,	resulting	in	a	failure
point.	If	the	customer	representative	leaves	before	the	project	is	complete,	all	the
requirements	that	aren’t	written	down	are	lost.

XP	 is	 not	 scalable	 to	 large	 teams.	 The	 limit	 for	 a	 productive	 XP	 team	 is
approximately	a	dozen	engineers.

XP	 is	 especially	 susceptible	 to	 “feature	 creep.”	 The	 customer	 can	 inject	 new
features	into	the	system	due	to	a	lack	of	documented	requirements/features.

Unit	tests,	even	those	created	by	XP	programmers,	often	fail	to	point	out	missing
features.	Unit	 tests	 test	“the	code	 that	 is	present,”	not	“the	code	 that	should	be
present.”

XP	is	generally	considered	an	“all	or	nothing”	methodology:	if	you	don’t	follow
every	 tenet	 of	 the	 “XP	 religion,”	 the	 process	 fails.	 Most	 XP	 rules	 have
weaknesses	that	are	covered	by	the	strengths	of	other	rules.	If	you	fail	to	apply
one	 rule,	 another	 rule	will	 likely	 break	 (because	 its	weaknesses	 are	 no	 longer
covered,	and	that	broken	rule	will	break	another,	ad	nauseam).

This	 small	 introduction	 to	XP	cannot	do	 the	 topic	 justice.
For	more	 information	on	XP,	see	“For	More	Information”	on
page	69.

3.3.5	Scrum
The	 Scrum	 methodology	 is	 not	 a	 software	 development
methodology	 per	 se,	 but	 an	 Agile	 mechanism	 for	managing
the	software	development	process.	More	often	than	not,	Scrum
is	used	to	manage	some	other	model	such	as	XP.

Beyond	engineers,	a	Scrum	team	has	two	special	members:
the	product	owner	and	the	scrum	master.	The	product	owner	is
responsible	 for	 guiding	 the	 team	 toward	 building	 the	 right
product	 by,	 for	 example,	 maintaining	 requirements	 and

features.	 The	 scrum	master	 is	 a	 coach	 who	 guides	 the	 team
members	 through	 the	 Scrum-based	 development	 process,
managing	 team	 progress,	 maintaining	 lists	 of	 projects,	 and
ensuring	team	members	aren’t	held	up.

Scrum	 is	 an	 iterative	 development	 process	 like	 all	 other
Agile	methodologies,	and	each	iteration	is	a	one-	to	four-week
sprint.	A	sprint	begins	with	a	planning	meeting	where	the	team
determines	 the	work	 to	 be	 done.	A	 list	 of	 items	 known	 as	 a
backlog	is	assembled,	and	the	team	estimates	how	much	time
is	required	for	each	item	on	the	backlog.	Once	the	backlog	is
created,	the	sprint	can	begin.

Each	 day	 the	 team	 has	 a	 short	 stand-up	 meeting	 during
which	 the	members	 briefly	mention	 yesterday’s	 progress	 and
their	 plans	 for	 today.	 The	 scrum	 master	 notes	 any	 progress
problems	and	deals	with	 them	after	 the	meeting.	No	detailed
discussions	 about	 the	 project	 take	 place	 during	 the	 stand-up
meeting.

Team	members	pick	 items	 from	 the	backlog	 and	work	on
those	 items.	 As	 items	 are	 removed	 from	 the	 backlog,	 the
scrum	master	maintains	a	Scrum	burn-down	chart	 that	shows
the	 current	 sprint’s	 progress.	 When	 all	 the	 items	 have	 been
implemented	 to	 the	product	owner’s	 satisfaction,	or	 the	 team
determines	 that	 some	 items	 cannot	 be	 finished	 on	 time	 or	 at
all,	the	team	holds	an	end	meeting.

At	the	end	meeting,	the	team	demonstrates	the	features	that
were	 implemented	 and	 explains	 the	 failures	 of	 the	 items	 not
completed.	 If	 possible,	 the	 scrum	master	 collects	 unfinished
items	for	the	next	sprint.

Also	 part	 of	 the	 end	 meeting	 is	 the	 sprint	 retrospective,
where	 team	members	 discuss	 their	 progress,	 suggest	 process

improvements,	 and	determine	what	went	well	 and	what	went
wrong.

Note	that	Scrum	doesn’t	dictate	how	the	engineers	perform
their	 jobs	 or	 how	 the	 tasks	 are	 documented,	 and	 doesn’t
provide	 a	 set	 of	 rules	 or	 best	 practices	 to	 follow	 during
development.	Scrum	leaves	these	decisions	to	the	development
team.	Many	teams,	for	example,	employ	the	XP	methodology
under	 Scrum.	 Any	 methodology	 compatible	 with	 iterative
development	will	work	fine.

Like	XP,	Scrum	works	well	with	small	teams	fewer	than	a
dozen	 members	 and	 fails	 to	 scale	 to	 larger	 teams.	 Some
extensions	to	Scrum	have	been	made	to	support	larger	teams.
Specifically,	 a	 “scrum-of-scrums”	 process	 allows	 multiple
teams	 to	 apply	 a	Scrum	methodology	 to	 a	 large	 project.	The
large	project	is	broken	down	into	multiple	teams,	and	then	an
ambassador	 from	 each	 team	 is	 sent	 to	 the	 daily	 scrum-of-
scrums	meeting	to	discuss	their	progress.	This	doesn’t	solve	all
the	 communication	 problems	 of	 a	 large	 team,	 but	 it	 does
extend	the	methodology	to	work	for	slightly	larger	projects.

3.3.6	Feature-Driven	Development
Feature-driven	 development,	 one	 of	 the	 more	 interesting
methodologies	 under	 the	 Agile	 umbrella,	 is	 specifically
designed	to	scale	up	to	large	projects.

One	 common	 thread	 among	most	 Agile	methodologies	 is
that	 they	 require	 expert	 programmers	 in	 order	 to	 succeed.
FDD,	 on	 the	 other	 hand,	 allows	 for	 large	 teams	 where	 it	 is
logistically	 impossible	 to	 ensure	 you	 have	 the	 best	 person
working	on	every	activity	of	the	project,	and	is	worth	serious
consideration	 on	 projects	 involving	 more	 than	 a	 dozen

software	engineers.

FDD	uses	an	iterative	model.	Three	processes	take	place	at
the	beginning	of	 the	project	 (often	called	 iteration	zero),	 and
then	the	remaining	two	processes	are	iteratively	carried	out	for
the	duration	of	the	project.	These	processes	are	as	follows:
1.	 Develop	an	overall	model.

2.	 Build	a	features	list.

3.	 Plan	by	feature.

4.	 Design	by	feature.

5.	 Build	by	feature.

3.3.6.1	Develop	an	Overall	Model

Developing	an	overall	model	is	a	collaborative	effort	between
all	 the	 stakeholders—clients,	 architects,	 and	 developers—
where	 all	 team	 members	 work	 together	 to	 understand	 the
system.	Unlike	the	specifications	and	design	documents	in	the
serial	 methods,	 the	 overall	 model	 concentrates	 on	 breadth
rather	 than	 depth	 to	 fill	 in	 as	 many	 generalized	 features	 as
possible	to	define	the	entire	project,	and	then	fill	in	the	depth
of	 the	 model	 design’s	 future	 iterations,	 with	 the	 purpose	 of
guiding	the	current	project,	not	documenting	it	for	the	future.

The	 advantage	 of	 this	 approach	 versus	 other	 Agile
approaches	 is	 that	 most	 features	 are	 planned	 from	 the
beginning	of	the	project.	Therefore,	the	design	can’t	take	off	in
a	direction	 that	makes	 certain	 features	difficult	 or	 impossible
to	add	at	a	later	date,	and	new	features	cannot	be	added	in	an
ad	hoc	fashion.

3.3.6.2	Build	a	Features	List

During	 the	 second	 step	 of	 FDD,	 the	 team	 documents	 the
feature	 list	 devised	 in	 the	model	 development	 step,	which	 is

then	formalized	by	the	chief	programmer	for	use	during	design
and	 development.	 The	 output	 of	 this	 process	 is	 a	 formal
features	 document.	Although	 not	 as	 heavyweight	 as	 the	SRS
document	 found	 in	other	models,	 the	 feature	descriptions	 are
formal	and	unambiguous.

3.3.6.3	Plan	by	Feature

The	 plan-by-feature	 process	 involves	 creating	 an	 initial
schedule	 for	 the	 software	 development	 that	 dictates	 which
features	will	be	implemented	initially	and	which	features	will
be	implemented	on	successive	iterations.

Plan	by	feature	also	assigns	sets	of	features	to	various	chief
programmers	who,	along	with	their	teams,	are	responsible	for
implementing	 them.	 The	 chief	 programmer	 and	 associated
team	 members	 take	 ownership	 of	 these	 features	 and	 the
associated	code.	This	deviates	somewhat	from	standard	Agile
practice,	where	the	entire	 team	owns	the	code.	This	 is	one	of
the	reasons	FDD	works	better	for	large	projects	than	standard
Agile	processes:	collective	code	ownership	doesn’t	scale	well
to	large	projects.

As	a	rule,	each	feature	is	a	small	task	that	a	three-	to	five-
person	 team	 can	 develop	 in	 two	 or	 three	 weeks	 (and,	 more
often,	 just	 days).	 Each	 feature	 class	 is	 independent	 of	 the
others,	 so	no	 feature	depends	on	 the	development	of	 features
in	classes	owned	by	other	teams.

3.3.6.4	Design	by	Feature

Once	 the	 features	 for	 a	given	 iteration	are	 selected,	 the	chief
programmer	who	owns	each	feature	set	forms	a	team	to	design
the	 feature.	 Feature	 teams	 are	 not	 static;	 they’re	 formed	 and
disbanded	 for	 each	 iteration	 of	 the	 design-by-feature	 and

build-by-feature	processes.

The	feature	team	analyzes	the	requirements	and	designs	the
feature(s)	 for	 the	 current	 iteration.	 The	 teams	 decide	 on	 that
feature’s	implementation	and	its	interaction	with	the	rest	of	the
system.	 If	 the	 feature	 is	 far-reaching,	 the	 chief	 programmer
might	 involve	 other	 feature	 class	 owners	 to	 avoid	 conflicts
with	other	feature	sets.

During	 the	 design	 phase,	 the	 feature	 teams	 decide	 on	 the
algorithms	 and	 processes	 to	 use,	 and	 develop	 and	 document
tests	 for	 the	 features.	 If	 necessary,	 the	 chief	 programmer
(along	with	the	original	set	of	stakeholders)	updates	the	overall
model	to	reflect	the	design.

3.3.6.5	Build	by	Feature

The	 build-by-feature	 step	 involves	 coding	 and	 testing	 the
feature.	The	developers	unit-test	 their	code	and	feature	 teams
provide	 formal	 system	 testing	 of	 the	 features.	 FDD	 doesn’t
mandate	TDD,	but	it	does	insist	 that	all	features	added	to	the
system	be	tested	and	reviewed.

FDD	 requires	 code	 reviews	 (a	 best	 practice,	 but	 not
required	by	most	Agile	processes).	As	Steve	McConnell	points
out	in	Code	Complete	 (Microsoft	Press,	2004),	well-executed
code	inspections	uncover	many	defects	that	 testing	alone	will
never	find.

3.4	MODELS	AND
METHODOLOGIES	FOR	THE
GREAT	PROGRAMMER
A	 great	 programmer	 should	 be	 capable	 of	 adapting	 to	 any

software	 development	model	 or	methodology	 in	 use	 by	 their
team.	 That	 said,	 some	 models	 are	 more	 appropriate	 than
others.	If	you’re	given	the	choice	of	model,	this	chapter	should
guide	you	in	choosing	an	appropriate	one.

No	methodology	is	scalable	up	or	down,	so	you’ll	need	to
choose	a	suitable	model	and	methodology	based	on	the	project
size.	 For	 tiny	 projects,	 hacking	 or	 a	 documentation-less
version	of	the	Waterfall	model	is	probably	a	good	choice.	For
medium-sized	projects,	one	of	the	iterative	(Agile)	models	and
methodologies	 is	 best.	 For	 large	 projects,	 the	 sequential
models	or	FDD	are	 the	most	successful	 (although	often	quite
expensive).

More	 often	 than	 not,	 you	 won’t	 get	 to	 choose	 the
developmental	models	for	projects	you	work	on	unless	they’re
your	personal	projects.	The	key	is	to	become	familiar	with	the
various	models	so	you’re	comfortable	with	any	model	you’re
asked	 to	 use.	The	 following	 section	provides	 some	 resources
for	 learning	 more	 about	 the	 different	 software	 development
models	and	methodologies	 this	chapter	describes.	As	always,
an	 internet	 search	 will	 provide	 considerable	 information	 on
software	development	models	and	methodologies.

3.5	FOR	MORE	INFORMATION
Astels,	 David	 R.	 Test-Driven	 Development:	 A	 Practical
Guide.	Upper	Saddle	River,	NJ:	Pearson	Education,	2003.

Beck,	 Kent.	 Test-Driven	 Development	 by	 Example.	 Boston:
Addison-Wesley	Professional,	2002.

Beck,	 Kent,	 with	 Cynthia	 Andres.	 Extreme	 Programming

Explained:	 Embrace	 Change.	 2nd	 ed.	 Boston:	 Addison-
Wesley,	2004.

Boehm,	 Barry.	 Spiral	 Development:	 Experience,	 Principles,
and	 Refinements.	 (Special	 Report	 CMU/SEI-2000-SR-
008.)	 Edited	 by	 Wilfred	 J.	 Hansen.	 Pittsburgh:	 Carnegie
Mellon	Software	Engineering	Institute,	2000.

Fowler,	Martin.	Refactoring:	Improving	the	Design	of	Existing
Code.	Reading,	MA:	Addison-Wesley,	1999.

Kerievsky,	Joshua.	Refactoring	to	Patterns.	Boston:	Addison-
Wesley,	2004.

Martin,	James.	Rapid	Application	Development.	Indianapolis:
Macmillan,	1991.

Martin,	 Robert	 C.	 Agile	 Software	 Development,	 Principles,
Patterns,	and	Practices.	Upper	Saddle	River,	NJ:	Pearson
Education,	2003.

McConnell,	 Steve.	Code	Complete.	 2nd	 ed.	 Redmond,	WA:
Microsoft	Press,	2004.

———.	 Rapid	 Development:	 Taming	 Wild	 Software
Schedules.	Redmond,	WA:	Microsoft	Press,	1996.

Mohammed,	 Nabil,	 Ali	 Munassar,	 and	 A.	 Govardhan.	 “A
Comparison	 Between	 Five	 Models	 of	 Software
Engineering.”	 IJCSI	 International	 Journal	 of	 Computer
Science	Issues	7,	no.	5	(2010).

Pressman,	 Robert	 S.	 Software	 Engineering,	 A	 Practitioner’s
Approach.	New	York:	McGraw-Hill,	2010.

Schwaber,	 Ken.	 Agile	 Project	 Management	 with	 Scrum

(Developer	 Best	 Practices).	 Redmond,	 WA:	 Microsoft
Press,	2004.

Shore,	 James,	 and	 Shane	 Warden.	 The	 Art	 of	 Agile
Development.	Sebastopol,	CA:	O’Reilly,	2007.

Stephens,	Matt,	and	Doug	Rosenberg.	Extreme	Programming
Refactored:	 The	 Case	 Against	 XP.	 New	 York:	 Apress,
2003.

Wake,	William	 C.	Refactoring	Workbook.	 Boston:	 Addison-
Wesley	Professional,	2004.

Williams,	 Laurie,	 and	 Robert	 Kessler.	 Pair	 Programming
Illuminated.	Reading,	MA:	Addison-Wesley,	2003.

PART	II
UML

4
AN	INTRODUCTION	TO	UML	AND

USE	CASES

The	Unified	 Modeling	 Language	 (UML)	 is	 a	 graphic-based
developmental	 language	 used	 to	 describe	 requirements	 and
standards	 for	 software	 design.	 The	 latest	 versions	 of	 the
Institute	of	Electrical	 and	Electronics	Engineers	 (IEEE)	SDD
standard	 are	 built	 around	 UML	 concepts,	 so	 we’ll	 start	 by
covering	the	background	and	features	of	UML	before	moving
on	 to	 how	 the	 language	 implements	 use	 cases	 to	 help	 us
represent	software	system	designs	clearly	and	consistently.

4.1	THE	UML	STANDARD
UML	 started	 out	 in	 the	 mid-1990s	 as	 a	 collection	 of	 three
independent	 modeling	 languages:	 the	 Booch	 method	 (Grady
Booch),	 the	object	modeling	 technique	 (Jim	Rumbaugh),	and
the	 object-oriented	 software	 engineering	 system	 (Ivar
Jacobson).	 After	 this	 initial	 amalgamation,	 the	 Object
Management	 Group	 (OMG)	 developed	 the	 first	 UML

standard,	with	input	from	a	multitude	of	researchers,	in	1997.
UML	 remains	 under	 OMG’s	 management	 today.	 Because
UML	was	essentially	designed	by	unification,	it	contains	many
different	ways	 to	specify	 the	same	 thing,	 resulting	 in	a	 lot	of
systemwide	redundancy	and	inconsistency.

So	 why	 use	 UML?	Well,	 despite	 its	 shortcomings,	 it’s	 a
rather	complete	modeling	language	for	object-oriented	design.
It’s	also	become	the	de	facto	IEEE	documentation	standard	to
use.	 So	 even	 if	 you	 don’t	 intend	 to	 use	 UML	 for	 your	 own
projects,	 you’ll	 need	 to	 be	 able	 to	 read	 it	when	 dealing	with
documentation	from	other	projects.	Because	UML	has	become
popular,	there’s	a	good	chance	your	project’s	stakeholders	are
already	 familiar	 with	 it.	 It’s	 sort	 of	 like	 the	 C	 programming
language	(or	BASIC,	if	you	don’t	know	C):	it’s	ugly	as	far	as
language	design	goes,	but	everybody	knows	it.

UML	is	a	very	complex	language	that	requires	considerable
study	 to	 master,	 an	 educational	 process	 that	 is	 beyond	 the
scope	 of	 this	 book.	 Fortunately,	 dozens	 of	 good	 books	 are
available	 on	 the	 subject,	 some	 almost	 1,000	 pages	 long	 (for
example,	 The	 UML	 Bible	 by	 Tom	 Pender;	 see	 “For	 More
Information”	on	page	88).	This	chapter	and	 those	 that	 follow
are	not	intended	to	make	you	an	expert	on	UML,	but	rather	to
quickly	cover	 the	UML	features	and	concepts	 that	 the	rest	of
the	book	uses.	That	way,	you	can	refer	back	to	these	chapters
when	you’re	 trying	 to	make	 sense	of	UML	diagrams	 later	 in
the	book.

With	 that	 brief	 introduction	 behind	 us,	 next	we’ll	 discuss
how	 UML	 enables	 us	 to	 visualize	 a	 system’s	 design	 in	 a
standardized	way.

4.2	THE	UML	USE	CASE	MODEL
UML	specifies	use	cases	 to	describe	a	system’s	functionality.
A	use	 case	 roughly	 corresponds	 to	 a	 requirement.	Designers
create	a	use	case	diagram	to	specify	what	a	system	does	from
an	 external	 observer’s	 point	 of	 view,	 meaning	 they	 specify
only	what	a	system	does,	not	how	it	does	it.	They’ll	then	create
a	use	case	narrative	to	fill	in	the	details	of	the	diagram.

4.2.1	Use	Case	Diagram	Elements
Use	case	diagrams	typically	contain	three	elements:	an	actor,	a
communication	link	(or	association),	and	the	actual	use	case:

Actors,	 typically	drawn	as	stick	figures,	represent	users	or	external	devices	and
systems	that	use	the	system	under	design.

Communication	links	are	drawn	as	a	 line	between	an	actor	and	a	use	case,	and
indicate	some	form	of	communication	between	the	two.

Use	cases	are	drawn	as	ovals	with	an	appropriate	description	and	represent	 the
activities	the	actors	perform	on	the	system.

Figure	4-1	shows	an	example	of	a	use	case	diagram.

Figure	4-1:	A	sample	use	case	diagram

Every	 use	 case	 should	 have	 a	 high-level	 name	 that
concisely	and	uniquely	describes	the	operation.	For	example,	a
nuclear	 reactor	 operator	 might	 want	 to	 select	 a	 power	 input
from	 a	 nuclear	 power	 (NP)	 channel:	 “select	 %Pwr”	 is	 a

general	 description,	whereas	 “press	 the	percent	power	button
on	 the	 NP	 device”	 is	 probably	 too	 specific.	 How	 the	 user
selects	percent	power	is	more	of	a	design	issue,	not	a	system
analysis	issue	(analysis	is	what	we’re	doing	at	this	stage).

The	use	case	name	should	be	unique,	because	you’ll	likely
use	 it	 to	 associate	 the	 diagram	 with	 a	 use	 case	 narrative
elsewhere	 in	 your	UML	documentation.	One	way	 to	 achieve
uniqueness	 is	by	attaching	a	 tag	 (see	“Tag	Formats”	on	page
172).	 However,	 the	 whole	 point	 of	 a	 use	 case	 diagram	 is	 to
make	the	action	obvious	to	the	readers	and	stakeholders	(that
is,	the	external	observers),	and	tags	can	obfuscate	the	meaning.
One	 possible	 solution	 is	 to	 include	 a	 descriptive	 name	 (or
phrase)	and	a	tag	inside	the	use	case	oval,	as	shown	in	Figure
4-2.

Figure	4-2:	A	use	case	tag	combined	with	a	user-friendly	name

The	 tag	uniquely	 identifies	 the	use	case	narrative,	and	 the
user-friendly	 name	 makes	 the	 diagram	 easy	 to	 read	 and
understand.

A	use	case	diagram	can	contain	multiple	actors	as	well	as
multiple	use	cases,	as	shown	in	Figure	4-3,	which	provides	use
cases	 for	 generating	 Individual	Megawatt	 Hour	 (MWH)	 and
other	reports.

Figure	4-3:	Multiple	actors	and	use	cases	in	a	use	case	diagram

Stick	figures	are	useful	for	making	it	instantly	obvious	that
you’re	 specifying	 an	 actor,	 but	 they	 have	 some	 drawbacks.
First,	 a	 stick	 figure	 is	 rather	 large	 and	 can	 consume
considerable	 screen	 (or	 page)	 space.	 Also,	 in	 a	 large	 and
cluttered	 UML	 diagram,	 it	 can	 become	 difficult	 to	 associate
names	and	other	information	with	a	stick	figure	actor.	For	this
reason,	UML	designers	often	use	a	stereotype	to	represent	an
actor.	A	 stereotype	 is	 a	 special	UML	name	 (such	 as	 “actor”)
surrounded	 by	 guillemets	 («	 and	 »)	 and	 enclosed	 along	with
the	element’s	name	inside	a	rectangle,	as	shown	in	Figure	4-4.
(You	can	use	a	pair	of	angle	brackets—less-than	and	greater-
than	symbols—if	you	don’t	have	access	to	guillemets	in	your
editing	system.)

Figure	4-4:	An	actor	stereotype

Stereotypes	 can	 apply	 to	 any	 UML	 element,	 not	 just	 an
actor.	 The	 stereotype	 consumes	 less	 space	 and	 creates	 less
clutter,	though	its	disadvantage	is	that	the	type	of	element	isn’t
as	instantly	clear	as	it	would	be	using	the	actual	icon.1

4.2.2	Use	Case	Packages
You	 can	 assign	 use	 case	 names	 to	 different	 packages	 by
separating	 the	package	name	from	the	use	case	name	using	a
pair	 of	 colons.	 For	 example,	 if	 the	 aforementioned	 reactor
operator	 needs	 to	 select	 percent	 power	 from	 two	 different
nuclear	 power	 systems	 (NP	 and	NPP),	 we	 could	 use	NP	 and
NPP	packages	to	separate	these	operations	(see	Figure	4-5).

Figure	4-5:	Package	names	in	a	use	case

4.2.3	Use	Case	Inclusion
Sometimes,	use	cases	will	replicate	information.	For	example,
the	 use	 case	 in	 Figure	 4-5	 might	 correspond	 to	 a	 reactor
operator	selecting	which	nuclear	power	channel	to	use	(the	NP
or	NPP	instrument)	for	a	given	operation.	If	the	operator	must
verify	 that	 the	channel	 is	online	before	making	 the	 selection,
presumably	 either	 of	 the	 use	 cases	 for	 NP::Select%Pwr	 and
NPP::Select%Pwr	would	contain	the	steps	needed	to	confirm	this.
When	 writing	 the	 narrative	 for	 these	 two	 use	 cases,	 you’ll
probably	 discover	 that	 you’re	 duplicating	 considerable
information.

To	avoid	this	replication,	UML	defines	use	case	inclusion,
which	 allows	 one	 use	 case	 to	 completely	 include	 the
functionality	of	another.

You	 specify	 use	 case	 inclusion	 by	 drawing	 two	 use	 cases
with	 oval	 icons,	 and	 placing	 a	 dashed	 open	 arrow	 from	 the
including	 use	 case	 to	 the	 included	 use	 case.	 Also	 attach	 the
label	«include»	to	the	dashed	arrow,	as	shown	in	Figure	4-6.

Figure	4-6:	Use	case	inclusion

We	 could	 redraw	 Figure	 4-5	 using	 inclusion	 as	 shown	 in
Figure	4-7.

Figure	4-7:	Use	case	inclusion	example

An	 inclusion	 is	 the	 use	 case	 diagram	 equivalent	 of	 a
function	 call.	 Inclusion	 allows	 you	 to	 reuse	 a	 use	 case	 from
other	use	cases,	thereby	reducing	redundancy.

4.2.4	Use	Case	Generalization
Sometimes,	 two	 or	more	 use	 cases	 share	 an	 underlying	 base
design	 and	 build	 upon	 it	 to	 produce	 different	 use	 cases.
Revisiting	 the	 example	 from	 Figure	 4-3,	 the	 Sr.	 Reactor
Operator	 actor	might	 produce	 additional	 reactor	 reports	 (that

is,	“All	reports”)	beyond	those	that	the	Reactor	Operator	actor
produces	 (“Individual	 MWH	 report”).	 However,	 both	 use
cases	 are	 still	 an	 example	 of	 the	 more	 general	 “Generate
reports”	 use	 case	 and,	 therefore,	 they	 share	 some	 common
(inherited)	operations.	This	relationship	is	known	as	use	case
generalization.

We	 can	 illustrate	 use	 case	 generalization	 in	 a	 use	 case
diagram	by	drawing	a	hollow	arrow	from	a	specific	use	case	to
the	more	general	use	case,	as	shown	in	Figure	4-8.

Figure	4-8:	Generalization	of	use	cases

This	figure	 tells	us	 that	 the	“Individual	MWH	report”	and
“All	 reports”	 use	 cases	 share	 some	 common	 activities
inherited	from	the	“Generate	reports”	use	case.

We	can	generalize	actors	in	the	same	fashion	by	drawing	an
open	 arrow	 from	 multiple	 (specific)	 actors	 to	 a	 generalized
actor,	as	shown	in	Figure	4-9.

Figure	4-9:	Generalization	of	actors

Generalization	 (particularly,	 use	 case	 generalization)	 is
equivalent	 to	 inheritance	 in	 object-oriented	 systems.	 The
hollow	 arrow	points	 at	 the	 base	 use	 case,	 and	 the	 tail	 of	 the
arrow	(that	is,	the	end	without	the	arrowhead)	connects	to	the
inheriting,	 or	 derived,	 use	 case.	 In	 Figure	 4-9,	 “Generate
reports”	 is	 the	 base	 use	 case,	 and	 “Individual	MWH	 report”
and	“All	reports”	are	the	derived	use	cases.

A	derived	use	case	inherits	all	the	features	and	activities	of
the	base	use	case.	That	is,	all	the	items	and	functionality	in	the
base	use	case	are	present	 in	 the	derived	use	case,	 along	with

certain	items	unique	to	the	derived	use	case.

In	Figure	4-9,	the	Reactor	Operator	actor	can	select	only	an
“Individual	MWH	report.”	Therefore,	any	report	generated	by
the	Reactor	Operator	actor	always	follows	the	steps	associated
with	that	individual	report.	The	Sr.	Reactor	Operator	actor,	on
the	other	hand,	can	generate	any	report	derived	from	the	“All
reports”	or	“Individual	MWH	report”	use	case.

Although	 generalization	 might	 seem	 very	 similar	 to
inclusion,	 there	 are	 subtle	 differences.	 With	 inclusion	 a	 use
case	is	completely	included,	but	with	inheritance	the	base	use
case	is	augmented	by	the	features	in	the	derived	use	case.

4.2.5	Use	Case	Extension
The	 UML	 use	 case	 extension	 allows	 you	 to	 specify	 the
optional	(conditional)	inclusion	of	some	use	case.	You	draw	an
extension	 similar	 to	 an	 inclusion	 except	 you	 use	 the	 word
«extend»	rather	than	«include»	and	the	arrow	is	a	dashed	line
with	 a	 solid	 arrowhead.	 Another	 difference	 is	 that	 the
arrowhead	points	at	the	extended	use	case,	and	the	tail	points
at	the	extending	use	case,	as	shown	in	Figure	4-10.

Figure	4-10:	Use	case	extension

Use	case	extensions	are	useful	when	you	want	to	select	one
of	 several	 different	 use	 cases	 based	 on	 some	 internal
system/software	 state.	 A	 classic	 example	 would	 be	 error	 or
exception	 handling	 conditions.	 Suppose	 you	 have	 a	 small
command	 line	 processor	 that	 recognizes	 certain	 commands
beginning	 with	 a	 verb	 (such	 as	 read_digital).	 The	 command
syntax	might	take	the	form:

read_digital	port#

where	port#	is	a	numeric	string	indicating	the	port	to	read	from.
Two	things	could	go	wrong	when	 the	software	processes	 this
command:	 port#	 could	 have	 a	 syntax	 error	 (that	 is,	 it	 doesn’t
represent	a	valid	numeric	value)	or	the	port#	value	could	be	out
of	 range.	 Thus,	 there	 are	 three	 possible	 outcomes	 from
processing	 this	 command:	 the	 command	 is	 correct	 and	 reads
the	 specified	 port;	 a	 syntax	 error	 occurs	 and	 the	 system
presents	 an	 appropriate	message	 to	 the	user;	 or	 a	 range	error
occurs	and	 the	system	displays	an	appropriate	error	message.
Use	case	extensions	easily	handle	these	situations,	as	shown	in
Figure	4-11.

Figure	4-11:	Use	case	extension	example

Note	that	the	normal	case	(no	error)	is	not	an	extension	use
case.	The	read_port	command	use	case	handles	the	nonerror	case
directly.

4.2.6	Use	Case	Narratives
By	 themselves,	 the	 use	 case	 diagrams	 you’ve	 seen	 thus	 far
don’t	explain	any	details.	An	actual	use	case	(as	opposed	to	a
use	case	diagram)	is	text,	not	graphics.	The	diagrams	provide
an	“executive	overview”	of	the	use	case	and	make	it	easy	for
external	 observers	 to	 differentiate	 activities,	 but	 the	use	case
narrative	 is	 where	 you	 truly	 describe	 a	 use	 case.	 Although
there	 is	 no	 defined	 set	 of	 items	 that	 appear	 in	 a	 use	 case
narrative,	 it	 typically	 contains	 the	 information	 listed	 in	Table
4-1.

Table	4-1:	Use	Case	Narrative	Items

Use	case	narrative	itemDescription

Associated	
requirements

A	requirements	tag	or	other	indication	of	the	
requirement(s)	associated	with	the	use	case.	This	
provides	traceability	to	the	SyRS	and	SRS	
documentation.

Actors A	list	of	the	actors	that	interact	with	the	use	case.

Goal/purpose/brief	
description

A	description	of	the	goal	(and	its	context	within	the	
system)	to	clarify	the	purpose	of	the	use	case.

Assumptions	and	
preconditions

A	description	of	what	must	be	true	prior	to	the	
execution	of	the	use	case.

Triggers External	events	that	start	the	execution	of	the	use	case.

Interaction/Flow	of	
Events

The	step-by-step	description	of	how	an	external	actor	
interacts	with	the	system	during	the	execution	of	the	

use	case.

Optional	
interactions/Alternati
ve	Flow	of	Events

Alternative	interactions	from	those	the	interaction	
steps	describe.

Termination Conditions	that	result	in	the	termination	of	a	use	case.

End	conditions Conditions	describing	what	happens	when	the	use	case	
successfully	terminates	or	when	it	fails.

Post	conditions Conditions	that	apply	upon	completion	of	the	
execution	of	a	use	case	(success	or	failure).

Additional	 items	 (search	 online	 for	 descriptions)	 might
include:

Minimal	guarantees

Successful	guarantees

Dialog	(effectively	another	name	for	interactions)

Secondary	actors

Extensions	(another	name	for	optional/conditional	interactions)

Exceptions	(that	is,	error-handling	conditions)

Related	use	cases	(that	is,	other	relevant	use	cases)

Stakeholders	(people	with	an	interest	in	the	use	case)

Priority	(among	use	cases	for	implementation)

4.2.6.1	Use	Case	Narrative	Formality

Use	case	narratives	can	range	in	formality	from	casual	to	fully
dressed.

A	 casual	 use	 case	 narrative	 is	 a	 natural	 language	 (for
example,	 English)	 description	 of	 the	 use	 case	 without	 much
structure.	 Casual	 narratives	 are	 ideal	 for	 small	 projects,	 and
often	vary	from	use	case	to	use	case.

A	fully	dressed	use	case	narrative	is	a	formal	description	of

2

the	use	case,	typically	created	via	a	form	with	all	the	narrative
items	 defined	 for	 your	 project.	 A	 fully	 dressed	 use	 case
narrative	will	likely	consist	of	three	forms:

A	list	of	 the	use	case	items,	exclusive	of	the	Dialog/Flow	of	Events/Interaction
and	Alternative	Flow	of	Events/Optional	Interactions	items

The	main	Flow	of	Events

The	Alternative	Flow	of	Events	(extensions)

Tables	4-2,	4-3,	and	4-4	show	an	example	of	a	fully	dressed
use	case	narrative.

Table	4-2:	Select	Nuclear	Power	Source,	RCTR_USE_022

Requirement(s) RCTR_SyRS_022,	RCTR_SRS_022_000

Actors Reactor	Operator,	Sr.	Reactor	Operator

Goal To	select	the	power	measurement	channel	used	during	
automatic	operation

Assumptions	and	
preconditions

Operator	has	logged	in	to	the	reactor	console

Trigger Operator	presses	appropriate	button,	selecting	
automatic	mode	power	source

Termination Operator-specified	power	source	is	selected

End	conditions System	uses	the	selected	power	source	for	current	
actual	power	during	automatic	operation,	if	successful;	
system	reverts	to	original	auto-mode	power	source	if	
unsuccessful

Post	condition System	has	an	operational	automatic-mode	power	
source	available

Table	4-3:	Flow	of	Events,	RCTR_USE_022

Step Action

1 Operator	presses	NP	selection	button

2 System	verifies	that	the	NP	is	online

3 System	switches	auto-mode	power	selection	to	the	NP	channel

Table	4-4:	Alternative	Flow	of	Events	(Extensions),	RCTR_USE_022

Step Action

2.1 The	NP	channel	is	not	online

2.2 The	system	doesn’t	switch	to	using	the	NP	power	channel	and	
continues	to	use	the	previously	selected	power	channel	for	
automatic	mode

4.2.6.2	Alternative	Flow	of	Events

Whenever	 a	 step	 in	 the	 Flow	 of	 Events	 table	 contains	 a
conditional	 or	 optional	 item	 (an	 extension	 in	 UML
terminology),	 you’ll	 have	 some	 corresponding	 entries	 in	 the
Alternative	 Flow	 of	 Events	 table	 that	 describe	 the	 behavior
when	 the	 conditional	 item	 is	 false.	 Note	 that	 you	 don’t	 use	 a
separate	Alternative	Flow	of	Events	 table	 for	each	condition;
you	simply	use	substeps	(in	this	example,	2.1	and	2.2	in	Table
4-4)	 associated	 with	 the	 step	 number(s)	 from	 the	 Flow	 of
Events	table	(step	2	in	Table	4-3).

This	 is	 just	 one	 possible	 example	 of	 a	 fully	 dressed	 use
case	 narrative.	Many	 other	 forms	 are	 possible.	 For	 example,
you	 could	 create	 a	 fourth	 table	 to	 list	 all	 the	 possible	 end
conditions,	as	shown	in	Table	4-5.

Table	4-5:	End	Conditions,	RCTR_USE_022

Condition Result

Success The	NP	channel	is	selected	as	the	automatic-mode	power	
channel

Failure The	previously	selected	channel	continues	to	control	automatic	
mode

Adding	an	end	conditions	table	is	especially	compelling	if
there	are	more	than	two	end	conditions.

As	another	example,	consider	the	read_port	use	case	in	Figure
4-11.	The	narrative	for	 it	could	be	similar	 to	Tables	4-6,	 4-7,
and	4-8.

Table	4-6:	read_port	Command

Requirement(s) DAQ_SyRS_102,	DAQ_SRS_102_000

Actors PC	host	computer	system

Goal To	read	a	digital	data	port	on	the	data	acquisition	
system

Assumptions	and	
preconditions

Digital	data	acquisition	ports	have	been	initialized	as	
input	ports

Trigger Receipt	of	the	read_port	command

Termination Data	port	is	read	and	the	value	returned	to	requesting	
system

End	conditions System	returns	port	value	or	appropriate	error	message	
if	the	command	was	malformed

Post	condition The	system	is	ready	to	accept	another	command

Table	4-7:	Flow	of	Events,	read_port	Command

Step Action

1 The	host	PC	sends	a	command	line	beginning	with	read_port

2 System	verifies	that	there	is	a	second	parameter

3 System	verifies	that	the	second	parameter	is	a	valid	numeric	
string

4 System	verifies	that	the	second	parameter	is	a	numeric	value	in	
the	range	0–15

5 System	reads	the	digital	data	from	the	specified	port

6 System	returns	the	port	value	to	the	host	PC

Table	4-8:	Alternative	Flow	of	Events	(Extensions),	read_port	Command

Step Action

2.1 Second	parameter	doesn’t	exist

2.2 System	returns	a	“syntax	error”	message	to	the	host	PC

3.1 Second	parameter	isn’t	a	valid	numeric	string

3.2 System	returns	a	“syntax	error”	message	to	the	host	PC

4.1 Second	parameter	is	outside	the	range	0–15

4.2 The	system	returns	a	“range	error”	message	to	the	host	PC

Table	 4-8	 actually	 contains	 several	 independent	 flows	 of
events.	 The	 major	 number	 to	 the	 left	 of	 the	 decimal	 point

specifies	 the	 associated	 step	 in	 the	Flow	of	Events	 table;	 the
minor	number	to	the	right	of	the	decimal	point	is	the	particular
step	within	 the	Alternative	 Flow	 of	Events.	 The	 flow	 occurs
only	within	the	steps	associated	with	a	single	Flow	of	Events
number.	 That	 is,	 the	 flow	 from	 2.1	 to	 2.2	 ends	 with	 2.2;	 it
doesn’t	continue	into	3.1	(in	this	example).

Generally,	once	a	system	selects	an	alternative	 flow	(such
as	 the	“range	error”	 flow,	 steps	4.1	and	4.2	 in	 this	example),
the	use	case	ends	with	the	completion	of	that	alternative	flow
(that	is,	at	step	4.2).	Control	doesn’t	return	to	the	main	Flow	of
Events.	Execution	 to	 the	end	of	 the	main	Flow	of	Events	 list
happens	only	if	no	alternative	flows	occur.

The	 “correct”	 way	 to	 use	 the	 Flow	 of	 Events	 and
Alternative	Flow	of	Events	is	to	write	a	straight-line	sequence
representing	 the	 path	 through	 the	 use	 case	 that	 produces	 the
intended	 result.	 If	 multiple	 viable	 paths	 exist,	 you	 would
typically	create	multiple	use	cases,	one	for	each	correct	path.
The	 alternative	 flows	 handle	 any	 deviations	 (usually	 error
paths)	 from	 the	 correct	 path.	 Of	 course,	 one	 risk	 of	 this
approach	is	that	you	might	wind	up	with	an	excessive	number
of	use	case	diagrams.

For	 a	 Flow	 of	 Events,	 diagrams	 are	 more	 expensive	 to
create	 and	maintain	 than	 a	 textual	 description;	 even	with	 the
proper	 UML	 diagramming	 tools,	 creating	 figures	 generally
takes	 more	 time	 and	 effort	 than	 just	 writing	 textual
descriptions.

4.2.6.3	Conditional	Flow	of	Events

For	 use	 cases	 that	 have	 multiple	 correct	 paths,	 you	 could
encode	those	paths	in	the	main	Flow	of	Events	using	branches

and	 conditionals,	 and	 leave	 the	 alternative	 paths	 for
exceptional	 conditions.	 Consider	 a	 command	 for	 a	 data
acquisition	system	that	supports	two	different	syntaxes:

ppdio	boards
ppdio	boards	boardCount

The	first	variant	returns	the	number	of	PPDIO	boards	in	the
system,	 and	 the	 second	 variant	 sets	 the	 number	 of	 PPDIO
boards.	The	technically	correct	solution	to	document	these	two
commands	 is	 to	 create	 two	 separate	 use	 cases,	 each	with	 its
own	Flow	of	Events.	However,	 if	 the	data	acquisition	system
has	 dozens	 of	 different	 commands,	 creating	 individual	 use
cases	 could	 clutter	 your	 documentation.	 One	 solution	 is	 to
combine	 these	 use	 cases	 into	 a	 single	 use	 case	 by
incorporating	conditional	operations	(that	is,	if..else..endif)	into	a
single	Flow	of	Events,	as	in	the	following	example.

Flow	of	Events

1.	 Verify	command	begins	with	ppdio.

2.	 Verify	second	word	on	command	line	is	boards.

3.	 If	no	additional	parameters	appear	on	command	line:

1.	 Return	number	of	PPDIO	boards	in	system	as	response.

4.	 Verify	there	is	a	single	numeric	parameter	on	the	line.

5.	 Verify	that	the	numeric	parameter	is	in	the	range	0..6.

6.	 Set	 the	 number	 of	 PPDIO	 boards	 to	 the	 value	 specified	 by	 the	 numeric
parameter.

Alternative	Flows

1.1	 If	 command	 doesn’t	 begin	 with	 ppdio,	 return	 not	 PPDIO
response.

2.1	If	command	doesn’t	begin	with	ppdio	boards,	return	not	PPDIO

3

BOARDS	response.

5.1	Return	syntax	error	as	the	response.

6.1	Return	range	error	as	the	response.

Having	conditionals	 and	multiple	 exit	 points	 from	a	Flow
of	 Events	 isn’t	 “clean”	 UML;	 however,	 it	 can	 reduce	 the
overall	size	of	the	documentation	(saving	time	and	expenses),
so	this	is	a	common	kludge	in	use	cases.

You	 could	 even	 add	while,	 for,	 switch,	 and	 other	 high-level-
language–style	operations	to	your	Flow	of	Events.	But	keep	in
mind	 that	 use	 cases	 (and	 their	 descriptions)	 should	 be	 very
general.	 Once	 you	 start	 embedding	 programming	 language
concepts	 into	your	use	cases,	you	invariably	start	 introducing
implementation	details,	which	don’t	belong	in	use	cases;	save
those	for	later	UML	diagram	types	(such	as	activity	diagrams).

These	 examples	 might	 seem	 to	 suggest	 that	 alternative
flows	are	solely	 for	error	handling,	but	you	can	use	 them	for
other	purposes	as	well;	any	time	a	conditional	branch	is	out	of
a	main	flow,	you	can	use	extensions	to	handle	that.	However,
one	 problem	 with	 using	 alternative	 flows	 for	 generic
conditionals	 is	 that	 concepts	 that	 are	 inherently	 related	wind
up	 separated	 from	one	another	 in	your	use	case	descriptions,
which	can	make	following	the	logic	in	those	descriptions	more
difficult.

4.2.6.4	Generalization	vs.	Extension

Generalization	 is	 often	 a	 better	 tool	 than	 extension.	 For
example,	suppose	you	have	a	generic	port_command	use	case	and
you	want	 to	 attach	 read_port	 and	write_port	 to	 it.	 In	 theory,	 you
could	create	an	extension	to	handle	this,	as	shown	in	Figure	4-

12.

Figure	4-12:	Poor	example	of	use	case	extension

In	 practice,	 this	 particular	 situation	 is	 probably	 better
handled	with	generalization,	because	 read_port	 and	write_port	are
special	 cases	 of	 a	 port_command	 (rather	 than	 being	 alternative
branches	 from	 port_command).	 Figure	 4-13	 shows	 the
generalization	approach.

Figure	4-13:	Using	generalization	rather	than	extension

With	 generalization,	 the	 derived	 use	 case	 follows	 all	 the
steps	 in	 the	base	use	case.	When	you	use	extensions,	 control
transfers	 from	 the	 main	 Flow	 of	 Events	 to	 the	 Alternative
Flow	 of	 Events,	 and	 any	 remaining	 steps	 in	 the	 main	 flow
don’t	happen.

4.2.7	Use	Case	Scenarios
A	scenario	 is	 a	 single	path	 through	a	use	case.	For	example,
the	 read_port	 use	 case	 has	 four	 scenarios:	 the	 success	 scenario
when	the	command	reads	a	port	and	returns	the	port	data;	two
syntax	 error	 scenarios	 (2.1/2.2	 and	 3.1/3.2	 in	 the	Alternative
Flow	of	Events);	and	one	range	error	scenario	(4.1/4.2	 in	 the
Alternative	Flow	of	Events).	You	generate	 a	 full	 scenario	by
choosing	 the	 steps	 from	 the	 Flow	 of	 Events	 and	Alternative
Flow	 of	 Events	 that	 complete	 a	 specific	 path.	 The	 read_port
command	has	the	following	scenarios:

Success	scenario

1.	 The	host	sends	a	command	beginning	with	read_port.

2.	 The	system	verifies	that	there	is	a	second	parameter.

3.	 The	system	verifies	that	the	second	parameter	is	a	numeric	string.

4.	 The	system	verifies	that	the	second	parameter	is	a	value	in	the	range	0..15.

5.	 The	system	reads	the	data	from	the	specified	port.

6.	 The	system	returns	the	port	value	to	the	host	PC.

Syntax	error	#1	scenario

1.	 The	host	sends	a	command	beginning	with	read_port.

2.	 The	system	determines	there	is	no	second	parameter.

3.	 The	system	sends	a	syntax	error	to	the	host	PC.

Syntax	error	#2	scenario

1.	 The	host	sends	a	command	beginning	with	read_port.

2.	 The	system	verifies	that	there	is	a	second	parameter.

3.	 The	system	determines	that	the	second	parameter	is	not	a	legal	numeric	string.

4.	 The	system	sends	a	syntax	error	to	the	host	PC.

Range	error	scenario

1.	 The	host	sends	a	command	beginning	with	read_port.

2.	 The	system	verifies	that	there	is	a	second	parameter.

3.	 The	system	verifies	that	the	second	parameter	is	a	numeric	string.

4.	 The	system	determines	that	the	numeric	string	is	a	value	outside	the	range	0..15.

5.	 The	system	sends	a	range	error	to	the	host	PC.

You	 can	 use	 scenarios	 to	 create	 test	 cases	 and	 test
procedures	for	your	system.	You’ll	have	one	or	more	test	cases
for	each	scenario.

You	 can	 combine	 use	 case	 scenarios	 by	 incorporating	 if
statements	 in	 your	 Flow	 of	 Events.	 However,	 because	 this
introduces	low-level	details	into	your	use	case	narratives,	you
should	 avoid	 combining	 scenarios	 unless	 the	 number	 of	 use
case	narratives	grows	out	of	control.

4.3	THE	UML	SYSTEM	BOUNDARY
DIAGRAMS
When	you’re	drawing	a	simple	use	case	diagram,	it	should	be
obvious	 which	 components	 are	 internal	 to	 the	 system	 and
which	 are	 external.	 Specifically,	 actors	 are	 external	 entities,
and	 the	 use	 cases	 are	 internal.	 If	 you’re	 using	 stereotyped
rectangles	 instead	 of	 stick	 figures	 for	 the	 actors,	 though,	 it
might	not	be	immediately	clear	which	components	are	external
to	the	system.	Also,	if	you	reference	multiple	systems	in	a	use
case	diagram,	determining	which	use	cases	are	part	of	which
system	 can	 be	 challenging.	UML	 system	 boundary	 diagrams
solve	these	problems.

A	 UML	 system	 boundary	 diagram	 is	 simply	 a	 shaded
rectangle	 surrounding	 the	 use	 cases	 that	 are	 internal	 to	 a
particular	 system,	 as	 shown	 in	 Figure	 4-14.	 The	 system	 title
generally	appears	near	the	top	of	the	rectangle.

Figure	4-14:	A	system	boundary	diagram

4.4	BEYOND	USE	CASES
This	 chapter	 introduced	 UML	 uses	 cases,	 a	 very	 important
feature	of	the	Unified	Modeling	Language.	However,	there	are
many	other	components	of	UML	beyond	use	cases.	The	next
chapter	presents	UML	activity	diagrams,	which	provide	a	way
to	model	actions	within	a	software	design.

4.5	FOR	MORE	INFORMATION
Bremer,	 Michael.	 The	 User	 Manual	 Manual:	 How	 to
Research,	 Write,	 Test,	 Edit,	 and	 Produce	 a	 Software
Manual.	 Grass	 Valley,	 CA:	 UnTechnical	 Press,	 1999.	 A
sample	 chapter	 is	 available	 at
http://www.untechnicalpress.com/Downloads/UMM%20sa
mple%20doc.pdf.

Larman,	Craig.	Applying	UML	and	Patterns:	An	Introduction
to	 Object-Oriented	 Analysis	 and	 Design	 and	 Iterative
Development.	 3rd	 ed.	 Upper	 Saddle	 River,	 NJ:	 Prentice
Hall,	2004.

Miles,	 Russ,	 and	 Kim	 Hamilton.	 Learning	 UML	 2.0:	 A
Pragmatic	Introduction	to	UML.	Sebastopol,	CA:	O’Reilly

http://www.untechnicalpress.com/Downloads/UMM%20sample%20doc.pdf

Media,	2003.

Pender,	Tom.	UML	Bible.	Indianapolis:	Wiley,	2003.

Pilone,	 Dan,	 and	 Neil	 Pitman.	 UML	 2.0	 in	 a	 Nutshell:	 A
Desktop	 Quick	 Reference.	 2nd	 ed.	 Sebastopol,	 CA:
O’Reilly	Media,	2005.

Roff,	 Jason	 T.	 UML:	 A	 Beginner’s	 Guide.	 Berkeley,	 CA:
McGraw-Hill	Education,	2003.

Tutorials	 Point.	 “UML	 Tutorial.”
https://www.tutorialspoint.com/uml/.

https://www.tutorialspoint.com/uml/

5
UML	ACTIVITY	DIAGRAMS

UML	 activity	 diagrams,	 traditionally	 known	 as	 flowcharts,
illustrate	 the	 workflow	 between	 different	 components	 of	 a
system.	 Flowcharts	 were	 prevalent	 in	 the	 early	 days	 of
software	 development	 and	were	 still	 used	 in	 software	 design
just	 before	 the	 rise	 of	 object-oriented	 programming	 (OOP).
Although	 the	 UML	 object-oriented	 notation	 supersedes	 old-
fashioned	 flowcharting	 to	 a	 large	 extent,	 OOP	 still	 relies	 on
small	 methods,	 functions,	 and	 procedures	 to	 implement	 the
low-level,	 nitty-gritty	 details,	 and	 flowcharting	 is	 useful	 for
describing	 control	 flow	 in	 those	 cases.	 Hence,	 UML’s
designers	 created	 activity	 diagrams	 as	 an	 updated	 version	 of
flowcharting.

5.1	UML	ACTIVITY	STATE
SYMBOLS
UML	activity	diagrams	use	state	symbols	based	on	traditional
flowchart	 symbols.	 This	 section	 describes	 some	 of	 the	 ones

you’ll	commonly	use.

NOTE

If	 you	want	 information	 on	 general	 flowcharting,	 any	web	 search	 should
yield	decent	results.

5.1.1	Start	and	Stop	States
UML	 diagrams	 always	 contain	 a	 single	 start	 state,	 which
represents	 the	 start	 terminal	 object.	 This	 consists	 of	 a	 solid
circle	 with	 a	 single	 arrow	 (transition	 in	 UML	 parlance)
coming	from	it.	You	might	associate	the	start	state	with	a	label,
which	would	be	the	name	of	the	whole	activity	diagram.

UML	also	usually	contains	end	state	and	end	flow	symbols.
An	end	state	symbol	terminates	an	entire	process,	while	an	end
flow	 symbol	 terminates	 a	 single	 thread,	 useful	 for	 processes
that	involve	multiple	threads	of	execution.	You	might	associate
the	 end	 state	 symbol	with	 a	 label	 that	 indicates	 the	 system’s
state	at	the	end	of	the	process.

Figure	 5-1	 shows	 the	 start	 state,	 end	 state,	 and	 end	 flow
symbols.

Figure	5-1:	UML	starting	and	ending	states

While	 an	 activity	 diagram	 has	 only	 one	 starting	 state
symbol,	it	might	have	multiple	ending	state	symbols	(think	of
a	method	returning	from	several	points	in	the	code).	The	labels
attached	 to	 the	 various	 ending	 states	will	 likely	 be	 different,
such	as	“exception	exit”	and	“normal	exit.”

5.1.2	Activities
Activity	 symbols	 in	 UML	 are	 rectangles	 with	 semicircular
ends	 (like	 the	 terminal	 symbol	 in	 a	 flowchart)	 that	 represent
some	action,	as	shown	in	Figure	5-2.

Figure	5-2:	UML	activities

Activities,	 as	 a	 general	 rule,	 correspond	 to	 one	 or	 more
statements	 (actions)	 in	 a	 programming	 language	 that	 execute
sequentially.	The	text	inside	the	symbol	describes	the	action	to
perform,	such	as	“read	data”	or	“compute	CRC.”	Generally,	a
UML	 activity	 doesn’t	 include	much	 low-level	 detail;	 it’s	 the
programmer’s	job	to	provide	that.

5.1.3	States
UML	 activity	 diagrams	 also	 provide	 intermediate	 states,	 in
addition	 to	 start	 and	 end	 states,	 which	 effectively	 act	 as
milestones	indicating	some	existing	condition(s)	at	the	point	of
the	 state	 symbol.	 State	 symbols	 are	 rounded	 rectangles
(roundangles),	 as	 shown	 in	Figure	5-3,	 although	 the	 rounded
corners	are	much	smaller	than	those	of	activity	symbols.

Figure	5-3:	UML	states

The	text	in	the	state	symbol	should	describe	the	state	of	the
system	 at	 that	 given	 point.	 For	 example,	 if	 the	 activity	 is
“compute	 CRC,”	 you	 might	 label	 the	 state	 immediately

1

following	 it	 as	 “CRC	 computed”	 or	 “CRC	 available.”	 States
don’t	incorporate	any	action,	only	the	current	condition	of	the
system	at	a	given	point.

5.1.4	Transitions
Transitions	 indicate	 a	 flow	 of	 control	 from	 one	 point	 in	 an
activity	diagram	(for	example,	a	state	or	activity)	to	another.	If
a	 transition	 flows	 out	 of	 some	 activity,	 it	 means	 the	 system
makes	 that	 transition	 upon	 completing	 most	 of	 the	 actions
associated	with	that	activity.	If	a	pair	of	transitions	flows	into
and	 out	 of	 a	 state,	 control	 flow	 transfers	 immediately	 to
wherever	 the	 outgoing	 arrow	 points.	 A	 UML	 state	 is
effectively	 a	marker	 in	 the	middle	 of	 a	 transition,	 and	 so	 no
action	takes	place	in	a	UML	state,	as	shown	in	Figure	5-4.

Figure	5-4:	Control	flow	through	a	state

5.1.5	Conditionals
You	can	handle	conditionals	in	a	couple	of	different	ways	in	a
UML	activity	diagram:	transition	guards	and	decision	points.

5.1.5.1	Transition	Guards

In	 conditionals,	 a	 Boolean	 expression	 is	 attached	 to	 a
transition	 symbol.	 UML	 calls	 these	 Boolean	 expressions
guards.	 A	 conditional	 UML	 symbol	 must	 have	 at	 least	 two
guarded	 transitions,	 which	 are	 labeled	 with	 expressions

surrounded	by	square	brackets,	but	might	have	more	than	two,
as	 in	 Figure	 5-5	 (where	 the	 hexagon	 shape	 represents	 an
arbitrary	UML	symbol).

Figure	5-5:	Transition	guards

The	 set	 of	 Boolean	 expressions	 must	 be	 mutually
exclusive;	that	is,	only	one	expression	can	be	 true	at	all	 times.
Furthermore,	 the	 expression	 coverage	 must	 be	 complete,
which	in	this	context	means	that	for	all	possible	combinations
of	 input	 values,	 at	 least	 one	 Boolean	 expression	 in	 a	 set	 of
guarded	 transitions	 must	 evaluate	 to	 true	 (which,	 combined
with	the	first	condition,	means	exactly	one	Boolean	condition
must	evaluate	to	true).

If	 you	 want	 a	 “catch-all”	 transition	 to	 handle	 any	 input
values	that	the	existing	guards	don’t	handle,	just	attach	a	word
like	else,	otherwise,	or	default	to	a	transition	(see	Figure	5-6).

Figure	5-6:	Catch-all	transition	guard

5.1.5.2	Decision	Points

Transitions	with	guards	can	exit	just	about	any	UML	symbol;
state	 and	 action	 symbols	 often	 contain	 them.	 Problems	 can
occur,	however,	 if	you	have	several	actions	or	states	merging
into	 a	 single	 point	 at	 which	 a	 decision	 can	 create	 divergent
paths.	For	 this,	UML	provides	a	special	 symbol,	 the	decision
point,	to	cleanly	collect	and	join	paths	where	a	decision	branch
occurs.	 Decision	 points	 use	 a	 diamond-shaped	 symbol,	 as
shown	in	Figure	5-7.

Figure	5-7:	A	UML	decision	point

Although	UML	allows	guarded	transitions	to	emanate	from
any	UML	symbol,	 it’s	good	practice	to	always	use	a	decision
point	to	begin	a	set	of	related	guarded	transitions.

5.1.6	Merge	Points
In	UML	we	can	also	use	the	diamond	shape	to	collect	several
incoming	 transitions	 into	 a	 single	 outgoing	 transition,	 as
shown	in	Figure	5-8;	we	call	this	a	merge	point.

Figure	5-8:	A	UML	merge	point

Technically,	 a	 merge	 point	 and	 a	 decision	 point	 are	 the
same	 object	 type.	 Essentially,	 a	 merge	 point	 is	 an	 unnamed
state	object;	it	takes	no	action	other	than	passing	control	from
all	 the	 incoming	 transitions	 to	 the	 outgoing	 transition.	 A
decision	point	 is	 just	a	special	case	of	a	merge	point	 that	has
multiple	outgoing	guarded	transitions.

In	theory,	a	merge	point	could	have	both	multiple	incoming
and	 outgoing	 guarded	 transitions.	However,	 the	 result	would
be	so	ugly	that	the	common	convention	is	instead	to	divide	the
single	point	into	separate	merge	and	decision	points,	as	shown
in	Figure	5-9.	Most	of	 the	 time,	 this	separation	 is	clearer	and
easier	to	read	than	the	alternative.

Figure	5-9:	UML	merge	and	decision	points

5.1.7	Events	and	Triggers
Events	 and	 triggers	 are	 actions	 outside	 the	 current	 flow	 of
control,	 typically	 from	 some	 other	 thread	 of	 execution	 or
hardware	input,	that	cause	some	change	in	it. 	In	UML,	event
and	 trigger	 transitions	 are	 syntactically	 similar	 to	 guarded
transitions	 in	 that	 they	 consist	 of	 a	 labeled	 transition.	 The
difference	 is	 that	 a	 guarded	 transition	 immediately	 evaluates
some	 Boolean	 expression	 and	 transfers	 control	 to	 the	 UML
symbol	at	the	other	end	of	the	transition,	whereas	an	event	or

2

trigger	transition	waits	for	the	event	or	trigger	to	occur	before
transferring	control.

Event	and	 trigger	 transitions	are	 labeled	with	 the	name	of
the	 event	 or	 trigger	 along	 with	 any	 necessary	 parameters
provided	to	the	control	flow	when	it	occurs	(see	Figure	5-10).

Figure	5-10:	UML	events	or	triggers

In	 this	 example,	 the	 system	 is	waiting	 for	 input	 from	 the
user	 (perhaps	clicking	a	UI	button	on	 the	display).	When	 the
user	 activates	 the	 save,	 exit,	 or	 load	 operation,	 control
transfers	 to	 the	 specified	 action	 at	 the	 end	 of	 the	 event	 or
trigger	 transition	 (Save	 file,	 Quit	 program,	 or	 Load	 file,
respectively).

You	can	also	attach	guard	conditions	to	an	event	or	trigger
transition,	 consisting	 of	 a	 Boolean	 expression	 inside	 square
brackets	immediately	following	the	trigger	or	event,	as	shown
in	 Figure	 5-11.	 When	 you	 do	 so,	 the	 transition	 occurs	 only
when	 the	 event	 or	 trigger	 occurs	 and	 the	 guard	 expression
evaluates	to	true.

Figure	5-11:	Guard	conditions	on	events	or	triggers

UML	 events	 and	 triggers	 also	 support	 action	 expressions
and	 multiple	 actions,	 which	 are	 beyond	 the	 scope	 of	 this
chapter.	 To	 find	 out	 more,	 check	 out	 examples	 in	 Tom
Pender’s	UML	 Bible	 (see	 “For	 More	 Information”	 on	 page
100).

5.1.8	Forks	and	Joins	(Synchronization)
UML	 offers	 support	 for	 concurrent	 processing	 by	 providing
symbols	 to	 split	 a	 single	 thread	 of	 execution	 into	 multiple
threads	as	well	as	to	join	multiple	threads	of	execution	into	a
single	thread	(see	Figure	5-12).

Figure	5-12:	Forks	and	joins

3

The	UML	 fork	 operation	 (a	 thin,	 solid	 rectangle)	 splits	 a
single	 thread	 of	 execution	 into	 two	 or	 more	 concurrent
operations.	 The	 join	 operation	 (also	 represented	 by	 a	 thin,
solid	 rectangle)	merges	multiple	 sets	 of	 threads	 into	 a	 single
thread	of	execution.	The	 join	operation	also	synchronizes	 the
threads:	 the	 diagram	 assumes	 that	 all	 but	 the	 last	 thread
entering	 the	 join	 operation	 will	 halt	 until	 the	 final	 thread
arrives,	at	which	point	a	single	 thread	of	execution	continues
on	output.

5.1.9	Call	Symbols
A	call	symbol	in	UML,	which	looks	like	a	small	rake,	attaches
to	 an	 activity	 to	 explicitly	 declare	 it	 as	 an	 invocation	 of
another	UML	sequence.	You	include	the	call	symbol	inside	the
UML	activity	along	with	the	name	of	the	sequence	to	invoke,
as	shown	in	Figure	5-13.

Elsewhere	 in	 your	 UML	 document,	 you’ll	 define	 that
sequence	 (or	 subroutine)	 using	 the	 invocation	 name	 as	 the
activity	diagram	name,	as	shown	in	Figure	5-14.

Figure	5-13:	A	UML	sequence	invocation

Figure	5-14:	A	UML	subroutine

5.1.10	Partitions
Partitions,	 which	 organize	 the	 steps	 of	 a	 process,	 consist	 of
several	side-by-side	rectangular	boxes,	each	labeled	at	the	top
with	an	actor,	object,	or	domain	name. 	The	activity	diagram
transitions	 between	 the	 boxes	 as	 each	 part	 of	 the	 process
comes	under	the	control	of	the	owner	of	a	given	box,	as	shown
in	Figure	5-15.

4

Figure	5-15:	A	UML	partition

The	process	in	Figure	5-15	shows	some	code	under	test.	An
operator	 selects	 a	 test	 to	 run,	 passing	 control	 to	 the	 test
software.	An	event	or	trigger	then	transfers	control	to	the	“Run
test	#1”	action.	The	test	software	calls	the	code	under	test	(in

the	third	partition).	After	the	code	under	test	executes,	control
returns	to	the	test	software,	which	determines	whether	the	test
passed	 or	 failed.	 If	 the	 test	 passes,	 the	 test	 code	 displays
“Pass”	 to	 the	 operator;	 otherwise,	 the	 test	 code	 runs	 a
diagnostic	routine.

5.1.11	Comments	and	Annotations
Comments	and	annotations	in	UML	use	an	icon	that	looks	like
a	 small	 page	with	 a	 folded	 corner,	 as	 shown	 in	 Figure	 5-16.
You	draw	a	dashed	line	from	one	side	of	the	box	to	the	UML
item	you	want	to	annotate.

Figure	5-16:	A	UML	comment	or	annotation

5.1.12	Connectors
Connectors	 are	 circles	 with	 an	 internal	 label,	 typically	 a
number,	that	indicate	that	control	transfers	to	some	other	point
in	 the	 diagram	with	 the	 same	 label	 (see	 Figure	5-17).	You’d
use	the	same	symbol	for	on-page	and	off-page	connectors.

Figure	5-17:	UML	connectors

When	used	properly,	UML	connectors	can	make	an	activity
diagram	 easier	 to	 read	 by	 reducing	 long	 or	 overlapping
transition	lines.	However,	keep	in	mind	that	connectors	are	the
UML	 equivalent	 of	 a	 goto	 statement	 in	 a	 programming
language,	 and	 overuse	 can	 make	 diagrams	 more	 difficult	 to
read.

5.1.13	Additional	Activity	Diagram	Symbols
The	 full	 UML	 2.0	 specification	 provides	 many	 additional
symbols	you	can	use	 in	 activity	diagrams,	 such	as	 structured
activities,	 expansion	 regions/nodes,	 conditional	 nodes,	 loop
nodes,	and	more.	We	don’t	have	space	 to	discuss	 them	all	 in
this	book’s	basic	introduction	to	UML,	but	if	you’re	interested
in	 more	 details,	 see	 the	 sources	 listed	 in	 “For	 More
Information”	on	page	100	or	search	online	for	“UML.”

5.2	EXTENDING	UML	ACTIVITY
DIAGRAMS
Sometimes	the	UML	activity	diagram	notation	just	doesn’t	cut
it.	In	such	cases,	you	might	be	tempted	to	come	up	with	your
own	custom	symbols.	This	is	almost	always	a	bad	idea,	for	the
following	reasons:

UML	is	a	standard.	If	you	extend	UML,	you’re	no	longer	using	a	well-defined
standard.	That	means	all	the	people	who’ve	learned	UML	won’t	be	able	to	read
your	activity	diagrams	unless	 they	first	 read	your	documentation	 (and	will	 that
documentation	be	available	to	them	in	your	nonstandard	activity	diagrams?).

There	are	many	UML	diagramming	tools	available	for	creating	and	editing	UML
activity	 diagrams,	 and	 most	 of	 them	 can’t	 handle	 nonstandard	 symbols	 and
objects.

Many	 computer-aided	 software	 engineering	 (CASE)	 tools	 can	 generate	 code
directly	from	a	UML	diagram.	Again,	these	CASE	tools	work	only	with	standard
UML	and	probably	won’t	be	able	to	handle	your	nonstandard	extensions.

If	you	can’t	figure	out	how	to	do	something	in	a	UML	activity	diagram,	you	may
be	able	to	use	some	other	scheme.	Using	a	nonstandard	way	to	do	a	task	that	you
can	 easily	 do	with	 standard	 tools	may	 come	 across	 to	 other	UML	users	 as	 an
amateur	approach.

All	that	being	said,	UML	is	far	from	perfect.	In	rare	cases,
developing	 some	 nonstandard	 activity	 diagram	 objects	 can
vastly	simplify	your	activity	diagrams.

As	an	example,	consider	a	concurrent	programming	critical
section,	a	region	of	code	in	which	only	one	thread	of	execution
can	take	place	at	a	time.	UML	sequence	diagrams	(the	subject
of	 Chapter	 7)	 use	 sequence	 fragment	 notation	 to	 describe
concurrency	 with	 critical	 regions.	 Although	 you	 could	 adapt
sequence	 fragment	notation	 to	activity	diagrams,	 the	 result	 is
messy	 and	 hard	 to	 read	 and	 understand.	 In	 some	 activity
diagrams	I’ve	created	for	personal	projects,	I	used	the	custom
notation	in	Figure	5-18	to	indicate	critical	regions.

Figure	5-18:	A	nonstandard	critical	region	diagram

Arrows	 coming	 in	 to	 the	 pentagon	 on	 the	 left	 indicate
transitions	 (generally	 from	different	 threads)	 competing	 for	 a
critical	section.	The	single	line	out	of	the	pentagon	represents
the	 single	 thread	 of	 execution	 that	 takes	 place	 in	 the	 critical
section.	The	pentagon	on	the	right	accepts	that	single	thread	of
execution	 and	 routes	 it	 back	 to	 the	 original	 thread	 (for
example,	if	T1	was	the	thread	that	entered	the	critical	section,
the	close	of	 the	critical	 section	 routes	control	back	 to	 the	T1
transition/flow).

This	diagram	doesn’t	imply	that	there	are	only	five	threads
that	can	use	this	critical	section.	Instead,	it	conveys	that	there
are	five	activity	diagram	flows	(T1–T5)	that	could	compete	for
the	 critical	 resource.	 In	 fact,	 there	 could	 be	multiple	 threads
executing	any	one	of	 these	 flows	 that	 are	also	competing	 for
the	 critical	 region.	For	 example,	 there	 could	be	 three	 threads
all	executing	the	T1	flow	and	waiting	for	the	critical	region	to
be	available.

Because	multiple	 threads	 could	 be	 executing	 on	 the	 same
flow	in	the	critical	section	diagram,	it’s	quite	possible	to	have
only	 a	 single	 flow	 entering	 the	 critical	 region	 (see	 Figure	 5-
19).

Figure	5-19:	A	single-flow	critical	region	diagram

This	 example	 requires	 that	 multiple	 threads	 execute	 the

same	flow	(T1)	for	this	diagram	to	make	any	sense.

As	you	can	see,	even	a	simple	diagram	like	this	requires	a
fair	 amount	 of	 documentation	 to	 describe	 and	 validate	 it.	 If
that	 documentation	 isn’t	 readily	 available	 (that	 is,	 if	 it’s	 not
embedded	 directly	 in	 your	 UML	 activity	 diagrams),	 readers
probably	won’t	find	it	when	they’re	trying	to	understand	your
diagram.	Annotating	 a	nonstandard	object	 directly	within	 the
diagram	 is	 the	only	 reasonable	approach.	Placing	meaningful
documentation	 in	 a	 separate	 section	 of	 the	 document
containing	the	activity	diagrams	(such	as	the	SDD	document),
or	 in	 a	 separate	 document	 altogether,	makes	 this	 information
unavailable	when	someone	cuts	and	pastes	your	diagram	into	a
different	document.

NOTE

The	critical	region	diagram	in	Figure	5-19	is	simply	an	example	of	how	you
might	 extend	 UML	 activity	 diagrams.	 In	 general,	 I	 don’t	 recommend
adopting	 it	 in	 your	 own	 diagrams,	 nor	 do	 I	 recommend	 extending	 UML
notation.	However,	you	should	know	that	the	option	is	available	if	you	really
need	it.

5.3	FOR	MORE	INFORMATION
Bremer,	 Michael.	 The	 User	 Manual	 Manual:	 How	 to
Research,	 Write,	 Test,	 Edit,	 and	 Produce	 a	 Software
Manual.	 Grass	 Valley,	 CA:	 UnTechnical	 Press,	 1999.	 A
sample	 chapter	 is	 available	 at
http://www.untechnicalpress.com/Downloads/UMM%20sa
mple%20doc.pdf.

Larman,	Craig.	Applying	UML	and	Patterns:	An	Introduction
to	 Object-Oriented	 Analysis	 and	 Design	 and	 Iterative

http://www.untechnicalpress.com/Downloads/UMM%20sample%20doc.pdf

Development.	 3rd	 ed.	 Upper	 Saddle	 River,	 NJ:	 Prentice
Hall,	2004.

Miles,	 Russ,	 and	 Kim	 Hamilton.	 Learning	 UML	 2.0:	 A
Pragmatic	Introduction	to	UML.	Sebastopol,	CA:	O’Reilly
Media,	2003.

Pender,	Tom.	UML	Bible.	Indianapolis:	Wiley,	2003.

Pilone,	 Dan,	 and	 Neil	 Pitman.	 UML	 2.0	 in	 a	 Nutshell:	 A
Desktop	 Quick	 Reference.	 2nd	 ed.	 Sebastopol,	 CA:
O’Reilly	Media,	2005.

Roff,	 Jason	 T.	 UML:	 A	 Beginner’s	 Guide.	 Berkeley,	 CA:
McGraw-Hill	Education,	2003.

Tutorials	 Point.	 “UML	 Tutorial.”
https://www.tutorialspoint.com/uml/.

https://www.tutorialspoint.com/uml/

6
UML	CLASS	DIAGRAMS

This	 chapter	 describes	 class	 diagrams,	 one	 of	 the	 more
important	diagramming	tools	in	UML.	Class	diagrams	are	the
basis	for	defining	data	types,	data	structures,	and	operations	on
that	 data	 in	 programs.	 In	 turn,	 they’re	 the	 basis	 for	 object-
oriented	analysis	(OOA)	and	object-oriented	design	(OOD).

6.1	OBJECT-ORIENTED	ANALYSIS
AND	DESIGN	IN	UML
The	 creators	 of	 UML	wanted	 a	 formal	 system	 for	 designing
object-oriented	 software	 to	 replace	 the	 structured
programming	 formalisms	 available	 at	 the	 time	 (1990s).	Here
we’ll	discuss	how	to	represent	classes	(data	types)	and	objects
(instance	variables	of	data	types)	in	UML.

The	 most	 complete	 form	 of	 a	 class	 diagram	 in	 UML	 is
shown	in	Figure	6-1.

Figure	6-1:	A	complete	class	diagram

Attributes	correspond	to	data	field	members	of	a	class	(that
is,	variables	and	constants);	they	represent	information	internal
to	the	class.

Operations	 correspond	 to	 the	 activities	 that	 represent	 the
class’s	 behavior.	 Operations	 include	 methods,	 functions,
procedures,	and	other	things	we	normally	identify	as	code.

Sometimes,	 you	 don’t	 need	 to	 list	 all	 the	 attributes	 and
operations	when	 referencing	 a	 class	 diagram	 (or	 there	might
not	 even	 be	 any	 attributes	 or	 operations).	 In	 such	 situations,
you	can	instead	draw	a	partial	class	diagram,	shown	in	Figure
6-2.

Figure	6-2:	Partial	class	diagrams

The	 fact	 that	 attributes	 or	 operations	 are	 missing	 from	 a
partial	class	diagram	doesn’t	imply	that	they	don’t	exist;	it	just
means	that	it’s	not	necessary	in	the	current	context	to	add	them
to	 the	 diagram.	 The	 designer	 might	 be	 leaving	 it	 up	 to	 the
coder	 to	 fill	 them	 in	 during	 coding;	 or	 perhaps	 the	 complete
class	 diagram	 appears	 elsewhere,	 and	 the	 current	 diagram
contains	only	information	of	interest.

In	its	simplest	form,	UML	represents	classes	with	a	simple

rectangle	containing	the	name	of	the	class,	as	shown	in	Figure
6-3.

Figure	6-3:	A	simple	class	diagram

Again,	 this	 doesn’t	 imply	 that	 the	 class	 contains	 no
attributes	 or	 operations	 (which	wouldn’t	make	 sense);	 it	 just
means	 that	 those	 items	 are	 not	 of	 interest	 in	 the	 current
diagram.

6.2	VISIBILITY	IN	A	CLASS
DIAGRAM
UML	defines	 four	 types	 of	 class	member	visibility	 (all	 taken
from	C++	and	Java,	although	other	 languages,	such	as	Swift,
also	 support	 them):	 public,	 private,	 protected,	 and	 package.
We’ll	discuss	each	in	turn.

6.2.1	Public	Class	Visibility
A	public	class	member	is	visible	to	all	classes	and	code,	inside
and	 outside	 the	 class	 containing	 the	 public	 item.	 In	 well-
designed	 object-oriented	 systems,	 public	 items	 are	 almost
always	 operations	 (methods,	 functions,	 procedures,	 and	 so
forth)	 and	 form	 the	 class’s	 interface	 to	 the	world	 outside	 the
class.	Although	you	can	also	make	attributes	public,	doing	so
often	 defeats	 one	 of	 the	 primary	 benefits	 of	 object-oriented
programming:	encapsulation,	or	the	ability	to	hide	values	and
activities	inside	a	class	from	the	outside	world.

In	UML	we	 preface	 public	 attributes	 and	 operations	with
the	 plus	 sign	 (+),	 as	 shown	 in	 Figure	 6-4.	 The	 set	 of	 public

attributes	and	operations	provides	the	class’s	public	interface.

Figure	6-4:	Public	attributes	and	operations

This	figure	has	a	single	public	attribute,	maxSalinity_c.	The	_c
suffix	 is	 a	 convention	 I	 use	 to	 indicate	 that	 the	 field	 is	 a
constant	rather	than	a	variable. 	In	good	designs	constants	are
usually	 the	only	public	 attributes	 in	 a	 class,	 because	 external
code	 cannot	 change	 the	 value	 of	 a	 constant:	 it’s	 still	 visible
(that	 is,	 not	 hidden	 or	 encapsulated),	 but	 it’s	 unchangeable.
One	 of	 the	main	 reasons	 for	 encapsulation	 is	 to	 prevent	 side
effects	 that	 can	 occur	 when	 some	 external	 code	 changes	 an
internal	class	attribute.	Because	external	code	cannot	change	a
constant’s	value,	this	immutability	achieves	the	same	result	as
encapsulation;	 therefore,	object-oriented	designers	are	willing
to	make	certain	class	constants	visible.

6.2.2	Private	Class	Visibility
At	the	other	end	of	the	spectrum	lies	private	visibility.	Private
attributes	and	operations	are	accessible	only	within	that	class:
they’re	hidden	from	other	classes	and	code.	Private	attributes
and	operations	are	the	embodiment	of	encapsulation.

We	use	the	minus	sign	(-)	to	denote	private	entities	within	a
class	diagram,	as	shown	in	Figure	6-5.

1

2

Figure	6-5:	Private	attributes	and	operations

You	 should	 use	 private	 visibility	 for	 any	 attribute	 or
operation	 that	 doesn’t	 absolutely	 require	 some	 other	 form	 of
visibility,	and	strive	to	ensure	that	all	attributes	(data	fields	in
the	 class)	 are	 private	 members	 of	 the	 class.	 If	 outside	 code
needs	 to	 access	 a	 data	 field,	 you	 can	 use	 public	 accessor
functions	(getters	and	setters)	to	provide	access	to	the	private
class	member.	A	getter	function	returns	the	value	of	a	private
field.	A	setter	function	stores	a	value	into	a	private	field.

If	 you’re	 wondering	 why	 you	 should	 even	 bother	 using
accessor	 functions	 (after	 all,	 it’s	 a	whole	 lot	 easier	 to	 simply
access	the	data	field	directly),	consider	this:	a	setter	function
can	check	the	value	you’re	storing	in	an	attribute	to	ensure	it’s
within	 range.	Also,	not	all	 fields	are	 independent	of	all	other
attributes	 in	 a	 class.	 For	 example,	 in	 a	 saltwater	 pool,	 the
salinity,	chlorine,	and	pH	levels	aren’t	completely	independent
of	 one	 another:	 the	 pool	 contains	 an	 electrolysis	 cell	 that
converts	 water	 and	 sodium	 chloride	 (salt)	 into	 sodium
hydroxide	 and	 chlorine.	 This	 conversion	 reduces	 the	 salinity

3

and	 increases	 the	 chlorine	 and	 pH	 levels.	 So	 rather	 than
allowing	some	external	code	to	arbitrarily	change	the	salinity
level,	 you	 might	 want	 to	 pass	 the	 change	 through	 a	 setter
function	 that	 can	decide	whether	 to	 adjust	 other	 levels	 at	 the
same	time.

6.2.3	Protected	Class	Visibility
Although	 public	 and	 private	 visibility	 covers	 a	 large
percentage	 of	 the	 visibility	 requirements,	 in	 some	 special
situations,	 like	 inheritance,	 you’ll	 need	 to	 use	 something	 in
between:	protected	visibility.

Inheritance,	along	with	encapsulation	and	polymorphism,	is
one	 of	 the	 “big	 three”	 features	 of	 object-oriented
programming.	 Inheritance	 allows	 one	 class	 to	 receive	 all	 the
features	from	another	class.

One	 problem	 with	 private	 visibility	 is	 that	 you	 cannot
access	private	fields	within	classes	that	inherit	them.	Protected
visibility,	 however,	 relaxes	 these	 restrictions	 to	 allow	 access
by	 inheriting	 classes,	 but	 it	 doesn’t	 allow	 access	 to	 private
fields	outside	the	original	class	or	its	inheriting	classes.

UML	notation	uses	the	hash	symbol	(#)	to	denote	protected
visibility,	as	shown	in	Figure	6-6.

Figure	6-6:	Protected	attributes	and	operations

6.2.4	Package	Class	Visibility
Package	 visibility	 sits	 between	 private	 and	 protected	 and	 is
largely	 a	 Java	 concept.	 Other	 languages	 have	 something
similar,	 including	Swift,	C++,	 and	C#,	 in	which	you	can	use
namespaces	 to	 simulate	 package	 visibility,	 although	 the
semantics	aren’t	quite	the	same.

Package-protected	 fields	 are	 visible	 among	 all	 classes	 in
the	 same	 package.	Classes	 outside	 the	 package	 (even	 if	 they
inherit	from	the	class	containing	the	package-protected	fields)
cannot	access	items	with	package	visibility.

We	use	the	tilde	(~)	to	denote	package	visibility,	as	shown
in	Figure	6-7.	Chapter	8	discusses	UML	package	notation	(that
is,	how	to	place	several	classes	in	the	same	package).

Figure	6-7:	Package	attributes	and	operations

6.2.5	Unsupported	Visibility	Types
What	 happens	 if	 your	 programming	 language	 of	 choice
doesn’t	support	 the	same	visibility	 types	 that	UML	specifies?
Well,	 the	 good	 news	 is	 that	 UML	 visibility	 is	 largely	 a
spectrum,	as	shown	in	Figure	6-8.

Figure	6-8:	Visibility	spectrum

4

You	 can	 always	 substitute	 a	 more	 public	 visibility	 for	 a
more	private	visibility	 if	your	programming	 language	doesn’t
support	 a	 specific	 visibility.	 For	 example,	 the	 High-Level
Assembly	 (HLA)	 language	 supports	 only	 public	 fields;	 C++
only	 partially	 supports	 package	 visibility	 (using	 friend

declarations	or	namespaces);	and	Swift	supports	an	offshoot	of
package	 visibility—all	 private	 fields	 within	 an	 object	 are
automatically	visible	to	all	classes	declared	in	the	same	source
file.	 One	 way	 to	 avoid	 abusing	 the	 extra	 visibility	 is	 to	 add
some	 sort	 of	 visibility	notation	 to	 the	 attribute	or	 operation’s
name	in	the	class—for	example,	by	prefacing	protected	names
with	prot_	and	then	declaring	them	as	public	objects,	as	shown
in	Figure	6-9.

Figure	6-9:	Faking	visibility	restriction

6.3	CLASS	ATTRIBUTES
Attributes	in	a	UML	class	(also	known	as	data	fields	or	simply
fields)	hold	the	data	associated	with	an	object.	An	attribute	has
a	 visibility	 and	 a	 name;	 it	 can	 also	 have	 a	 data	 type	 and	 an
initial	value,	as	shown	in	Figure	6-10.

Figure	6-10:	Attributes

6.3.1	Attribute	Visibility
As	discussed	earlier,	you	specify	 the	visibility	of	an	attribute
by	 prefixing	 its	 name	 with	 the	 +,	 -,	 #,	 or	 ~	 symbols,	 which
specify	 public,	 private,	 protected,	 and	 package	 visibility,
respectively.	See	“Visibility	in	a	Class	Diagram”	on	page	105
for	more	details.

6.3.2	Attribute	Derived	Values
Most	of	 the	 time,	a	class	stores	 the	value	of	an	attribute	as	a
variable	or	constant	data	field	(a	base	value).	However,	some
fields	contain	derived	values	rather	than	base	values.	The	class
calculates	 a	 derived	 value	 whenever	 some	 expression
references	 that	 attribute.	Some	 languages,	 like	Swift,	provide
syntax	for	directly	defining	declared	values;	in	other	languages
(such	as	C++),	you’ll	typically	write	getter	and	setter	accessor
functions	to	implement	a	derived	value.

To	 create	 a	 derived	 attribute	 in	 UML,	 you	 immediately
precede	the	attribute	name	(after	the	visibility	symbol)	with	a
forward	slash	(/),	as	shown	in	Figure	6-11.

Figure	6-11:	A	derived	attribute

Whenever	 you	 use	 a	 derived	 attribute,	 somewhere	 you
must	define	how	 to	calculate	 it.	Figure	6-11	 uses	 a	 comment

for	this	purpose,	although	you	could	also	use	a	property	string
(see	“Property	Strings”	on	page	112).

6.3.3	Attribute	Names
The	 attribute	 name	 should	 work	 in	 whichever	 programming
language(s)	 you	 use	 to	 implement	 the	 design.	 As	 much	 as
possible,	 you	 should	 refrain	 from	 naming	 syntax	 or
conventions	 that	 are	 specific	 to	 a	 programming	 language
unless	you’re	requiring	implementation	in	that	language.	As	a
general	 rule,	 the	 following	 conventions	 work	 well	 for	 UML
attribute	names:

All	names	should	begin	with	an	(ASCII)	alphabetic	character	(a–z	or	A–Z).

After	the	first	character,	names	should	contain	only	ASCII	alphabetic	characters
(a–z,	A–Z),	numeric	digits	(0–9),	or	underscores	(_).

All	 names	 should	 be	 unique	 within	 the	 first	 six	 to	 eight	 characters	 (some
compilers	 allow	 arbitrary-length	 names	 but	 keep	 only	 a	 prefix	 of	 them	 in	 the
internal	symbol	table	during	compilation).

Names	 should	 be	 shorter	 than	 some	 arbitrary	 length	 (we’ll	 use	 32	 characters
here).

All	names	 should	be	case	neutral;	 that	 is,	 two	 separate	 names	must	 contain	 at
least	 one	 distinct	 character	 rather	 than	 just	 a	 difference	 in	 case.	 Also,	 all
occurrences	 of	 a	 given	 name	 should	 be	 consistent	 with	 respect	 to	 alphabetic
case.

6.3.4	Attribute	Data	Types
A	UML	object	can	optionally	have	an	associated	data	type	(see
the	 examples	 in	 Figure	 6-10).	 UML	 doesn’t	 require	 you	 to
explicitly	 state	 the	data	 type;	 if	 it’s	 absent,	 the	assumption	 is
that	the	reader	can	infer	it	from	the	attribute’s	name	or	usage,
or	 that	 the	 programmer	 will	 decide	 on	 a	 type	 while
implementing	the	design.

You	 can	 use	 any	 type	 names	 you	want	 for	 primitive	 data

5

types	 and	 leave	 it	 up	 to	 the	 programmer	 to	 choose	 the
appropriate	 or	 closest	 matching	 data	 type	 when	 writing	 the
code.	That	being	said,	when	working	with	generic	data	 types
most	 people	 choose	 C++	 or	 Java	 type	 names	 (which	 makes
sense,	because	UML’s	design	was	 largely	based	on	these	 two
languages).	Common	data	 types	you’ll	 find	attached	 to	UML
attributes	include:

int,	long,	unsigned,	unsigned	long,	short,	unsigned	short

float,	double

char,	wchar

string,	wstring

Of	course,	any	user-defined	type	names	are	perfectly	valid
as	 well.	 For	 example,	 if	 you’ve	 defined	 uint16_t	 to	 mean	 the
same	thing	as	unsigned	short	in	your	design,	then	using	uint16_t	as
an	attribute	type	is	perfectly	acceptable.	In	addition,	any	class
objects	you	define	in	UML	also	make	perfectly	good	data	type
names.

6.3.5	Operation	Data	Types	(Return	Values)
You	 can	 also	 associate	 a	 data	 type	 with	 an	 operation.
Functions,	 for	 example,	 can	 return	 a	value	having	 some	data
type.	To	specify	a	return	data	type,	follow	the	operation	name
(and	parameter	list)	with	a	colon	and	the	data	type,	as	shown
in	Figure	6-12.

Figure	6-12:	Return	types

We’ll	 discuss	 operations	 more	 in	 “Class	 Operations”	 on
page	112.

6.3.6	Attribute	Multiplicity
Some	 attributes	 could	 contain	 a	 collection	 (array	 or	 list)	 of
data	 objects.	 In	 UML	 we	 denote	 multiplicity	 using	 square
brackets	 [],	 similar	 to	 array	 declarations	 in	 many	 high-level
languages;	see	Figure	6-13.

Figure	6-13:	Multiplicity

Within	the	brackets,	you	specify	an	expression,	which	can
be	any	of	the	following:

A	 numeric	 value	 (for	 example,	 5)	 indicating	 the	 number	 of	 elements	 in	 the
collection

A	numeric	 range	 (for	example,	1..5	or	0..7)	 indicating	 the	 number	 of	 elements
and	valid	suffix	range	for	the	collection	of	elements

An	asterisk	(*)	representing	an	arbitrary	number	of	elements

An	asterisk-terminated	range	(for	example,	0..*	or	1..*)	indicating	an	open-ended
range	of	array	elements

If	this	notation	is	absent,	the	multiplicity	defaults	to	[1]	(that
is,	a	single	data	object).

6.3.7	Default	Attribute	Values
To	 specify	 an	 initial	 value	 for	 an	 attribute,	 you	 use	 an	 equal

sign	(=)	followed	by	an	expression	(with	a	type	appropriate	for
the	attribute).	This	typically	follows	the	attribute’s	multiplicity
(if	 present)	 and/or	 type.	But	 if	 the	 type	 can	be	 inferred	 from
the	 initial	value,	you	can	omit	both	 it	 and	 the	multiplicity.	 If
the	 multiplicity	 is	 something	 other	 than	 1,	 you	 enclose	 a
comma-separated	 list	 of	 initial	 values,	 one	 for	 each	 element,
within	a	pair	of	braces.	See	Figure	6-14.

Figure	6-14:	Initial	values

In	this	example,	the	numTempSensors	attribute	is	an	integer	type
(which	can	be	inferred	by	the	initial	value	2),	and	tempSensorSpan
is	 an	 array	 of	 doubles	 with	 two	 elements	 (inferred	 by	 the
number	and	types	of	values	in	the	braces).

6.3.8	Property	Strings
UML’s	attribute	syntax	probably	doesn’t	cover	every	possible
case	for	your	attributes.	UML	provides	 the	property	string	 to
handle	outlier	situations.	To	create	a	property	string,	you	add
text	within	braces	at	the	end	of	the	attribute	that	describes	it,	as
shown	in	Figure	6-15.

Figure	6-15:	Property	strings

You	can	also	use	property	strings	 to	define	other	property
types.	 Common	 examples	 include	 {readOnly},	 {unique},	 and
{static}. 	Keep	in	mind	that	a	property	string	is	a	catch-all	field
in	the	attribute.	You	can	define	any	syntax	you	want	inside	the
braces.

6.3.9	Attribute	Syntax
The	formal	syntax	for	an	attribute	looks	as	follows	(note	that
optional	 items	appear	 in	braces,	 except	quoted	braces,	which
represent	literal	brace	characters):

{visibility}{"/"}	name	{	":"	type	}{multiplicity}{"="	initial}{"{"property
string"}"}

6.4	CLASS	OPERATIONS
Class	operations	are	items	within	a	class	that	perform	actions.
Generally,	 the	 operations	 represent	 the	 code	 in	 a	 class	 (but
there	 can	 also	 be	 code	 associated	with	 derived	 attributes,	 so
having	code	is	not	exclusive	to	operations	in	a	UML	class).

UML	 class	 diagrams	 place	 attributes	 and	 operations	 into
separate	 rectangles,	 though	 this	 is	not	what	differentiates	one
from	the	other.	(Consider	Figure	6-2:	the	partial	class	diagrams
are	 ambiguous	with	 respect	 to	which	 class	 diagram	 contains
only	 attributes	 and	which	contains	only	operations.)	 In	UML
we	 explicitly	 specify	 operations	 within	 a	 class	 diagram	 by
following	 the	 operation’s	 name	 with	 a	 (possibly	 empty)
parameter	 list	 surrounded	by	parentheses	 (refer	 to	Figure	6-4
for	an	example).

As	 noted	 in	 “Operation	 Data	 Types	 (Return	 Values)”	 on
page	110,	you	can	also	specify	a	 return	 type	for	an	operation

6

by	 following	 the	 parameter	 list	with	 a	 colon	 and	 a	 data	 type
name.	If	the	type	is	present,	you	definitely	have	a	function;	if
it’s	absent,	you	likely	have	a	procedure	(a	void	function).

What’s	been	missing	in	all	the	operation	examples	thus	far
is	 parameters.	 To	 specify	 parameters,	 you	 insert	 a	 comma-
separated	list	of	attributes	within	the	parentheses	immediately
following	the	operation	name,	as	shown	in	Figure	6-16.

Figure	6-16:	Operation	parameters

By	 default,	 parameters	 in	 a	 UML	 operation	 are	 value
parameters,	 meaning	 they’re	 passed	 to	 the	 operation	 as	 an
argument,	 and	 changes	 an	 operation	 makes	 to	 a	 value
parameter	do	not	affect	 the	actual	parameter	 the	caller	passes
to	the	function.	A	value	parameter	is	an	input	parameter.

UML	 also	 supports	 output	 parameters	 and	 input/output
parameters.	As	 their	names	suggest,	output	parameters	 return
information	 from	 the	 operation	 to	 the	 calling	 code;
input/output	 parameters	 pass	 information	 to	 and	 return	 data
from	an	operation.	UML	uses	 the	 following	syntax	 to	denote
input,	output,	and	input/output	parameters:

Input	parameters:	in	paramName:paramType

Output	parameters:	out	paramName:paramType

Input/output	parameters:	inout	paramName:paramType

The	 default	 parameter-passing	 mechanism	 is	 input.	 If
there’s	 nothing	 specified	 before	 the	 parameter	 name,	 UML

assumes	that	it	is	an	in	parameter.	Figure	6-17	shows	a	simple
example	of	an	inout	parameter.

Figure	6-17:	Parameter	inout	example

In	 this	 figure,	 the	 list	 of	 items	 to	 sort	 is	 an	 input	and	 an
output	parameter.	On	input,	the	items	array	contains	the	data	to
be	sorted;	on	output,	 it	contains	 the	sorted	 items	(an	 in-place
sort).

UML	tries	to	be	as	generic	as	possible.	The	in,	out,	and	inout
parameter-passing	 specifiers	 don’t	 necessarily	 imply	 pass	 by
value	or	pass	by	 reference.	This	 implementation	detail	 is	 left
to,	 well,	 the	 actual	 implementation.	 From	 a	 design	 point	 of
view,	UML	is	specifying	only	the	direction	in	which,	not	how,
the	data	is	transferred.

6.5	UML	CLASS	RELATIONSHIPS
In	 this	 section,	 we’ll	 explore	 five	 different	 types	 of
relationships	 between	 classes:	 dependency,	 association,
aggregation,	composition,	and	inheritance.

Like	visibility,	class	relationships	fall	along	a	spectrum	(see
Figure	6-18).	This	range	is	based	on	their	strength,	or	the	level
and	type	of	intercommunication	between	two	classes.

Figure	6-18:	Class	relationship	spectrum

Strength	 ranges	 from	 loosely	 coupled	 to	 tightly	 coupled.
When	 two	 classes	 are	 tightly	 coupled,	 any	 modifications	 to
one	class	will	likely	affect	the	state	of	the	other	class.	Loosely
coupled	classes	are	mostly	independent	of	each	other;	changes
to	one	are	unlikely	to	affect	the	other.

We’ll	discuss	each	 type	of	class	 relationship	 in	 turn,	 from
weakest	to	strongest.

6.5.1	Class	Dependency	Relationships
Two	classes	are	dependent	on	each	other	when	objects	of	one
class	 need	 to	 briefly	 work	 with	 objects	 of	 another	 class.	 In
UML	 we	 use	 a	 dashed	 open-ended	 arrow	 to	 denote	 a
dependency	relationship,	as	shown	in	Figure	6-19.

Figure	6-19:	Dependency	relationship

In	 this	example,	 the	userInterface	and	poolMonitor	classes	work
together	whenever	a	userInterface	object	wants	to	retrieve	data	to
display	 (for	 example,	when	 you	 pass	 a	 poolMonitor	 object	 to	 a
userInterface	 method	 as	 a	 parameter).	 Other	 than	 that,	 the	 two
classes	(and	objects	of	those	classes)	operate	independently	of
each	other.

6.5.2	Class	Association	Relationships
An	association	relationship	occurs	when	one	class	contains	an
attribute	whose	type	is	a	second	class.	There	are	two	ways	to
draw	an	association	relationship	in	UML:	inline	attributes	and
association	 links.	 You’ve	 already	 seen	 inline	 attributes—

they’re	 the	normal	attribute	definitions	you	saw	 in	“Attribute
Syntax”	on	page	112).	 The	 only	 requirement	 is	 that	 the	 type
name	must	be	some	other	class.

The	second	way	to	specify	a	class	association	relationship
is	with	an	association	line	or	link,	as	shown	in	Figure	6-20.

Figure	6-20:	Association	relationship

The	 association	 name	 is	 typically	 a	 verb	 phrase	 that
describes	 the	 association,	 such	 as	 has,	 owns,	 controls,	 is
owned	by,	and	is	controlled	by	(see	Figure	6-21).

Figure	6-21:	Association	names

How	can	we	tell	from	an	association	diagram	which	class	is
an	attribute	of	the	other?	Notice	the	arrowhead	immediately	to
the	 left	 or	 right	 of	 the	 association	 name.	 This	 provides	 the
direction	of	 the	 association;	 here,	 it	 shows	 that	 the	 poolMonitor

has	a	phClass,	rather	than	the	reverse.

But	 while	 a	 meaningful	 association	 name	 and	 arrowhead
verb	phrase	can	give	you	a	clue,	there’s	no	guarantee	that	your
intuition	 will	 be	 correct.	 Although	 it	 might	 seem
counterintuitive,	 pumpClass	 in	 Figure	 6-21	 could	 contain	 the
poolMonitor	 object	 as	 an	 attribute,	 even	 though	 the	 poolMonitor

class	 controls	 the	 pumpClass	 object.	 The	 UML	 solution	 is	 to
apply	navigability	(see	“Navigability”	on	page	123)	by	placing
an	open-ended	arrow	pointing	at	the	class	that	is	an	attribute	of
the	other	class,	as	shown	in	Figure	6-22.

Figure	6-22:	Association	navigability

6.5.3	Class	Aggregation	Relationships
An	 aggregation,	 a	 slightly	 more	 tightly	 coupled	 version	 of
association,	 exists	 as	 a	 class	 that	 could	 be	 stand-alone	 but	 is
part	 of	 a	 larger	 class.	 Most	 of	 the	 time,	 an	 aggregation
relationship	 is	 a	 controls	 relationship;	 that	 is,	 a	 controlling
class	 (the	 aggregate	 or	 whole	 class)	 controls	 a	 set	 of
subservient	 objects	 or	 attributes	 (the	 parts	 classes).	 The
aggregate	 class	 cannot	 exist	 without	 the	 parts	 classes;
however,	the	parts	classes	can	exist	outside	the	context	of	the
aggregate	class	(for	example,	a	parts	class	could	be	associated
with	both	the	aggregate	class	and	an	additional	class).

Aggregates	 act	 as	 gatekeepers	 to	 their	 parts	 attributes,
ensuring	 that	 the	 parts’	 methods	 are	 being	 called	 with
appropriate	(for	example,	range-checked)	parameters	and	that
the	 operating	 environment	 for	 those	 parts	 is	 consistent.	 The
aggregate	 class	 can	 also	 check	 return	 values	 for	 consistency
and	handle	exceptions	and	other	issues	raised	by	the	parts.

For	 example,	 you	 could	 have	 a	 pHSensor	 class	 that	 works
well	with	a	 stand-alone	pH	meter	and	a	 salinitySensor	class	 that
works	well	with	a	stand-alone	salinity	(or	conductivity)	sensor.
The	poolMonitor	class	is	not	a	stand-alone	class:	it	needs	both	of
these	 classes	 to	 do	 its	 job,	 even	 though	 they	 don’t	 need
poolMonitor	 to	 do	 theirs.	 We	 model	 this	 relationship	 using	 an
empty	diamond	symbol	on	the	aggregate	class	(poolMonitor)	and
an	 association	 line	 leading	 to	 the	 parts	 classes	 (pHSensor	 and
salinitySensor),	as	shown	in	Figure	6-23.

Figure	6-23:	Aggregation	relationship

The	class	with	the	open	diamond	end	of	the	association	line
(that	 is,	 the	 aggregated	 class)	 always	 contains	 the	 attribute-
associated	class	(the	parts	class)	at	the	other	end	of	the	line.

The	lifetimes	of	an	aggregate	object	and	its	associated	parts
objects	are	not	necessarily	the	same.	You	could	create	several
parts	 objects	 and	 then	 attach	 them	 to	 an	 aggregate	 object.
When	 the	 aggregate	 object	 finishes	 its	 task,	 it	 can	 be
deallocated	 while	 the	 parts	 objects	 continue	 to	 solve	 other

problems.	 In	 other	 words,	 from	 a	 low-level	 programming
perspective,	 the	 system	stores	pointers	 to	 the	parts	objects	 in
the	aggregate	object.	When	the	system	deallocates	the	storage
for	 the	 aggregate	object,	 the	pointers	might	go	 away,	but	 the
objects	 they	 reference	might	persist	 (and	 could	be	pointed	 at
by	other	aggregate	objects	in	the	system).

Why	use	an	aggregate	diagram?	The	code	produced	for	an
association	 and	 an	 aggregation	 will	 be	 identical.	 The
difference	 is	 one	 of	 intent.	 In	 an	 aggregation	 diagram,	 the
designer	is	saying	that	the	parts	objects	or	classes	are	under	the
control	 of	 the	 aggregate	 class	 or	 object.	 To	 return	 to	 our
poolMonitor	 example,	 in	 the	 aggregation	 relationship,	 the
poolMonitor	 is	 in	 complete	 charge—the	 salinitySensor	 and	 pHSensor
objects	 are	 being	 controlled	 by	 it,	 and	 never	 the	 other	 way
around.	In	an	association	relationship,	however,	the	associated
classes	 are	 peers	 rather	 than	 having	 a	 master/slave
relationship;	 that	 is,	 both	 the	 pHSensor	 and	 salinitySensor	 could
operate	 independently	 of	 the	 poolMonitor—and	 vice	 versa—
sharing	information	only	as	necessary.

6.5.4	Class	Composition	Relationships
In	composition	relationships,	the	smaller	classes	contained	by
the	 larger	class	are	not	 stand-alone	classes:	 they	exist	 strictly
to	 support	 the	 containing,	 or	 composing,	 class.	 Unlike	 with
aggregates,	 composition	 parts	 can	 belong	 only	 to	 a	 single
composition.

The	lifetimes	of	the	composing	object	and	the	parts	objects
are	 the	 same.	When	 you	 destroy	 the	 composing	 object,	 you
also	 destroy	 the	 parts	 objects	 it	 contains.	 The	 composing
object	 is	 responsible	 for	 allocating	 and	 deallocating	 storage

associated	with	the	parts.

We	 use	 a	 solid	 diamond	 to	 denote	 a	 composition
relationship,	as	shown	in	Figure	6-24.

Figure	6-24:	Composition	relationship

6.5.5	Relationship	Features
For	 dependency,	 association,	 aggregation,	 and	 composition
relationships,	UML	supports	these	10	features,	some	of	which
you’ve	already	seen:

Attribute	names

Roles

Interface	specifiers

Visibility

Multiplicity

Ordering

Constraints

Qualifiers

Navigability

Changeability

These	 features	 don’t	 apply	 to	 the	 inheritance	 relationship,
which	 is	 why	 I	 haven’t	 yet	 described	 it.	 We’ll	 get	 to
inheritance	 shortly	 in	 the	 section	 “Class	 Inheritance
Relationships”	on	page	125,	but	first	we’ll	cover	each	of	these

relationship	features.

NOTE

For	 simplicity’s	 sake	 I	 use	 association	 to	 discuss	 each	 feature,	 but
dependency,	aggregate,	and	composition	all	equally	apply.

6.5.5.1	Association	and	Attribute	Names

The	association	name	attached	to	a	link	can	tell	you	the	type	or
ownership	 of	 the	 interaction,	 but	 it	 doesn’t	 tell	 you	 how	 the
two	 classes	 refer	 to	 each	 other.	 The	 association	 link	 only
provides	a	connection	between	 the	 two	class	objects.	Classes
refer	 to	 each	other	 using	 attribute	 and	operation	 fields	 in	 the
class	definition.

As	you	read	in	“Class	Association	Relationships”	on	page
115,	the	association	diagram	is	effectively	an	alternative	to	the
inline	syntax	for	 incorporating	an	attribute	or	operation	name
within	 a	 class.	 The	 two	 diagrams	 in	 Figure	 6-25	 are
equivalent.

Figure	6-25:	Shorthand	(top)	and	longhand	(bottom)	association	relationship
diagrams

In	 Figure	 6-25,	 the	 shorthand	 version	 is	 missing	 the
attribute	or	operation	name	(pHSensor	 in	 this	 example)	 and	 the

visibility	 (-,	 or	 private),	 but	 you	 can	 supply	 these	 missing
pieces	by	 attaching	 the	 attribute	name	 to	 the	 association	 link
nearest	the	object	that	will	hold	the	object	reference	data	field,
as	shown	in	Figure	6-26.

Like	 the	 inline	 syntax,	 an	 attribute	 name	 consists	 of	 an
attribute	or	operation	name	with	a	visibility	symbol	prefix	(-,	~,
#,	 or	 +).	 The	 visibility	 symbol	 must	 be	 present	 because	 it
differentiates	an	attribute	name	from	a	role	(described	next).

Figure	6-26:	Attribute	name

Another	option	is	 to	combine	the	association	and	attribute
names,	as	shown	in	Figure	6-27.

Figure	6-27:	Combining	association	and	attribute	names

6.5.5.2	Roles

In	Figure	6-27,	 it	 isn’t	entirely	clear	what	 the	 two	classes	are
doing.	The	poolMonitor	class	has	a	pHSensor	field	that	connects	to
the	pHClass,	 but	 otherwise	 the	 diagram	 doesn’t	 explain	what’s
going	 on.	Roles,	 which	 typically	 appear	 at	 both	 ends	 of	 the
association	link,	provide	this	missing	description.

In	 this	 example,	 the	 poolMonitor	 class	 or	 object	 generally
reads	 the	pH	value	from	a	pH	sensor	device	(encapsulated	 in
pHClass).	Conversely,	the	pHClass	class	or	object	can	supply	pH
readings.	 You	 can	 describe	 these	 two	 activities	 (reading	 pH
and	 supplying	 a	 pH	 value)	 using	 roles	 in	UML.	 Figure	6-28

shows	an	example	of	these	roles.

Figure	6-28:	Roles

6.5.5.3	Interface	Specifiers

An	 interface	 is	 a	 set	 of	 operations	 expected	 from	 certain
classes.	 It’s	 similar	 to	 a	 class	 except	 there	 are	 no	 objects
instantiated	 from	 it.	 Classes	 that	 adhere	 to	 an	 interface	 are
guaranteed	 to	 provide	 all	 the	 operations	 present	 in	 it	 (and
provide	 methods	 for	 those	 operations).	 If	 you’re	 a	 C++
programmer,	you	can	think	of	an	interface	as	an	abstract	base
class	containing	only	abstract	member	functions.	Java,	C#,	and
Swift	 have	 their	 own	 special	 syntax	 for	 defining	 interfaces
(also	known	as	protocols).

NOTE

Interface	specifiers	are	supported	in	UML	1.x	but	have	been	dropped	from
UML	 2.0.	 I	 describe	 them	 in	 this	 chapter	 because	 you	 might	 encounter
them,	but	you	shouldn’t	use	them	in	new	UML	documents	because	they’re
deprecated.

If	a	class	implements	an	interface,	it’s	effectively	inheriting
all	 the	 operations	 from	 that	 interface.	That	 is,	 if	 an	 interface
provides	operations	A,	B,	and	C,	and	some	class	 implements
that	 interface,	 that	 class	 must	 also	 provide	 operations	 A,	 B,
and	 C	 (and	 provide	 concrete	 implementations	 of	 these
operations).	There	are	two	distinct	ways	to	specify	an	interface
—with	stereotype	or	ball	notation,	as	shown	in	Figure	6-29.

Figure	6-29:	Interface	syntax:	stereotype	(top)	and	ball	(bottom)	notation

To	 show	 that	 a	 class	 implements	 a	 given	 interface,	 you
draw	a	dashed	line	with	a	hollow	arrowhead	from	the	class	to
the	interface	diagram,	as	shown	in	Figure	6-30.

Figure	6-30:	Interface	implementation	diagram

6.5.5.4	Visibility

Visibility	applies	to	attribute	names	in	an	association	link.	As
noted	 earlier,	 all	 attribute	 names	 must	 be	 prefixed	 with	 a
symbol	 (-,	 ~,	 #,	 or	 +)	 that	 specifies	 their	 visibility	 (private,
package,	protected,	or	public,	respectively).

6.5.5.5	Multiplicity

The	 section	 “Attribute	 Multiplicity”	 on	 page	 111	 described
multiplicity	 for	 inline	 attributes.	 You	 can	 also	 include
multiplicity	in	association	diagrams	by	specifying	multiplicity
values	at	either	or	both	ends	of	an	association	link	(see	Figure
6-31).	 Place	multiplicity	 values	 above	 or	 below	 the	 link	 and
closest	 to	 the	 class	 or	 object	 to	 which	 they	 apply.	 If	 a
multiplicity	value	is	not	provided,	it	defaults	to	1.

Figure	6-31:	Multiplicity	on	an	association	link

Figure	6-31	indicates	that	there	is	a	single	poolMonitor	object,
and	 it	 can	have	one	or	more	associated	 pHSensors	 (there	could
be,	 for	 example,	 separate	 pH	 sensors	 in	 the	 spa	 and	 in	 the
swimming	pool	proper).

This	 example	 shows	 a	 one-to-many	 relationship.	 It’s	 also
possible	 to	 have	 many-to-one	 and	 even	 many-to-many
relationships	 in	 these	 diagrams.	 For	 example,	 Figure	 6-32
shows	 a	 many-to-many	 relationship	 between	 poolMonitor	 and
pHClass	 classes	 or	 objects	 (if	 you’re	 having	 a	 hard	 time
visualizing	 how	 this	would	work,	 consider	 a	water	 park	 that
has	multiple	pools	with	multiple	pH	meters).

Figure	6-32:	Many-to-many	relationship

6.5.5.6	Ordering

UML	provides	the	{ordered}	constraint,	which	you	can	attach	to
any	association	that	has	a	multiplicity	other	than	1	(see	Figure
6-33).

Figure	6-33:	An	ordered	association

When	 appearing	 by	 itself,	 the	 {ordered}	 constraint	 doesn’t
specify	 how	 to	 order	 the	 list	 of	 items,	 only	 that	 they	 are
ordered.	 The	 type	 of	 ordering	 must	 be	 handled	 by	 the
implementation.

6.5.5.7	Constraints

A	constraint	is	application-specific	text	within	braces	that	you
attach	 to	 an	 association	 link.	 Although	 UML	 has	 some
predefined	 constraints	 (like	 the	 {ordered}	 constraint	 just
mentioned),	 you	 usually	 create	 your	 own	 to	 provide	 some
application-defined	control	over	the	association	link.	You	can
even	 specify	 multiple	 constraints	 by	 separating	 them	 with
commas	within	 the	braces.	For	example,	 the	singular	{ordered}
constraint	 in	 Figure	 6-33	 doesn’t	 describe	 how	 to	 sort	 the
temperature	history	information.	You	can	specify	the	ordering
by	 adding	 another	 constraint	 to	 the	 diagram,	 such	 as	 sorted	 by
date/time,	as	shown	in	Figure	6-34.

Figure	6-34:	A	custom	constraint

6.5.5.8	Qualifiers

A	 qualifier	 informs	 the	 implementer	 that	 a	 specified
association	requires	fast	access,	typically	using	a	key	or	index
value.	 For	 example,	 suppose	 the	 temperature	 recording
mechanism	in	Figure	6-34	records	the	pool	temperature	every
minute.	 Over	 the	 span	 of	 a	 week,	 the	 history	 object	 will
accumulate	 10,080	 readings;	 over	 a	 year,	 it	 will	 accumulate
more	than	3.6	million	readings.	To	extract	one	reading	per	day
(say,	the	temperature	at	noon)	over	the	past	year,	you	have	to
scan	through	nearly	4	million	readings	to	produce	365	or	366
readings.	That	 could	 be	 computationally	 intensive	 and	 create
some	 performance	 issues,	 particularly	 for	 real-time	 systems
(which	 the	 pool	 monitor	 system	 is	 likely	 to	 be).	 We	 could
instead	 give	 each	 reading	 a	 unique	 index	 value	 so	 we	 can
extract	only	those	we	need.

To	 create	 a	 UML	 qualifier,	 you	 place	 some	 qualification
(usually	an	attribute	name	in	the	qualifying	class	or	object)	in
a	 rectangle	 at	 one	 end	 of	 the	 association	 link,	 as	 shown	 in
Figure	6-35.

Figure	6-35:	A	qualifier	example

The	 unique	 qualifier	 requires	 all	 tempHistoryClass	 objects	 to
have	unique	dates	and	times;	that	is,	no	two	readings	can	have
the	same	date	and	time	value.

Figure	6-35	suggests	that	the	system	will	maintain	a	special
mechanism	 that	 lets	 us	 directly	 select	 a	 single	 tempHistoryClass
object	based	on	its	date_time	value.	This	is	similar	to	a	key	in	a
database	table.

In	this	example,	 the	multiplicity	values	are	both	1	because
the	 dates	 and	 times	 are	 all	 unique,	 and	 the	 date_time	 qualifier
will	 pick	 a	 specific	 date,	 for	 which	 there	 can	 be	 only	 one
associated	 record.	 (Technically,	 there	 could	 be	 zero	matches;
however,	the	diagram	doesn’t	allow	for	that,	so	there	must	be	a
matching	object.)

The	 multiplicity	 could	 be	 something	 other	 than	 1	 if	 the
date_time	 key	 is	 not	 unique	 among	 the	 history	 objects.	 For
example,	 if	 you	 want	 to	 generate	 a	 report	 with	 all	 the
temperatures	 recorded	 at	 noon,	 you	 could	 specify	 that	 as
shown	in	Figure	6-36.

7

Figure	6-36:	A	qualifier	set	example

Assuming	 you	 have	 a	 year’s	 worth	 of	 readings	 in	 the
tempHistoryClass	object,	you’ll	get	a	 set	of	365/366	 readings,	 all
on	different	dates	but	at	the	same	time	(noon	in	this	example).

One	 detail	 to	 keep	 in	mind	 is	 that	 you	 can	 have	multiple
association	 diagrams	 that	 describe	 variants	 of	 the	 same
association.	For	example,	it’s	not	unreasonable	to	find	Figures
6-34,	 6-35,	 and	 6-36	 in	 the	 same	 set	 of	 UML	 documents.
Figure	 6-34	 describes	 the	 generic	 association	 between	 the
poolMonitor	 class	or	object	and	 the	 tempHistoryClass	 object.	 Figure
6-35	might	describe	a	search	operation	where	you’re	searching
for	a	specific	temperature;	this	operation	might	be	so	common
that	you	want	 to	generate	some	sort	of	associative	array	(that
is,	a	hash	table)	to	improve	its	performance.	Likewise,	Figure
6-36	suggests	that	you	want	another	fast	lookup	table	to	speed
up	collecting	a	set	of	readings	recorded	at	noon.	Each	diagram
exists	in	its	own	context;	they	don’t	conflict	with	one	another.

6.5.5.9	Navigability

In	“Attribute	Names”	on	page	109,	I	introduced	the	concept	of
adding	attribute	names	 to	an	association	 link.	The	suggestion
was	to	place	the	name	close	to	the	class	or	object	that	contains
the	attribute	(that	 is,	 that	 refers	 to	 the	other	class	or	object	at

the	end	of	the	association	link).	Although	implicitly	specifying
the	communication	direction	and	attribute	ownership	this	way
works	well	for	most	simple	diagrams,	it	can	become	confusing
as	 your	 UML	 diagrams	 become	 more	 complex.	 The	 UML
navigability	feature	remedies	this	problem.

Navigability	specifies	the	direction	of	information	flow	in	a
diagram	(that	 is,	how	the	data	navigates	 through	 the	system).
By	default,	association	 links	are	navigable	 in	both	directions.
This	means	that	a	class/object	at	one	end	of	the	link	can	access
data	fields	or	methods	at	the	other	end.	It’s	possible,	however,
to	 specify	 that	 information	 flows	 in	only	one	direction	 along
the	association	link.

To	 indicate	navigability,	place	an	arrowhead	at	 the	end	of
an	association	 link	 to	specify	 the	direction	of	communication
flow	(you	don’t	need	to	place	arrowheads	on	both	ends	of	an
association	 link	 to	 specify	 bidirectional	 communication).	 For
example,	 in	 Figure	 6-37,	 the	 communication	 flows	 from	 the
poolMonitor	 class	 or	 object	 to	 the	 pHClass	 class	 or	 object.	 This
direction	 tells	 you	 two	 things:	 the	 pHSensor	 attribute	 is	 a
member	of	the	poolMonitor	class	or	object,	and	the	pHClass	has	no
attributes	that	let	it	reference	anything	inside	poolMonitor.

Figure	6-37:	Navigability

UML	 2.x	 added	 a	 new	 symbol	 to	 explicitly	 indicate	 that
communication	doesn’t	occur	in	a	given	direction:	you	place	a
small	 ×	 on	 the	 association	 link	 near	 the	 side	 forbidding
communication	(see	Figure	6-38).

Figure	6-38:	Explicit	non-navigability

I	think	this	clutters	the	diagram	and	makes	it	harder	to	read,
so	 I	 stick	 with	 the	 default	 specification.	 You	 can	 decide	 for
yourself	which	option	to	use.

6.5.5.10	Changeability

The	UML	changeability	feature	allows	you	to	specify	whether
a	particular	data	 set	can	be	modified	after	 its	creation.	 In	 the
history	 recording	 example	 from	 Figure	 6-34,	 once	 a
temperature	is	recorded	in	the	history	database,	you	don’t	want
the	 system	 or	 a	 user	 to	 edit	 or	 delete	 that	 value.	 You	 can
achieve	this	by	adding	the	{frozen}	constraint	to	the	association
link,	as	shown	in	Figure	6-39.

Figure	6-39:	A	{frozen}	example

Now	that	you	have	a	better	understanding	of	the	features	of
the	 first	 four	 relationship	 types,	 let’s	 turn	 to	 the	 final	 type:
inheritance.

6.5.6	Class	Inheritance	Relationships
The	inheritance	relationship	(also	known	as	the	generalization
relationship	in	UML)	is	the	strongest,	or	most	tightly	coupled,
form	 of	 class	 relationships.	Any	 change	 you	make	 to	 a	 base
class’s	 fields	will	 have	 an	 immediate	 and	 dramatic	 effect	 on

8

the	 child	 (inheriting)	 classes	 or	 objects. 	 Inheritance	 is	 a
considerably	 different	 relationship	 than	 dependency,
association,	 aggregation,	 or	 composition.	 These	 other
relationships	 describe	 how	 one	 class	 or	 object	 uses	 another
class	 or	 object;	 inheritance	 describes	 how	 one	 class	 includes
everything	from	another	class.

For	 inheritance	we	use	 a	 line	with	 a	hollow	arrowhead	at
one	 end.	The	arrowhead	points	 at	 the	base	 class	 (the	general
item),	and	the	other	end	of	 the	line	connects	 to	 the	inheriting
(derived)	class,	as	shown	in	Figure	6-40.

Figure	6-40:	Inheritance

In	 this	 example,	 spaMonitor	 and	 mainPoolMonitor	 are	 derived
classes	 that	 inherit	 all	 the	 fields	 of	 the	 base	 (ancestor)	 class
poolMonitor	(likely,	these	derived	classes	add	new	attributes	and
operations	as	well).

The	 inheritance	 relationship	 is	 not	 like	 dependency,
association,	aggregation,	or	composition	 in	 that	 features	such
as	multiplicity,	roles,	and	navigability	don’t	apply.

6.6	OBJECTS
You’ve	seen	two	types	of	participants	in	all	the	diagrams	thus
far:	 actors	 and	 classes.	 Specifically,	 most	 items	 have	 been
classes.	However,	from	an	object-oriented	programming	point

8

of	 view,	 classes	 are	merely	 data	 types,	 not	 actual	 data	 items
that	software	can	manipulate.	An	object	is	an	instantiation	of	a
class—the	 actual	 data	 object	 that	 maintains	 state	 within	 an
application.	 In	 UML,	 you	 represent	 an	 object	 using	 a
rectangle,	 just	as	you	represent	classes.	The	difference	 is	 that
you	specify	an	object	name	with	its	associated	class	name,	and
you	 underline	 the	 pair	 in	 the	 object	 diagram,	 as	 shown	 in
Figure	6-41.

Figure	6-41:	An	object

6.7	FOR	MORE	INFORMATION
Bremer,	 Michael.	 The	 User	 Manual	 Manual:	 How	 to
Research,	 Write,	 Test,	 Edit,	 and	 Produce	 a	 Software
Manual.	 Grass	 Valley,	 CA:	 UnTechnical	 Press,	 1999.	 A
sample	 chapter	 is	 available	 at
http://www.untechnicalpress.com/Downloads/UMM%20sa
mple%20doc.pdf.

Larman,	Craig.	Applying	UML	and	Patterns:	An	Introduction
to	 Object-Oriented	 Analysis	 and	 Design	 and	 Iterative
Development.	 3rd	 ed.	 Upper	 Saddle	 River,	 NJ:	 Prentice
Hall,	2004.

Miles,	 Russ,	 and	 Kim	 Hamilton.	 Learning	 UML	 2.0:	 A
Pragmatic	Introduction	to	UML.	Sebastopol,	CA:	O’Reilly
Media,	2003.

Pender,	Tom.	UML	Bible.	Indianapolis:	Wiley,	2003.

http://www.untechnicalpress.com/Downloads/UMM%20sample%20doc.pdf

Pilone,	 Dan,	 and	 Neil	 Pitman.	 UML	 2.0	 in	 a	 Nutshell:	 A
Desktop	 Quick	 Reference.	 2nd	 ed.	 Sebastopol,	 CA:
O’Reilly	Media,	2005.

Roff,	 Jason	 T.	 UML:	 A	 Beginner’s	 Guide.	 Berkeley,	 CA:
McGraw-Hill	Education,	2003.

Tutorials	 Point.	 “UML	 Tutorial.”
https://www.tutorialspoint.com/uml/.

https://www.tutorialspoint.com/uml/

7
UML	INTERACTION	DIAGRAMS

Interaction	diagrams	model	the	operations	that	occur	between
different	 objects	 (participants)	 in	 a	 system.	 There	 are	 three
main	 types	 of	 interaction	 diagrams	 in	 UML:	 sequence,
collaboration	 (communication),	 and	 timing.	 The	 majority	 of
this	 chapter	will	 focus	 on	 sequence	 diagrams,	 followed	 by	 a
very	brief	discussion	of	collaboration	diagrams.

7.1	SEQUENCE	DIAGRAMS
Sequence	diagrams	show	 the	 interaction	between	participants
(actors,	objects)	in	the	order	in	which	it	takes	place.	Whereas
activity	diagrams	describe	 the	particulars	of	one	operation	on
an	object,	sequence	diagrams	tie	activity	diagrams	together	to
show	 the	 order	 in	 which	 multiple	 operations	 occur.	 From	 a
design	 perspective,	 sequence	 diagrams	 are	 more	 informative
than	activity	diagrams	as	they	illustrate	the	overall	architecture
of	 the	 system;	 at	 the	 (lower)	 level	 of	 an	 activity	 diagram,
however,	a	system	architect	can	usually	safely	assume	that	the

software	engineer	implementing	the	system	can	figure	out	the
activities	required	by	the	design.

7.1.1	Lifelines
At	 the	 top	 of	 a	 sequence	 diagram	 you	 draw	 the	 set	 of
participants,	using	rectangles	or	stick	figures	(see	Figure	7-1),
and	 then	 draw	 a	 dashed	 line	 from	 each	 participant	 to	 the
bottom	 of	 the	 diagram	 to	 indicate	 that	 object’s	 lifeline.
Lifelines	 show	 the	 flow	 of	 time	 from	 the	 earliest	 (topmost)
point	of	execution	to	the	latest	(bottommost)	point.	However,
lifelines	by	themselves	do	not	indicate	the	amount	of	time	that
passes,	only	the	passage	of	time	from	the	top	to	the	bottom	of
the	diagram,	and	equal	line	lengths	need	not	correspond	to	the
same	 amount	 of	 time—a	1	 cm	 section	 at	 one	 point	 could	 be
days,	while	a	1	cm	section	elsewhere	could	be	microseconds.

Figure	7-1:	A	basic	sequence	diagram

7.1.2	Message	Types
Communication	 between	 participants	 takes	 the	 form	 of
messages	 (which	 I	 will	 sometimes	 call	 operations),	 which
consist	of	an	arrow	drawn	between	lifelines,	or	even	from	one
lifeline	to	itself.

There	 are	 four	 types	 of	 message	 arrows	 you	 can	 use,	 as
shown	in	Figure	7-2.

Figure	7-2:	Message	types	in	sequence	diagrams

Synchronous	messages	are	the	typical	call/return	operation
that	most	programs	use	(to	execute	object	methods,	functions,
and	 procedures).	 The	 sender	 suspends	 execution	 until	 the
receiver	returns	control.

Return	 messages	 indicate	 that	 control	 returns	 from	 a
synchronous	message	back	to	the	message	sender,	but	they	are
purely	 optional	 in	 a	 sequence	 diagram.	 An	 object	 cannot
continue	execution	until	a	synchronous	message	completes,	so
the	presence	of	some	other	message	(received	or	sent)	on	the
same	timeline	inherently	implies	a	return	operation.	Because	a
large	 number	 of	 return	 arrows	 can	 obfuscate	 a	 sequence
diagram,	it’s	best	to	leave	them	off	if	the	diagram	starts	to	get
cluttered.	If	the	sequence	diagram	is	relatively	clean,	however,

a	return	arrow	can	help	show	exactly	what	is	happening.

Asynchronous	messages	trigger	an	invocation	of	some	code
in	 the	receiver,	but	 the	message	sender	does	not	have	 to	wait
for	 a	 return	 message	 before	 continuing	 execution.	 For	 this
reason,	there’s	no	need	to	draw	an	explicit	return	arrow	for	an
asynchronous	call	in	your	sequence	diagrams.

Flat	messages	can	be	either	synchronous	or	asynchronous.
Use	a	flat	message	when	the	type	doesn’t	matter	for	the	design
and	 you	 want	 to	 leave	 the	 choice	 up	 to	 the	 engineer
implementing	 the	 code.	 As	 a	 general	 rule,	 you	 do	 not	 draw
return	arrows	for	flat	messages	because	that	would	imply	that
the	implementer	must	use	a	synchronous	call.

NOTE

Flat	 messages	 are	 UML	 1.x	 entities	 only.	 In	 UML	 2.0,	 asynchronous
messages	use	the	full	open	arrowhead	instead.

7.1.3	Message	Labels
When	 you	 draw	 a	 message,	 you	 must	 attach	 a	 label	 to	 the
message’s	 arrow.	This	 label	 could	 simply	be	 a	description	of
the	message,	as	in	Figure	7-3.

Figure	7-3:	Message	labels

The	 sequence	 of	 messages	 is	 indicated	 by	 their	 vertical
placement.	 In	 Figure	 7-3,	 the	 “Select	 immediate	 pool	 clean”
label	is	the	first	message	line	in	the	diagram,	meaning	it	is	the
first	operation	to	execute.	Moving	downward,	“Turn	on	pump”
is	 the	 second	 message	 line,	 so	 it	 executes	 next.	 The	 return
from	 “Turn	 on	 pump”	 is	 the	 third	 operation	 and	 the	 return
from	“Select	immediate	pool	clean”	is	the	fourth.

7.1.4	Message	Numbers
As	your	sequence	diagrams	become	more	complex,	it	may	be
difficult	 to	 determine	 the	 execution	 order	 from	 the	 message
position	 alone,	 so	 it	 can	 be	 helpful	 to	 attach	 additional
indicators	like	numbers	to	each	message	label.	Figure	7-4	uses
sequential	 integers,	 though	 UML	 doesn’t	 require	 this.	 You
could	use	numbers	 like	3.2.4	or	 even	non-numeric	 indicators
(for	example,	A,	B,	C).	However,	the	goal	is	to	make	it	easy	to
determine	 the	 message	 sequence,	 so	 if	 you	 get	 too	 carried
away	here	you	might	defeat	that	purpose.

Figure	7-4:	Message	numbers

Although	 the	 message	 labels	 you’ve	 seen	 thus	 far	 are
relatively	 straightforward	 descriptions,	 it’s	 not	 uncommon	 to
use	the	actual	operation	names,	parameters,	and	return	values
as	labels	on	message	arrows,	as	in	Figure	7-5.

Figure	7-5:	Message	arguments	and	return	values

7.1.5	Guard	Conditions
Your	 message	 labels	 can	 also	 include	 guard	 conditions:

Boolean	expressions	enclosed	 in	brackets	 (see	Figure	7-6).	 If
the	 guard	 expression	 evaluates	 to	 true,	 the	 system	 sends	 the
message;	 if	 it	 evaluates	 to	 false,	 the	 system	does	not	 send	 the
message.

Figure	7-6:	Message	guard	conditions

In	Figure	7-6,	the	pMon	object	sends	a	pump(100)	message	 to
pump	only	if	pumpPower	is	on	(true).	If	pumpPower	is	off	(false)	and	the
pump(100)	message	 does	 not	 execute,	 the	 corresponding	 return
operation	 (sequence	 item	 3)	 will	 not	 execute	 either,	 and
control	will	move	to	the	next	outgoing	arrow	item	in	the	pMon

lifeline	(sequence	item	4,	returning	control	to	the	user	object).

7.1.6	Iterations
You	can	also	specify	the	number	of	times	a	message	executes
by	 providing	 an	 iteration	 count	 in	 a	 sequence	 diagram.	 To
specify	 an	 iteration,	 you	 use	 an	 asterisk	 symbol	 (*)	 followed
by	a	guard	condition	or	 for	 loop	iteration	count	(see	Figure	7-
7).	The	system	will	repeatedly	send	the	message	as	long	as	the
guard	condition	is	true.

Figure	7-7:	Partial	sequence	diagram	with	iteration

In	 Figure	 7-7,	 the	 message	 executes	 100	 times,	 with	 the
variable	 i	 taking	 on	 the	 value	 1	 through	 100,	 incrementing	 on
each	 iteration.	 If	 the	 pumpPwrAndDelay	 function	 applies	 the
percent	 power	 specified	 as	 the	 argument	 and	 delays	 for	 1
second,	then	in	about	1	minute,	40	seconds,	the	pump	will	be
running	at	full	speed	(increasing	by	1	percent	of	the	total	speed
each	second).

7.1.7	Long	Delays	and	Time	Constraints
Sequence	 diagrams	 typically	 describe	 only	 the	 order	 of
messages,	 not	 the	 amount	 of	 time	 each	 message	 takes	 to
execute.	 Sometimes,	 however,	 a	 designer	 might	 want	 to
indicate	 that	 a	 particular	 operation	 might	 take	 a	 long	 time
relative	 to	 others.	 This	 is	 particularly	 common	 when	 one
object	 sends	 a	message	 to	 another	 object	 located	 outside	 the
bounds	 of	 the	 current	 system	 (for	 example,	when	 a	 software
component	sends	a	message	to	some	object	on	a	remote	server
across	 the	 internet),	which	we’ll	discuss	shortly.	You	indicate
that	 an	 operation	 will	 take	 longer	 by	 pointing	 the	 message
arrow	 slightly	 downward.	 In	 Figure	 7-8,	 for	 example,	 you
would	 expect	 the	 scheduledClean()	 operation	 to	 take	 more	 time
than	a	typical	operation.

Figure	7-8:	Timed	messages	with	timing	constraints

You	must	also	specify	the	expected	amount	of	time	for	each
message	 by	 adding	 some	 sort	 of	 constraint	 to	 the	 diagram.
Figure	7-8	demonstrates	this	with	a	dashed	vertical	arrow	from
the	 start	 of	 the	 scheduledClean()	 operation	 to	 the	 point	 on	 the
lifeline	where	the	system	returns	control	to	the	Timer	Module
actor	 (probably	 the	 physical	 timer	 on	 the	 pool	 monitor
system).	 The	 required	 time	 constraint	 appears	 inside	 braces
next	to	the	dashed	arrow.

7.1.8	External	Objects
Occasionally	 a	 component	 of	 a	 sequence	 diagram	 must
communicate	 with	 some	 object	 external	 to	 the	 system.	 For
example,	 some	 code	 in	 the	 pool	 monitor	 might	 check	 the
salinity	 level	 and	 send	 an	 SMS	message	 to	 the	 owner’s	 cell
phone	 if	 it	 drops	 too	 low.	 The	 code	 to	 actually	 transmit	 the
SMS	message	 is	 probably	 handled	 by	 an	 Internet	 of	 Things
(IoT)	 device	 and	 thus	 outside	 the	 scope	 of	 the	 pool	monitor
software;	hence,	the	SMS	code	is	an	external	object.

You	draw	a	heavy	border	around	external	objects	and	use	a
solid	 line	 for	 their	 lifelines	 rather	 than	 a	 dashed	 line	 (see

Figure	7-9).

Figure	7-9:	External	objects	in	a	sequence	diagram

In	Figure	 7-9,	 the	 Timer	Module	makes	 an	 asynchronous
call	 to	 the	 salinity	 object,	 and	 there	 is	 no	 return	 from	 the
salinityCheck()	 operation.	After	 that	 call,	 the	 Timer	Module	 can
perform	 other	 tasks	 (not	 shown	 in	 this	 simple	 diagram).	 Ten
minutes	later,	as	noted	by	the	time	constraint,	the	salinity	object
makes	an	asynchronous	call	to	the	Timer	Module	actor	and	has
it	update	the	salinity	value	on	the	display.

Because	 there	 isn’t	 an	 explicit	 time	 constraint	 on	 the
sendMsg()	 operation,	 it	 could	 occur	 any	 time	 after	 the
salinityCheck()	 operation	 and	 before	 the	 updateSalinityDisp()

operation;	 this	 is	 indicated	 by	 the	 sendMsg()	 message	 arrow’s
position	between	the	other	two	messages.

7.1.9	Activation	Bars
Activation	 bars	 indicate	 that	 an	 object	 is	 instantiated	 and
active,	 and	 appear	 as	 open	 rectangles	 across	 a	 lifeline	 (see
Figure	7-10).	They	are	optional,	as	you	can	generally	infer	the
lifetime	 of	 an	 object	 simply	 by	 looking	 at	 the	 messages

traveling	to	and	from	it.

Figure	7-10:	Activation	bars

NOTE

For	 the	most	 part,	 activation	 bars	 clutter	 up	 sequence	 diagrams,	 so	 this
book	will	not	use	them.	They’re	described	here	just	in	case	you	encounter
them	in	sequence	diagrams	from	other	sources.

7.1.10	Branching
As	noted	 in	“Guard	Conditions”	on	page	131,	you	can	apply
guard	conditions	to	a	message	that	say,	effectively,	“if	true,	then
execute	message;	 else,	 continue	 along	 this	 lifeline.”	Another
handy	 tool	 is	 branching—the	 equivalent	 of	 the	 C-style
switch/case	 statement	 where	 you	 can	 select	 one	 of	 several
messages	 to	 execute	 based	 on	 a	 set	 of	 guard	 conditions,	 one
guard	for	each	message.	In	order	to	execute	different	messages
based	 on	 whether	 a	 pool	 uses	 chlorine	 or	 bromine	 as	 a
sanitizer,	 you	 might	 be	 tempted	 to	 draw	 branching	 logic	 as
shown	in	Figure	7-11.

Figure	7-11:	Bad	implementation	of	branching	logic

In	 one	 aspect,	 this	 diagram	 makes	 perfect	 sense.	 If	 the
sanitizer	 for	 this	 particular	 pool	 is	 bromine	 rather	 than
chlorine,	the	first	message	does	not	execute	and	control	flows
down	 to	 the	 second	 message,	 which	 does	 execute.	 The
problem	with	this	diagram	is	that	the	two	messages	appear	at
different	points	on	the	lifeline	and,	therefore,	could	execute	at
completely	 different	 times.	 Particularly	 as	 your	 sequence
diagrams	 get	more	 complex,	 some	 other	message	 invocation
could	 wind	 up	 between	 these	 two—and	 thus	 would	 execute
prior	to	the	getBromine()	message.	Instead,	if	the	sanitizer	is	not
chlorine	you’d	want	 to	 immediately	check	to	see	if	 it	 is	bromine,
with	 no	 possibility	 of	 intervening	 messages.	 Figure	 7-12
shows	the	proper	way	to	draw	this	logic.

Figure	7-12:	Good	implementation	of	branching	logic

Drawing	branching	logic	with	the	arrow	tails	that	start	from
the	same	vertical	position	and	 the	arrowheads	 that	end	at	 the
same	vertical	position	avoids	any	ambiguity	with	the	sequence
of	execution	(assuming	that	the	guard	conditions	are	mutually
exclusive—that	 is,	 it	 is	not	possible	for	both	conditions	 to	be
simultaneously	true).

Branching	 uses	 slanted	 message	 arrows	 similar	 to	 long
delays,	 but	 a	 long	 delay	 item	 will	 have	 an	 associated	 time
constraint.

7.1.11	Alternative	Flows
There’s	another	potential	 issue	with	branching:	what	happens
when	you	need	 to	 send	one	of	 two	different	messages	 to	 the
same	 destination	 object?	 Because	 the	 arrow	 tails	 and	 heads
must	start	and	end,	respectively,	at	the	same	vertical	positions
for	both	arrows,	the	two	arrows	would	overlay	each	other	and
there	would	be	no	indication	that	branching	takes	place	at	all.
The	solution	to	this	problem	is	to	use	an	alternative	flow.

In	 an	 alternative	 flow,	 a	 single	 lifeline	 splits	 into	 two
separate	lifelines	at	some	point	(see	Figure	7-13).

Figure	7-13:	Alternative	flows

1

In	this	example,	 the	Timer	Module	has	to	choose	between
retrieving	 the	 current	 level	 of	 salinity	 (NaCl)	 or	 sodium
hydroxide	(NaOH).	The	getSalinity()	and	getNaOH()	operations	are
methods	within	the	same	class;	therefore,	their	message	arrows
will	both	point	at	the	same	spot	in	the	ClGen	 lifeline.	To	avoid
overlapping	 the	message	 arrows,	 Figure	 7-13	 splits	 the	ClGen
lifeline	into	two	lifelines:	the	original	and	an	alternative	flow.

After	the	message	invocation,	you	can	merge	the	two	flows
back	together	if	desired.

7.1.12	Object	Creation	and	Destruction
So	far	in	the	examples,	the	objects	have	existed	throughout	the
lifetime	 of	 the	 sequence	 diagram;	 that	 is,	 all	 objects	 existed
prior	 to	 the	 execution	 of	 the	 first	 message	 (operation)	 and
persist	 after	 the	 execution	 of	 the	 last	message.	 In	 real-world
designs,	 you’ll	 need	 to	 create	 and	 destroy	 objects	 that	 don’t
exist	for	the	full	duration	of	the	program’s	execution.

Object	creation	and	destruction	are	messages	 just	 like	any
other.	The	 common	convention	 in	UML	 is	 to	 use	 the	 special
messages	 «create»	 and	 «destroy»	 (see	 Figure	 7-14)	 to	 show
object	 lifetimes	 within	 the	 sequence	 diagram;	 however,	 you
can	use	any	message	name	you	 like.	The	X	at	 the	end	of	 the
cleanProcess	lifeline,	immediately	below	the	«destroy»	operation,
denotes	 the	 end	 of	 the	 lifeline,	 because	 the	 object	 no	 longer
exists.

Figure	7-14:	Object	creation	and	destruction

This	 example	 uses	 a	 dropped	 title	 box	 to	 indicate	 the
beginning	of	 the	 lifeline	 for	 a	newly	created	object.	As	Russ
Miles	 and	 Kim	 Hamilton	 point	 out	 in	 Learning	 UML	 2.0
(O’Reilly,	2003),	many	standardized	UML	tools	don’t	support
using	dropped	title	boxes,	allowing	you	to	place	the	object	title
boxes	 only	 at	 the	 top	 of	 the	 diagram.	 There	 are	 a	 couple	 of
solutions	to	this	problem	that	should	work	with	most	standard
UML	tools.

You	can	put	the	object	at	the	top	of	the	diagram	and	add	a
comment	to	explicitly	indicate	object	creation	and	destruction
at	the	points	where	they	occur	(see	Figure	7-15).

Figure	7-15:	Using	notes	to	indicate	object	lifetime

You	can	also	use	an	alternative	flow	to	indicate	the	lifetime
of	the	object	(see	Figure	7-16).

Figure	7-16:	Using	alternative	flows	to	indicate	object	lifetime

Activation	 bars	 provide	 a	 third	 alternative	 that	 might	 be
clearer	here.

7.1.13	Sequence	Fragments
UML	2.0	added	sequence	fragments	 to	show	loops,	branches,
and	other	alternatives,	enabling	you	to	better	manage	sequence
diagrams.	 UML	 defines	 several	 standard	 sequence	 fragment

types	 you	 can	 use,	 defined	 briefly	 in	 Table	 7-1	 (full
descriptions	appear	later	in	this	section).

Table	7-1:	Brief	Descriptions	of	Sequence	Fragment	Types

alt Executes	only	the	alternative	fragment	that	is	true	
(think	of	an	if/else	or	switch	statement).

assert Notes	that	operations	within	the	fragment	are	valid	if	a	
guard	condition	is	true.

break Exits	a	loop	fragment	(based	on	some	guard	
condition).

consider Provides	a	list	of	valid	messages	in	a	sequence	
fragment.

ignore Provides	a	list	of	invalid	messages	in	a	sequence	
fragment.

loop Runs	multiple	times	and	the	guard	condition	
determines	whether	the	fragment	repeats.

neg Never	executes.

opt Executes	only	if	the	associated	condition	is	true.	
Comparable	to	alt	with	only	one	alternative	fragment.

par Runs	multiple	fragments	in	parallel.

ref Indicates	a	call	to	another	sequence	diagram.

region (Also	known	as	critical.)	Defines	a	critical	region	in	
which	only	one	thread	of	execution	is	possible.

seq Indicates	that	operations	(in	a	multitasking	
environment)	must	occur	in	a	specific	sequence.

strict A	stricter	version	of	seq.

In	 general,	 you	 draw	 sequence	 fragments	 as	 a	 rectangle
surrounding	 the	 messages,	 with	 a	 special	 penta-rectangle
symbol	(a	rectangle	with	the	lower-right	corner	cropped)	in	its
upper-left	 corner	 that	 contains	 the	UML	 fragment	 name/type
(see	Figure	7-17;	substitute	any	actual	fragment	type	for	typ	in
this	diagram).

Figure	7-17:	Generic	sequence	fragment	form

For	 example,	 if	 you	 wanted	 to	 repeat	 a	 sequence	 of
messages	several	times,	you	would	enclose	those	messages	in
a	loop	sequence	fragment.	This	tells	the	engineer	implementing
the	 program	 to	 repeat	 those	 messages	 the	 number	 of	 times
specified	by	the	loop	fragment.

You	 can	 also	 include	 an	 optional	 additional	 info	 item,
which	 is	 typically	 a	 guard	 condition	 or	 iteration	 count.	 The
following	 subsections	 describe	 the	 sequence	 fragment	 types
from	Table	7-1	in	detail,	as	well	as	any	additional	information
they	may	require.

7.1.13.1	ref

There	 are	 two	 components	 to	 a	 ref	 sequence	 fragment:	 the
UML	 interaction	 occurrence	 and	 the	 reference	 itself.	 An
interaction	 occurrence	 is	 a	 stand-alone	 sequence	 diagram
corresponding	to	a	subroutine	(procedure	or	function)	in	code.
It	 is	 surrounded	 by	 a	 sequence	 fragment	 box.	 The	 penta-
rectangle	 in	 the	 upper-left	 corner	 of	 the	 box	 contains	 sd	 (for
sequence	diagram)	 followed	by	 the	 name	of	 the	 ref	 fragment
and	any	arguments	you	want	to	assign	to	it	(see	Figure	7-18).

Figure	7-18:	An	interaction	occurrence	example

The	leftmost	incoming	arrow	corresponds	to	the	subroutine
entry	point.	 If	 this	 isn’t	 present,	 you	 can	 assume	 that	 control
flows	to	the	leftmost	participant	at	the	top	of	its	lifeline.

Now	we	come	to	the	second	component	of	the	ref	sequence
fragment:	 referencing	 the	 interaction	 occurrence	 within	 a
different	sequence	diagram	(see	Figure	7-19).

Figure	7-19:	A	ref	sequence	fragment	example

This	 corresponds	 to	 a	 call	 to	 a	 subroutine	 (procedure	 or
function)	in	code.

7.1.13.2	consider	and	ignore

The	consider	sequence	fragment	lists	all	messages	that	are	valid
within	 a	 section	 of	 the	 sequence	 diagram;	 all	 other
messages/operators	are	 illegal.	The	 ignore	operator	 lists	names
of	messages	 that	are	 invalid	within	a	 section	of	 the	 sequence
diagram;	all	other	operators/messages	are	legal.

consider	 and	 ignore	 work	 either	 as	 operators	 in	 conjunction
with	an	existing	sequence	fragment	or	as	sequence	fragments
by	themselves.	A	consider	or	 ignore	operator	 takes	 the	following
form:

consider{	comma-separated-list-of-operators	}
ignore{	comma-separated-list-of-operators	}

The	consider	and	ignore	operators	may	appear	after	the	sd	name
title	 in	 an	 interaction	 occurrence	 (see	Figure	7-20),	 in	which
case	they	apply	to	the	entire	diagram.

Figure	7-20:	A	consider	operator	example

You	may	 also	 create	 a	 sequence	 fragment	 within	 another
sequence	 diagram	 and	 label	 that	 fragment	 with	 a	 consider	 or
ignore	operation.	In	that	case,	consider	or	ignore	applies	only	to	the
messages	within	the	specific	sequence	fragment	(see	Figure	7-
21).

Figure	7-21:	An	ignore	sequence	fragment	example

If	 these	 fragment	 types	 seem	 strange,	 consider	 creating	 a
very	generic	 ref	 fragment	 that	 handles	 only	 certain	messages,
but	 then	referencing	 that	 ref	 from	several	different	places	 that
might	pass	along	unhandled	messages	along	with	the	handled
ones.	By	adding	a	 consider	or	 ignore	operator	 to	 the	 ref,	 you	 can

have	 the	 fragment	 simply	 ignore	 the	 messages	 it	 doesn’t
explicitly	 handle,	 which	 allows	 you	 to	 use	 that	 ref	 without
having	to	add	any	extra	design	to	the	system.

7.1.13.3	assert

The	assert	sequence	fragment	tells	the	system	implementer	that
the	messages	within	it	are	valid	only	if	some	guard	condition
evaluates	to	true.	At	the	end	of	the	assert	fragment,	you	typically
provide	some	sort	of	Boolean	condition	(the	guard	condition)
that	must	be	 true	once	the	sequence	is	complete	(see	Figure	7-
22).	 If	 the	 condition	 isn’t	 true	 after	 the	 assert	 fragment	 has
finished	executing,	 the	design	can’t	guarantee	correct	 results.
The	 assert	 reminds	 the	engineer	 to	verify	 that	 this	condition	 is
indeed	true	by,	for	example,	using	a	C++	assert	macro	invocation
(or	 something	 similar	 in	 other	 languages,	 or	 even	 just	 an	 if
statement).

Figure	7-22:	An	assert	sequence	fragment	example

In	 C/C++	 you’d	 probably	 implement	 the	 sequence	 in

Figure	7-22	using	code	like	this:

Object3->msg1();																		//	Inside	example
Object4->msg2();																		//	Inside	Object3::msg1
assert(condition	==	TRUE);						//	Inside	Object3::msg1

7.1.13.4	loop

The	 loop	 sequence	 fragment	 indicates	 iteration.	You	place	 the
loop	 operator	 in	 the	 penta-rectangle	 associated	 with	 the
sequence	 fragment,	 and	 may	 also	 include	 a	 guard	 condition
enclosed	in	brackets	at	the	top	of	the	sequence	fragment.	The
combination	of	 the	 loop	operator	and	guard	condition	controls
the	number	of	iterations.

The	simplest	form	of	this	sequence	fragment	is	the	infinite
loop,	consisting	of	the	loop	operator	without	any	arguments	and
without	 a	 guard	 condition	 (see	 Figure	 7-23).	Most	 “infinite”
loops	 actually	 aren’t	 infinite,	 but	 terminate	 with	 a	 break

sequence	fragment	when	some	condition	is	true	(we’ll	discuss
the	break	sequence	in	the	next	section).

Figure	7-23:	An	infinite	loop

The	 loop	 in	 Figure	 7-23	 is	 roughly	 equivalent	 to	 the
following	C/C++	code:

//	This	loop	appears	inside	Object3::msg1
for(;;)
{
						Object4->msg2();
}	//	endfor

Or,	alternatively:

while(1)
{
						Object4->msg2()
}	//	end	while

NOTE

Personally,	I	prefer	the	following:

#define	ever	;;
	.
	.
	.
for(ever)
{
						Object4->msg2();
}	//	endfor

I	feel	this	is	the	most	readable	solution.	Of	course,	if	you’re	“anti-macro	at
all	costs,”	you	would	probably	disagree	with	my	choice	for	an	infinite	loop!

Definite	 loops	 execute	 a	 fixed	 number	 of	 times	 and	 can
appear	 in	 two	 forms.	 The	 first	 is	 loop(integer),	 which	 is
shorthand	for	loop(0,	integer);	that	is,	it	will	execute	a	minimum
of	zero	times	and	a	maximum	of	integer	times.	The	second	is
loop(minInt,	maxInt),	which	indicates	that	the	loop	will	execute
a	minimum	of	minInt	 times	and	a	maximum	of	maxInt	times.
Without	 a	 guard	 condition,	 the	minimum	 count	 is	 irrelevant;
the	 loop	 will	 always	 execute	maxInt	 times.	 Therefore,	 most
definite	 loops	 use	 the	 form	 loop(integer)	 where	 integer	 is	 the

number	of	iterations	to	perform	(see	Figure	7-24).

Figure	7-24:	A	definite	loop

The	 loop	 in	 Figure	 7-24	 is	 roughly	 equivalent	 to	 the
following	C/C++	code:

//	This	code	appears	inside	Object3::msg1
for(i	=	1;	i<=10;	++i)
{
						Object4->msg2();
}	//	end	for

You	 can	 also	 use	 the	 multiplicity	 symbol	 *	 to	 denote
infinity.	 Therefore,	 loop(*)	 is	 equivalent	 to	 loop(0,	 *)	 which	 is
equivalent	to	loop	(in	other	words,	you	get	an	infinite	loop).

An	 indefinite	 loop	 executes	 an	 indeterminate 	 number	 of
times	(corresponding	to	while,	do/while,	repeat/until,	and	other	loop
forms	 in	 programming	 languages).	 Indefinite	 loops	 include	 a
guard	 condition	 as	 part	 of	 the	 loop	 sequence	 fragment,
meaning	 the	 loop	 sequence	 fragment	 will	 always	 execute	 the
loop	minInt	 times	 (zero	 times	 if	minInt	 is	 not	 present).	After
minInt	 iterations,	 the	 loop	 sequence	 fragment	 will	 begin
testing	 the	 guard	 condition	 and	 continue	 iterating	 only	while

2

3

the	 guard	 condition	 is	 true.	 The	 loop	 sequence	 fragment	 will
execute	at	most	maxInt	 iterations	(total,	not	in	addition	to	the
minInt	 iterations).	 Figure	 7-25	 shows	 a	 traditional	 while-type
loop	 that	executes	a	minimum	of	zero	 times	and	a	maximum
of	infinity	 times,	as	 long	as	 the	guard	condition	([cond	==	 true])
evaluates	to	true.

Figure	7-25:	An	indefinite	while	loop

The	 loop	 in	 Figure	 7-25	 is	 roughly	 equivalent	 to	 the
following	C/C++	code:

//	This	code	appears	inside	Object3::msg1
while(cond	==	TRUE)
{
						Object4->msg2();
}	//	end	while

You	can	create	a	do..while	loop	by	setting	the	minInt	value	to
1	and	 the	maxInt	 value	 to	 *,	 and	 then	specifying	 the	Boolean
expression	to	continue	loop	execution	(see	Figure	7-26).

Figure	7-26:	An	indefinite	do..while	loop

The	 loop	 in	 Figure	 7-26	 is	 roughly	 equivalent	 to	 the
following	C/C++	code:

//	This	code	appears	inside	Object3::msg1
do
{
						Object4->msg2();
}	while(cond	==	TRUE);

It’s	possible	 to	create	many	other	complex	loop	types,	but
I’ll	leave	that	as	an	exercise	for	interested	readers.

7.1.13.5	break

The	 break	 sequence	 fragment	 consists	 of	 the	 word	 break	 in	 a
penta-rectangle	 along	 with	 a	 guard	 condition.	 If	 the	 guard
condition	 evaluates	 to	 true,	 then	 the	 system	 executes	 the
sequence	 inside	 the	 break	 sequence	 fragment,	 after	 which
control	immediately	exits	the	enclosing	sequence	fragment.	If
the	enclosing	sequence	fragment	is	a	loop,	control	immediately
executes	to	the	first	message	past	the	loop	(like	a	break	statement
in	 languages	 like	 Swift,	 C/C++,	 and	 Java).	 Figure	 7-27

provides	an	example	of	such	a	loop.

Figure	7-27:	An	example	of	the	break	sequence	fragment

The	 loop	 in	 Figure	 7-27	 is	 roughly	 equivalent	 to	 the
following	C++	code	fragment:

//	This	code	appears	inside	Object3::msg1
while(cond	==	TRUE)
{
					Object4->msg2();
					if(bcnt	>=	10)
					{
										Object4->msg3();
										break;
					}	//	end	if
					Object4->msg4();
}	//	end	while	loop

If	the	most	recent	break-compatible	enclosing	sequence	is	a
subroutine,	 not	 a	 loop,	 the	 break	 sequence	 fragment	 behaves

like	a	return	from	a	subroutine	operation.

7.1.13.6	opt	and	alt

The	 opt	 and	 alt	 sequence	 fragments	 allow	 you	 to	 control	 the
execution	of	a	set	of	messages	with	a	single	guard	condition—
particularly	 if	 the	 values	 of	 the	 components	 making	 up	 the
guard	 condition	 could	 change	 over	 the	 execution	 of	 the
sequence.

The	 opt	 sequence	 fragment	 is	 like	 a	 simple	 if	 statement
without	 an	 else	 clause.	 You	 attach	 a	 guard	 condition	 and	 the
system	 will	 execute	 the	 sequence	 contained	 within	 the	 opt
fragment	 only	 if	 the	 guard	 condition	 evaluates	 to	 true	 (see
Figure	7-28).

Figure	7-28:	An	example	of	the	opt	sequence	fragment

The	 example	 in	 Figure	 7-28	 is	 roughly	 equivalent	 to	 the
following	C/C++	code:

//	Assumption:	Class2	is	Object2's	data	type.	Because	control
//	transfers	into	the	Object2	sequence	at	the	top	of	its	
//	lifeline,	example	must	be	a	member	function	of	Object2/Class2

void	Class2::example(void)
{
						Object3->msg1();
}	//	end	example
--snip--
//				This	code	appears	in	Object3::msg1	
if(cond	==	TRUE)
{
						Object4->msg2();
}	//	end	if

For	 more	 complex	 logic,	 use	 the	 alt	 sequence	 fragment,
which	acts	like	an	if/else	or	switch/case.	To	create	an	alt	 sequence
fragment,	 you	 combine	 several	 rectangles,	 each	with	 its	 own
guard	 condition	 and	 an	 optional	 else,	 to	 form	 a	 multiway
decision	(see	Figure	7-29).

Figure	7-29:	An	alt	sequence	fragment

The	 interaction	 occurrence	 in	 Figure	 7-29	 is	 roughly
equivalent	to	the	following	code:

//	Assumption:	Class2	is	Object2's	data	type.	Because	control
//	transfers	into	the	Object2	sequence	at	the	top	of	its
//	lifeline,	example	must	be	a	member	function	of	Object2/Class2

void	Class2::example(void)
{
						Object3->msg1();
}	//	end	example

--snip--
//				This	code	appears	in	Object3::msg1	
if(cond1	==	TRUE)
{
						Object4->msg2a();

}
else	if(cond2	==	TRUE)
{
						Object4->msg2b();
}
else	if(cond3	==	TRUE)
{
						Object3->msg2c();
}
else
{
						Object4->msg2d();
}	//	end	if

7.1.13.7	neg

You	 use	 a	 neg	 sequence	 fragment	 to	 enclose	 a	 sequence	 that
will	 not	 be	 part	 of	 the	 final	 design.	 Effectively,	 using	 neg
comments	 out	 the	 enclosed	 sequence.	 Why	 even	 include	 a
sequence	if	it’s	not	going	to	be	part	of	the	design?	There	are	at
least	two	good	reasons:	code	generation	and	future	features.

Although,	 for	 the	 most	 part,	 UML	 is	 a	 diagramming
language	 intended	 to	 help	 with	 system	 design	 prior	 to
implementation	in	a	programming	language	like	Java	or	Swift,
there	are	certain	UML	 tools	 that	will	 convert	UML	diagrams
directly	 into	 code.	 During	 development,	 you	 might	 want	 to
include	some	diagrams	that	illustrate	something	but	are	not	yet
complete	 (certainly	 not	 to	 the	 point	 of	 producing	 executable
code).	 In	 this	 scenario,	 you	 could	 use	 the	 neg	 sequence
fragment	 to	 turn	 off	 the	 code	 generation	 for	 those	 sequences
that	aren’t	quite	yet	ready	for	prime	time.

Even	 if	 you	don’t	 intend	 to	generate	 code	directly	 from	a
UML	 diagram,	 you	 might	 want	 to	 use	 the	 neg	 for	 future
features.	 When	 you	 hand	 your	 UML	 diagrams	 off	 to	 an

engineer	 to	 implement	 the	 design,	 they	 represent	 a	 contract
that	says,	“This	is	how	the	code	is	to	be	written.”	Sometimes,
though,	you’ll	want	your	diagrams	 to	 show	 features	 that	you
plan	 to	 include	 in	a	future	version	of	 the	software,	but	not	 in
the	 first	 (or	 current)	 version.	The	 neg	 sequence	 fragment	 is	 a
clean	way	to	tell	the	engineer	to	ignore	that	part	of	the	design.
Figure	 7-30	 shows	 a	 simple	 example	 of	 the	 neg	 sequence
fragment.

Figure	7-30:	An	example	of	the	neg	sequence	fragment

The	 example	 in	 Figure	 7-30	 is	 roughly	 equivalent	 to	 the
following	C/C++	code:

//	Assumption:	Class2	is	Object2's	data	type.	Because	control
//	transfers	into	the	Object2	sequence	at	the	top	of	its
//	lifeline,	example	must	be	a	member	function	of	Object2/Class2

void	Class2::example(void)
{
						Object3->msg1();
}	//	end	example

7.1.13.8	par

The	par	 sequence	 fragment,	an	example	of	which	 is	 shown	 in

4

Figure	 7-31,	 states	 that	 the	 enclosed	 sequences 	 (operations)
can	be	executed	in	parallel	with	each	other.

Figure	7-31:	An	example	of	the	par	sequence	fragment

Figure	 7-31	 shows	 three	 operands:	 the	 sequence	 with
{msg2a,	msg2b,	msg2c},	 the	 sequence	 with	 {msg3a,	msg3b,	 msg3c},
and	 the	 sequence	with	{msg4a,	msg4b,	msg4c}.	The	 par	 sequence
fragment	requires	that	the	operations	within	a	given	sequence
must	execute	in	the	order	 in	which	they	appear	(for	example,
msg2a,	 then	msg2b,	 then	msg2c).	 However,	 the	 system	 is	 free	 to
interleave	 operations	 from	 different	 operands	 as	 long	 as	 it
maintains	the	internal	order	of	those	operands.	So,	in	Figure	7-
31,	 the	 order	 {msg2a,	 msg3a,	 msg3b,	 msg4a,	 msg2b,	 msg2c,	 msg4b,

4

msg4c,	msg3c}	is	legitimate,	as	is	{msg4a,	msg4b,	msg4c,	msg3a,	msg3b,
msg3c,	msg2a,	msg2b,	msg2c},	because	the	ordering	of	the	enclosed
sequences	matches.	However,	{msg2a,	msg2c,	msg4a,	msg4b,	msg4c,
msg3a,	msg3b,	msg3c,	msg2b}	is	not	legitimate	because	msg2c	occurs
before	 msg2b	 (which	 is	 contrary	 to	 the	 ordering	 specified	 in
Figure	7-31).

7.1.13.9	seq

The	par	sequence	fragment	enforces	the	following	restrictions:

The	system	maintains	the	ordering	of	the	operations	within	an	operand.

The	 system	 allows	 operations	 on	 different	 lifelines	 from	 different	 operands	 to
execute	in	any	order.

And	the	seq	sequence	adds	another:

Operations	on	the	same	lifeline	in	different	operands	must	execute	in	the	order	in
which	they	appear	in	the	diagram	(from	top	to	bottom).

In	 Figure	 7-32,	 for	 example,	 Operand1	 and	 Operand3	 have
messages	that	are	sent	to	the	same	object	(lifeline).	Therefore,
in	 a	 seq	 sequence	 fragment,	 msg2a,	 msg2b,	 and	 msg2c	 must	 all
execute	before	msg4a.

Figure	7-32:	An	example	of	the	seq	sequence	fragment

Figure	7-32	shows	a	stand-alone	seq	sequence	fragment.	In
typical	 usage,	 however,	 a	 seq	 sequence	 fragment	 will	 appear
inside	a	par	 to	 control	 the	 execution	 sequence	of	 a	portion	of
the	par’s	operands.

7.1.13.10	strict

The	 strict	 sequence	 fragment	 forces	 the	operations	 to	occur	 in
the	 sequence	 they	 appear	 in	 each	 operand;	 interleaving	 of
operations	between	operands	is	not	allowed.	The	format	for	a
strict	 sequence	 fragment	 is	 similar	 to	 that	 of	 par	 and	 seq	 (see
Figure	7-33).

Figure	7-33:	An	example	of	the	strict	sequence	fragment

The	 strict	parallel	operation	allows	 the	operands	 to	execute
in	 any	 order,	 but	 once	 a	 given	 operand	 begins	 execution,	 all
the	 operations	 within	 it	 must	 complete	 in	 the	 sequence
specified	before	any	other	operand	can	begin	executing.

In	Figure	7-33,	 there	are	six	different	operation	sequences
possible:	 {Operand1,	 Operand2,	 Operand3};	 {Operand1,	 Operand3,
Operand2};	 {Operand2,	 Operand1,	 Operand3};	 {Operand2,	 Operand3,
Operand1};	 {Operand3,	Operand1,	Operand2};	 and	 {Operand3,	 Operand2,
Operand1}.

However,	 operations	 internal	 to	 the	 operands	 cannot
interleave,	and	must	execute	from	top	to	bottom.

7.1.13.11	region

In	 the	 section	 “Extending	UML	Activity	Diagrams”	 on	 page
99,	 I	 used	 the	 example	of	 a	home-brew	critical	 section	 in	 an
activity	diagram	to	demonstrate	how	to	extend	UML	for	your
own	purposes.	I	pointed	out	why	this	is	a	bad	idea	(reread	that
section	for	the	details),	and	mentioned	there	is	another	way	to
achieve	what	 you	want	 to	 do	 using	 standard	UML:	 the	 region
sequence	 fragment.	 UML	 activity	 diagrams	 don’t	 support
critical	sections,	but	sequence	diagrams	do.

The	region	 sequence	fragment	specifies	 that	once	execution
enters	 the	 region,	 no	 other	 operations	 in	 the	 same	 parallel
execution	 context	 can	 be	 interleaved	 until	 it	 completes
execution.	 The	 region	 sequence	 fragment	 must	 always	 appear
within	some	other	parallel	sequence	fragment	(generally	par	or
seq;	 technically	 it	 could	 appear	 inside	 strict,	 though	 ultimately
this	would	serve	no	purpose).

As	an	example,	consider	Figure	7-34—the	system	is	free	to
interleave	the	execution	of	any	operand’s	messages,	subject	to
the	 rules	 given	 for	 the	 par	 sequence	 fragment,	 but	 once	 the
system	 enters	 the	 critical	 region	 (with	 the	 execution	 of	 the
msg4a	operation),	no	other	threads	in	the	par	sequence	fragment
can	execute.

Figure	7-34:	The	region	sequence	fragment

7.2	COLLABORATION	DIAGRAMS
Collaboration	(or	communication)	diagrams	provide	the	same
information	 as	 sequence	 diagrams	 but	 in	 a	 slightly	 more
compact	 form.	Rather	 than	drawing	arrows	between	 lifelines,
in	 collaboration	 diagrams	 we	 draw	 message	 arrows	 directly
between	 objects,	 and	 attach	 numbers	 to	 each	 message	 to
indicate	the	sequence	(see	Figure	7-35).

Figure	7-35:	A	collaboration	diagram

The	 diagram	 in	 Figure	 7-35	 is	 roughly	 equivalent	 to	 the
sequence	diagram	in	Figure	7-9	(without	the	time	constraint	of
10	minutes).	 In	Figure	7-35	 the	 salinityCheck	message	 executes
first,	 sendMsg	 executes	 second,	 and	 updateSalinityDisplay	 executes
last.

Figure	7-36	shows	a	more	complex	collaboration	diagram
that	 better	 demonstrates	 the	 compactness	 of	 this	 option.	 The
six	messages	sent	in	this	example	would	require	six	lines	in	a
sequence	diagram	but	here	 require	only	 three	communication
links.

Figure	7-36:	A	more	complex	collaboration	diagram

NOTE

Having	both	collaboration	and	sequence	diagrams	is	probably	an	artifact	of
merging	 different	 systems	 together	 when	 UML	 was	 created.	 Which	 one
you	 use	 is	 really	 just	 a	 matter	 of	 personal	 preference.	 Keep	 in	 mind,
however,	 that	 as	 the	 diagrams	 become	 more	 complex,	 collaboration
diagrams	become	harder	to	follow.

7.3	FOR	MORE	INFORMATION
Bremer,	 Michael.	 The	 User	 Manual	 Manual:	 How	 to
Research,	 Write,	 Test,	 Edit,	 and	 Produce	 a	 Software
Manual.	 Grass	 Valley,	 CA:	 UnTechnical	 Press,	 1999.	 A
sample	 chapter	 is	 available	 at
http://www.untechnicalpress.com/Downloads/UMM%20sa
mple%20doc.pdf.

Larman,	Craig.	Applying	UML	and	Patterns:	An	Introduction
to	 Object-Oriented	 Analysis	 and	 Design	 and	 Iterative
Development.	 3rd	 ed.	 Upper	 Saddle	 River,	 NJ:	 Prentice
Hall,	2004.

Miles,	 Russ,	 and	 Kim	 Hamilton.	 Learning	 UML	 2.0:	 A
Pragmatic	Introduction	to	UML.	Sebastopol,	CA:	O’Reilly
Media,	2003.

Pender,	Tom.	UML	Bible.	Indianapolis:	Wiley,	2003.

Pilone,	 Dan,	 and	 Neil	 Pitman.	 UML	 2.0	 in	 a	 Nutshell:	 A
Desktop	 Quick	 Reference.	 2nd	 ed.	 Sebastopol,	 CA:
O’Reilly	Media,	2005.

Roff,	 Jason	 T.	 UML:	 A	 Beginner’s	 Guide.	 Berkeley,	 CA:
McGraw-Hill	Education,	2003.

http://www.untechnicalpress.com/Downloads/UMM%20sample%20doc.pdf

Tutorials	 Point.	 “UML	 Tutorial.”
https://www.tutorialspoint.com/uml/.

https://www.tutorialspoint.com/uml/

8
MISCELLANEOUS	UML	DIAGRAMS

This	 chapter	 finishes	 up	 the	 book’s	 discussion	 of	 UML	 by
describing	 five	 additional	 diagrams	 that	 are	 useful	 for	 UML
documentation:	 component,	 package,	 deployment,	 composite
structure,	and	statechart	diagrams.

8.1	COMPONENT	DIAGRAMS
UML	 uses	 component	 diagrams	 to	 encapsulate	 reusable
components	 such	 as	 libraries	 and	 frameworks.	 Though
components	 are	 generally	 larger	 and	 have	 more
responsibilities	 than	 classes,	 they	 support	 much	 of	 the	 same
functionality	as	classes,	including:

Generalization	and	association	with	other	classes	and	components

Operations

Interfaces

UML	 defines	 components	 using	 a	 rectangle	 with	 the
«component»	 stereotype	 (see	 Figure	 8-1).	 Some	 users	 (and

CASE	 tools)	 also	 use	 the	 stereotype	 «subsystem»	 to	 denote
components.

Figure	8-1:	A	UML	component

Components	 use	 interfaces	 (or	 protocols)	 to	 encourage
encapsulation	and	loose	coupling.	This	improves	the	usability
of	a	component	by	making	its	design	independent	of	external
objects.	 The	 component	 and	 the	 rest	 of	 the	 system
communicate	via	two	types	of	predefined	interfaces:	provided
and	required.	A	provided	 interface	 is	one	 that	 the	component
provides	and	 that	external	code	can	use.	A	required	 interface
must	 be	 provided	 for	 the	 component	 by	 external	 code.	 This
could	be	an	external	function	that	the	component	invokes.

As	you	would	expect	from	UML	by	now,	there’s	more	than
one	 way	 to	 draw	 components:	 using	 stereotype	 notation	 (of
which	there	are	two	versions)	or	ball	and	socket	notation.

The	 most	 compact	 way	 to	 represent	 a	 UML	 component
with	 interfaces	 is	 probably	 the	 simple	 form	 of	 stereotype
notation	shown	in	Figure	8-2,	which	lists	the	interfaces	inside
the	component.

Figure	8-2:	A	simple	form	of	stereotype	notation

Figure	8-3	shows	a	more	complete	(though	bulkier)	version
of	 stereotype	 notation	 with	 individual	 interface	 objects	 in	 the
diagram.	 This	 option	 is	 better	 when	 you	 want	 to	 list	 the
individual	attributes	of	the	interfaces.

Figure	8-3:	A	more	complete	form	of	stereotype	notation

Ball	 and	 socket	 notation	 provides	 an	 alternative	 to	 the
stereotype	notation,	using	a	circle	icon	(the	ball)	to	represent	a
provided	 interface	 and	 a	 half-circle	 (the	 socket)	 to	 represent
required	interfaces	(see	Figure	8-4).

Figure	8-4:	Ball	and	socket	notation

The	 nice	 thing	 about	 ball	 and	 socket	 notation	 is	 that
connecting	components	can	be	visually	appealing	(see	Figure
8-5).

Figure	8-5:	Connecting	two	ball	and	socket	components

As	you	can	see,	the	required	interface	of	component1	connects
nicely	with	the	provided	interface	of	component2	in	this	diagram.
But	while	ball	and	socket	notation	can	be	more	compact	and
attractive	 than	 the	 stereotype	 notation,	 it	 doesn’t	 scale	 well
beyond	 a	 few	 interfaces.	 As	 you	 add	 more	 provided	 and
required	 interfaces,	 the	 stereotyped	 notation	 is	 often	 a	 better
solution.

8.2	PACKAGE	DIAGRAMS
A	UML	package	is	a	container	for	other	UML	items	(including
other	 packages).	 A	 UML	 package	 is	 the	 equivalent	 of	 a
subdirectory	 in	a	 filesystem,	a	namespace	 in	C++	and	C#,	or
packages	in	Java	and	Swift.	To	define	a	package	in	UML,	you
use	 a	 file	 folder	 icon	 with	 the	 package	 name	 attached	 (see
Figure	8-6).

Figure	8-6:	A	UML	package

For	 a	 more	 concrete	 example,	 let’s	 return	 to	 the	 pool

monitor	 application.	 One	 useful	 package	 might	 be	 sensors,	 to
contain	 classes/objects	 associated	 with,	 say,	 pH	 and	 salinity
sensors.	Figure	8-7	shows	what	this	package	might	look	like	in
UML.	 The	 +	 prefix	 on	 the	 phSensors	 and	 saltSensor	 objects
indicates	 that	 these	 are	 public	 objects	 accessible	 outside	 the
package.

Figure	8-7:	The	sensors	package

To	reference	(public)	objects	outside	of	a	package,	you	use
a	name	of	the	form	packageName::objectName.	For	example,	outside
the	 sensors	 package	 you	 would	 use	 sensors::pHSensor	 and
sensors::saltSensor	 to	 access	 the	 internal	 objects.	 If	 you	have	one
package	nested	inside	another,	you	could	access	objects	in	the
innermost	 package	 using	 a	 sequence	 like
outsidePackage::internalPackage::object.	 For	 example,	 suppose	 you
have	 two	 nuclear	 power	 channels	 named	NP	 and	NPP	 (from
the	 use	 case	 examples	 in	 Chapter	 4).	 You	 could	 create	 a
package	named	instruments	to	hold	the	two	packages	NP	and	NPP.
The	NP	 and	 NPP	 packages	 could	 contain	 the	 objects	 directly
associated	with	the	NP	and	NPP	instruments	(see	Figure	8-8).

1

Figure	8-8:	Nested	packages

Note	 that	 the	NP	 and	NPP	 packages	 both	 contain	 functions
named	calibrate()	and	pctPwr().	There	is	no	ambiguity	about	which
function	 you’re	 calling	 because	 outside	 these	 individual
packages	 you	 have	 to	 use	 qualified	 names	 to	 access	 these
functions.	 For	 example,	 outside	 the	 instruments	 package	 you’d
have	 to	 use	 names	 like	 instruments::NP::calibrate	 and
instruments::NPP::calibrate	so	that	there	is	no	confusion.

8.3	DEPLOYMENT	DIAGRAMS
Deployment	 diagrams	 present	 a	 physical	 view	 of	 a	 system.
Physical	 objects	 include	 PCs,	 peripherals	 like	 printers	 and
scanners,	servers,	plug-in	interface	boards,	and	displays.

To	represent	physical	objects,	UML	uses	nodes,	a	3D	box
image.	 Inside	 the	box	you	place	 the	stereotype	«device»	plus
the	name	of	 the	node.	Figure	8-9	provides	 a	 simple	 example
from	 the	 DAQ	 data	 acquisition	 system.	 It	 shows	 a	 host	 PC
connected	 to	 a	 DAQ_IF	 and	 a	 Plantation	 Productions’
PPDIO96	96-channel	digital	I/O	board.

Figure	8-9:	A	deployment	diagram

One	 thing	missing	 from	 this	 figure	 is	 the	 actual	 software
installed	on	the	system.	In	this	system,	there	are	likely	to	be	at
least	two	application	programs	running:	a	program	running	on
the	host	PC	that	communicates	with	the	DAQ_IF	module	(let’s
call	 it	 daqtest.exe)	 and	 the	 firmware	 program	 (frmwr.hex)
running	 on	 the	 DAQ_IF	 board	 (which	 is	 likely	 the	 true
software	system	the	deployment	diagram	describes).	Figure	8-
10	shows	an	expanded	version	with	 small	 icons	denoting	 the
software	installed	on	the	machines.	Deployment	diagrams	use
the	stereotype	«artifact»	to	denote	binary	machine	code.

Figure	8-10:	An	expanded	deployment	diagram

Note	that	 the	PPDIO96	board	 is	directly	controlled	by	the
DAQ_IF	board:	 there	 is	no	CPU	on	the	PPDIO96	board	and,
therefore,	there	is	no	software	loaded	onto	the	PPDIO96.

There	is	actually	quite	a	bit	more	to	deployment	diagrams,
but	 this	 discussion	 will	 suffice	 for	 those	 we’ll	 need	 in	 this
book.	 If	 you’re	 interested,	 see	 “For	 More	 Information”	 on
page	165	 for	 references	 that	 explain	deployment	diagrams	 in
more	detail.

8.4	COMPOSITE	STRUCTURE
DIAGRAMS
In	 some	 instances,	 class	 and	 sequence	 diagrams	 cannot
accurately	 depict	 the	 relationships	 and	 actions	 between
components	 in	 some	 classes.	 Consider	 Figure	 8-11,	 which
illustrates	a	class	for	the	PPDIO96.

Figure	8-11:	PPDIO96	class	composition

This	 class	 composition	 diagram	 tells	 us	 that	 the	 PPDIO96
class	 contains	 (is	 composed	 of)	 two	 subclasses:	 portInitialization
and	 writePort.	 What	 it	 does	 not	 tell	 us	 is	 how	 these	 two
subclasses	 of	 PPDIO96	 interact	 with	 each	 other.	 For	 example,
when	you	 initialize	a	port	via	 the	portInitialization	 class,	 perhaps
the	 portInitialization	 class	 also	 invokes	 a	 method	 in	 writePort	 to
initialize	 that	 port	 with	 some	 default	 value	 (such	 as	 0).	 The
bare	class	diagrams	don’t	show	this,	nor	should	 they.	Having
portIntialization	 write	 a	 default	 value	 via	 a	writePort	 invocation	 is
probably	 only	 one	 of	 many	 different	 operations	 that	 could
arise	 within	 PPDIO96.	 Any	 attempt	 to	 show	 allowed	 and
possible	 internal	 communications	 within	 PPDIO96	 would
produce	a	very	messy,	illegible	diagram.

Composite	 structure	 diagrams	 provide	 a	 solution	 by
focusing	 only	 on	 those	 communication	 links	 of	 interest	 (it

could	be	just	one	communication	link,	or	a	few,	but	generally
not	so	many	that	the	diagram	becomes	incomprehensible).

A	 first	 (but	 problematic)	 attempt	 at	 a	 composite	 structure
diagram	is	shown	in	Figure	8-12.

Figure	8-12:	Attempted	composite	structure	diagram

The	problem	with	 this	diagram	is	 that	 it	doesn’t	explicitly
state	which	writePort	object	portInitialization	is	communicating	with.
Remember,	 classes	 are	 just	 generic	 types,	whereas	 the	 actual
communication	 takes	 place	 between	 explicitly	 instantiated
objects.	 In	 an	 actual	 system	 the	 intent	 of	 Figure	 8-12	 is
probably	better	conveyed	by	Figure	8-13.

Figure	8-13:	Instantiated	composite	structure	diagram

However,	neither	Figure	8-12	nor	Figure	8-13	 implies	 that
the	 portInitialization	 and	 writePort	 instantiated	 objects	 belong
specifically	to	the	PPDIO96	object.	For	example,	if	there	are	two

sets	of	PPDIO96,	portInitialization,	and	writePort	objects,	the	topology
in	Figure	8-14	is	perfectly	valid	based	on	the	class	diagram	in
Figure	8-12.

Figure	8-14:	Weird,	but	legal,	communication	links

In	 this	 example,	 i1	 (which	 belongs	 to	 object	 d1)	 calls	 w2
(which	 belongs	 to	 object	 d2)	 to	 write	 the	 digital	 value	 to	 its
port;	i2	 (which	belongs	to	d2)	calls	w1	 to	write	 its	 initial	value
to	 its	port.	This	probably	 isn’t	what	 the	original	designer	had
in	 mind,	 even	 though	 the	 generic	 composition	 structure
diagram	 in	 Figure	 8-12	 technically	 allows	 it.	 Although	 any
reasonable	 programmer	 would	 immediately	 realize	 that	 i1
should	 be	 invoking	 w1	 and	 i2	 should	 be	 invoking	 w2,	 the
composite	 structure	 diagram	 doesn’t	 make	 this	 clear.
Obviously,	 we	 want	 to	 eliminate	 as	 much	 ambiguity	 as
possible	in	our	designs.

To	 correct	 this	 shortcoming,	 UML	 2.0	 provides	 (true)
composite	 structure	 diagrams	 that	 incorporate	 the	 member
attributes	 directly	 within	 the	 encapsulating	 class	 diagram,	 as
shown	in	Figure	8-15.

Figure	8-15:	Composite	structure	diagram

This	 diagram	makes	 it	 clear	 that	 an	 instantiated	 object	 of
PPDIO96	 will	 constrain	 the	 communication	 between	 the
portInitialization	and	writePort	classes	to	objects	associated	with	that
same	instance.

The	 small	 squares	 on	 the	 sides	 of	 the	 portInitialization	 and
writePort	are	ports.	This	term	is	unrelated	to	the	writePort	object	or
hardware	 ports	 on	 the	 PPDIO96	 in	 general;	 this	 is	 a	 UML
concept	 referring	 to	an	 interaction	point	between	 two	objects
in	UML.	Ports	can	appear	in	composite	structure	diagrams	and
in	component	diagrams	(see	“Component	Diagrams”	on	page
155)	to	specify	required	or	provided	interfaces	to	an	object.	In
Figure	8-15	 the	 port	 on	 the	 portInitialization	 side	 is	 (probably)	 a
required	 interface	 and	 the	 port	 on	 the	 writePort	 side	 of	 the
connection	is	(probably)	a	provided	interface.

Note

On	 either	 side	 of	 a	 connection,	 one	 port	 will	 generally	 be	 a	 required
interface	and	the	other	will	be	a	provided	interface.

In	Figure	8-15	the	ports	are	anonymous.	However,	in	many
diagrams	(particularly	where	you	are	listing	the	interfaces	to	a
system)	you	can	attach	names	to	the	ports	(see	Figure	8-16).

Figure	8-16:	Named	ports

You	 can	 also	 use	 the	 ball	 and	 socket	 notation	 to	 indicate
which	side	of	a	communication	link	is	the	provider	and	which
side	 has	 the	 required	 interface	 (remember,	 the	 socket	 side
denotes	 the	 required	 interface;	 the	 ball	 side	 denotes	 the
provided	 interface).	 You	 can	 even	 name	 the	 communication
link	 if	 you	 so	 desire	 (see	 Figure	 8-17).	 A	 typical
communication	 link	 takes	 the	 form	 name:type	 where	 name	 is	 a
unique	name	(within	the	component)	and	type	is	the	type	of	the
communication	link.

Figure	8-17:	Indicating	provided	and	required	interfaces

8.5	STATECHART	DIAGRAMS
UML	statechart	(or	state	machine)	diagrams	are	very	similar	to
activity	diagrams	in	that	they	show	the	flow	of	control	through
a	 system.	 The	 main	 difference	 is	 that	 a	 statechart	 diagram
simply	shows	the	various	states	possible	for	a	system	and	how
the	system	transitions	from	one	state	to	the	next.

Statechart	diagrams	do	not	introduce	any	new	diagramming
symbols;	they	use	existing	elements	from	activity	diagrams—

specifically	 the	 start	 state,	 end	 state,	 state	 transitions,	 state
symbols,	 and	 (optionally)	 decision	 symbols,	 as	 shown	 in
Figure	8-18.

Figure	8-18:	Elements	of	a	statechart	diagram

A	given	statechart	diagram	will	have	exactly	one	start	state
symbol;	 this	 is	where	activity	begins.	The	 state	 symbols	 in	a
statechart	 diagram	 always	 have	 an	 associated	 state	 name
(which,	 obviously,	 indicates	 the	 current	 state).	 A	 statechart
diagram	can	have	more	than	one	end	state	symbol,	which	is	a
special	state	that	marks	the	end	of	activity	(entry	into	any	end
state	symbol	stops	the	state	machine).	Transition	arrows	show
the	flow	between	states	in	the	machine	(see	Figure	8-19).

Figure	8-19:	A	simple	statechart	diagram

Transitions	 usually	 occur	 in	 response	 to	 some	 external
events,	 or	 triggers,	 in	 the	 system.	 Triggers	 are	 stimuli	 that
cause	 the	 transition	 from	 one	 state	 to	 another	 in	 the	 system.
You	attach	guard	conditions	to	a	transition,	as	shown	in	Figure
8-19,	 to	 indicate	 the	 trigger	 that	 causes	 the	 transition	 to	 take
place.

Transition	 arrows	 have	 a	 head	 and	 a	 tail.	 When	 activity
occurs	 in	 a	 statechart	diagram,	 transitions	 always	occur	 from
the	state	attached	to	the	arrow	tail	to	the	state	pointed	at	by	the
arrowhead.

If	 you	 are	 in	 a	 particular	 state	 and	 some	 event	 occurs	 for
which	there	is	no	transition	out	of	that	state,	the	state	machine
ignores	 that	 event. 	 For	 example,	 in	 Figure	 8-19,	 if	 you’re
already	 in	 the	 “System	 is	 active”	 state	 and	 an	 on	 button	 event
occurs,	the	system	remains	in	the	“System	is	active”	state.

If	 two	 transitions	 out	 of	 a	 state	 have	 the	 same	 guard
condition,	 then	 the	 state	 machine	 is	 nondeterministic.	 This
means	 that	 the	 choice	 of	 transition	 arrow	 is	 arbitrary	 (and

2

could	be	randomly	chosen).	Nondeterminism	is	a	bad	thing	in
UML	 statechart	 diagrams,	 as	 it	 introduces	 ambiguity.	 When
creating	UML	statechart	diagrams,	you	should	always	strive	to
keep	 them	 deterministic	 by	 ensuring	 that	 the	 transitions	 all
have	 mutually	 exclusive	 guard	 conditions.	 In	 theory,	 you
should	 have	 exactly	 one	 exiting	 transition	 from	 a	 state	 for
every	possible	 event	 that	 could	occur;	however,	most	 system
designers	assume	that,	as	mentioned	before,	if	an	event	occurs
for	which	there	is	no	exit	transition,	then	the	state	ignores	that
event.

It	is	possible	to	have	a	transition	from	one	state	to	another
without	 a	 guard	 condition	 attached;	 this	 implies	 that	 the
system	 can	 arbitrarily	 move	 from	 the	 first	 state	 (at	 the
transition’s	tail)	to	the	second	state	(at	the	head).	This	is	useful
when	 you’re	 using	 decision	 symbols	 in	 a	 state	machine	 (see
Figure	8-20).	Decision	symbols	aren’t	necessary	in	a	statechart
diagram—just	 as	 for	 activity	 diagrams,	 you	 could	 have
multiple	transitions	directly	out	of	a	state	(such	as	the	“System
is	active”	state	in	Figure	8-20)—but	you	can	sometimes	clean
up	your	diagrams	by	using	them.

Figure	8-20:	A	decision	symbol	in	a	statechart

8.6	MORE	UML
As	has	been	a	constant	theme,	this	is	but	a	brief	introduction	to
UML.	There	are	more	diagrams	and	other	features,	such	as	the
Object	Constraint	Language	(OCL),	 that	this	book	won’t	use,
so	 this	 chapter	 doesn’t	 discuss	 them.	 However,	 if	 you’re
interested	 in	using	UML	to	document	your	software	projects,
you	 should	 spend	more	 time	 learning	 about	 it.	 See	 the	 next
section	for	recommended	reading.

8.7	FOR	MORE	INFORMATION
Bremer,	 Michael.	 The	 User	 Manual	 Manual:	 How	 to
Research,	 Write,	 Test,	 Edit,	 and	 Produce	 a	 Software

Manual.	 Grass	 Valley,	 CA:	 UnTechnical	 Press,	 1999.	 A
sample	 chapter	 is	 available	 at
http://www.untechnicalpress.com/Downloads/UMM%20sa
mple%20doc.pdf.

Larman,	Craig.	Applying	UML	and	Patterns:	An	Introduction
to	 Object-Oriented	 Analysis	 and	 Design	 and	 Iterative
Development.	 3rd	 ed.	 Upper	 Saddle	 River,	 NJ:	 Prentice
Hall,	2004.

Miles,	 Russ,	 and	 Kim	 Hamilton.	 Learning	 UML	 2.0:	 A
Pragmatic	Introduction	to	UML.	Sebastopol,	CA:	O’Reilly
Media,	2003.

Pender,	Tom.	UML	Bible.	Indianapolis:	Wiley,	2003.

Pilone,	 Dan,	 and	 Neil	 Pitman.	 UML	 2.0	 in	 a	 Nutshell:	 A
Desktop	 Quick	 Reference.	 2nd	 ed.	 Sebastopol,	 CA:
O’Reilly	Media,	2005.

Roff,	 Jason	 T.	 UML:	 A	 Beginner’s	 Guide.	 Berkeley,	 CA:
McGraw-Hill	Education,	2003.

Tutorials	 Point.	 “UML	 Tutorial.”
https://www.tutorialspoint.com/uml/.

http://www.untechnicalpress.com/Downloads/UMM%20sample%20doc.pdf
https://www.tutorialspoint.com/uml/

PART	III
DOCUMENTATION

9
SYSTEM	DOCUMENTATION

System	documentation	specifies	system	requirements,	design,
test	cases,	and	test	procedures.	In	a	large	software	system,	the
system	 documentation	 is	 often	 the	 most	 expensive	 part;	 the
Waterfall	 software	 development	 model,	 for	 example,	 often
produces	more	documentation	than	code.	In	addition,	typically
you	must	maintain	system	documentation	manually,	so	if	you
change	a	description	(such	as	a	requirement)	in	one	document,
you’ll	 need	 to	 search	 through	 the	 system	 documentation	 and
update	 every	 other	 document	 that	 references	 that	 description
for	consistency.	This	is	a	difficult	and	costly	process.

In	 this	chapter,	we’ll	 look	at	 the	common	types	of	system
documents,	 ways	 to	 enforce	 consistency	 within	 them,	 and
documentation	 strategies	 to	 reduce	 some	 of	 the	 costs
associated	with	development.

NOTE

This	chapter	discusses	system	documentation,	not	user	documentation.	To
learn	about	user	documentation	in	detail,	check	out	“For	More	Information”
on	page	184.

9.1	SYSTEM	DOCUMENTATION
TYPES
Traditional	software	engineering	generally	uses	 the	following
system	documentation	types:

System	Requirements	Specification	(SyRS)	document

The	 SyRS	 (see	 “The	 System	 Requirements	 Specification
Document”	 on	 page	 193)	 is	 a	 system-level	 requirements
document.	 In	 addition	 to	 software	 requirements,	 it	 might
include	hardware,	business,	procedural,	manual,	and	other
non-software-related	 requirements.	 The	 SyRS	 is	 a
customer/management/stakeholder-level	 document	 that
eschews	 detail	 to	 present	 a	 “big	 picture”	 view	 of	 the
requirements.

Software	Requirements	Specification	(SRS)	document

The	 SRS	 (see	 “The	 Software	 Requirements	 Specification
Document”	 on	 page	 194)	 extracts	 the	 software
requirements 	from	the	SyRS	and	drills	down	on	the	high-
level	 requirements	 to	 introduce	 new	 requirements	 at	 a
much	finer	level	of	detail	(suitable	for	software	engineers).

NOTE

The	 SyRS	 and	 SRS	 are	 requirements	 documents	 whose	 content	 may
differ	in	scope	and	detail.	Many	organizations	produce	a	single	document
rather	 than	 two	 separate	 ones,	 but	 this	 book	 treats	 them	 separately
because	the	SyRS	deals	with	a	wider	range	of	requirements	(for	example,
hardware	and	business	requirements)	than	the	SRS.

Software	Design	Description	(SDD)	document

1

The	SDD	(see	Chapter	11)	 discusses	how	 the	 system	will
be	constructed	(versus	the	SyRS	and	SRS,	which	describe
what	 the	 system	 will	 do).	 In	 theory,	 any	 programmer
should	be	able	to	use	the	SDD	and	write	the	corresponding
code	to	implement	the	software	system.

Software	Test	Cases	(STC)	document

The	 STC	 (see	 “Software	 Test	 Case	 Documentation”	 on
page	274)	describes	the	various	test	values	needed	to	verify
that	 the	 system	 incorporates	 all	 the	 requirements,	 and
functions	correctly	beyond	the	requirements	list.

Software	Test	Procedures	(STP)	document

The	 STP	 (see	 “Software	 Test	 Procedure	 Documentation”
on	 page	 288)	 describes	 the	 procedures	 to	 efficiently
execute	 the	 software	 test	 cases	 (from	 the	 STC)	 to	 verify
correct	system	operation.

Requirements	 (or	 Reverse)	 Traceability	 Matrix	 (RTM)
document

The	 RTM	 (see	 “The	 Requirements/Reverse	 Traceability
Matrix”	 on	 page	 178)	 links	 the	 requirements	 against	 the
design,	test	cases,	and	code.	Using	an	RTM,	a	stakeholder
can	verify	that	a	requirement	is	implemented	in	the	design
and	 the	 code,	 and	 that	 the	 test	 cases	 and	 procedures
properly	check	that	requirement’s	implementation.

NOTE

Some	 organizations	 might	 also	 have	 a	 Functional	 Requirements
Specification	 document;	 this	 often	 refers	 to	 the	 requirements	 that	 an
external	customer	provides,	or	it	can	simply	be	a	synonym	for	the	SRS	or
SyRS.	This	book	won’t	use	this	term	further.

There	 are	many	 additional	 types	 of	 documents,	 but	 these
are	 the	 basic	 ones	 you’d	 expect	 for	 any	 (non-XP,	 at	 least)
project,	 and	 they	 correspond	 to	 the	 various	 stages	 of	 the
Waterfall	model	 (see	 “The	Waterfall	Model”	 on	page	 44),	 as
shown	in	Figure	9-1.

Figure	9-1:	System	documentation	dependencies

As	you	can	see,	the	SRS	is	constructed	from	the	SyRS.	The
SDD	 is	 constructed	 from	 the	 SRS,	 as	 is	 the	 STC	 (which,	 in
some	cases,	is	also	influenced	by	the	SDD,	as	indicated	by	the
gray	arrow).	The	STP	is	constructed	from	the	STC.

9.2	TRACEABILITY
Perhaps	 the	 greatest	 logistical	 issue	 with	 system
documentation	 is	 consistency.	 A	 requirement	 typically
generates	some	design	item	and	a	test	case	(which	is	part	of	a
test	 procedure	 in	 the	 STP).	 This	 is	 an	 intuitive	 and	 natural
progression	when	you’re	following	a	strict	Waterfall	model—
writing	the	SRS	first,	followed	by	the	SDD,	the	STC,	and	the
SDD.	 However,	 problems	 arise	 when	 you	 have	 to	 make
corrections	 to	 documents	 earlier	 in	 this	 chain.	 For	 example,
when	 you	 change	 a	 requirement,	 you	 might	 need	 to	 change
entries	in	the	SDD,	STC,	and	STP	documents.	Best	practice	is
therefore	to	use	 traceability,	which	allows	you	to	easily	 trace
items	from	one	document	to	all	the	other	system	documents.	If
you	can	trace	your	requirements	to	design	elements,	test	cases,

2

and	 test	procedures,	you	can	 rapidly	 locate	and	change	 those
elements	whenever	you	modify	a	requirement.

Reverse	 traceability	 allows	 you	 to	 trace	 a	 test	 procedure
back	to	the	corresponding	test	cases,	and	test	cases	and	design
items	back	to	their	corresponding	requirements.	For	example,
you	might	encounter	problems	with	a	test	that	require	changes
to	 the	 test	 procedure,	 in	 which	 case	 you	 can	 locate	 the
corresponding	test	cases	and	requirements	to	ensure	that	your
changes	 to	 the	 test	 procedure	 still	 handle	 all	 of	 them.	 In	 this
way,	reverse	traceability	also	helps	you	determine	whether	you
need	to	make	changes	to	the	test	cases	or	requirements.

9.2.1	Ways	to	Build	Traceability	into	Your
Documentation
There	 are	 a	 couple	 of	 ways	 to	 accomplish	 traceability	 and
reverse	 traceability.	One	 approach	 is	 to	 build	 the	 traceability
into	 an	 identifier,	 or	 tag,	 associated	 with	 the	 requirement,
design	 element,	 test	 case,	 or	 test	 procedure	 documentation.
This	tag	could	be	a	paragraph	(or	item)	number,	a	descriptive
word,	or	some	other	set	of	symbols	that	uniquely	identify	the
text	 to	 reference.	 Software	 documents	 that	 use	 tags	 avoid
wasting	space	by	directly	quoting	other	documents.

Often	 authors	 use	 paragraph	 numbers	 as	 tags,	 which	 is
really	easy	to	do	in	a	word	processing	system.	However,	many
word	 processors	 don’t	 support	 cross-referencing	 across
multiple	 document	 types.	 Also,	 the	 tagging	 mechanism	 or
format	 you	 want	 to	 use	 might	 not	 match	 what	 the	 word
processor	provides.

Although	 it’s	 possible	 to	write	 custom	 software,	 or	 use	 a
database	 application	 to	 extract	 and	 maintain	 cross-reference

information,	 the	 most	 common	 solution	 is	 to	 maintain	 tags
manually.	 This	 might	 sound	 as	 though	 it	 would	 require
considerable	 effort,	 but	 with	 a	 little	 planning,	 it	 isn’t	 very
difficult.

Perhaps	 the	 best	 solution	 is	 to	 create	 an	 RTM	 (see	 “The
Requirements/Reverse	 Traceability	 Matrix”	 on	 page	 178),
which	 tracks	 the	 links	 between	 the	 items	 in	 your	 system
documentation.	 Although	 the	 RTM	 is	 yet	 another	 document
you’ll	have	to	maintain,	it	provides	a	complete	and	easy-to-use
mechanism	for	tracking	all	the	components	in	your	system.

We’ll	first	talk	through	common	tag	formats,	and	then	we’ll
look	into	building	an	RTM.

9.2.2	Tag	Formats
There	 is	 no	 particular	 standard	 for	 tag	 syntax;	 tags	 can	 take
any	form	you	like	as	long	as	the	syntax	is	consistent	and	each
tag	 is	unique.	For	my	own	purposes	 (and	for	 this	book),	 I’ve
created	 a	 syntax	 that	 incorporates	 elements	 of	 traceability
directly	into	the	tag.	The	tag	formats	that	follow	are	organized
by	document	type.

9.2.2.1	SyRS	Tags

For	 the	 SyRS,	 a	 tag	 takes	 the	 form	 [productID_SYRS_xxx]
where:

productID	Refers	 to	 the	 product	 or	 project.	 For	 example,
for	a	swimming	pool	monitor	application,	productID	might
be	“POOL.”	You	don’t	want	to	use	a	long	ID	(four	to	five
characters	 should	be	 the	maximum	 length)	because	 it	will
be	typed	frequently.

SYRS	 States	 that	 this	 is	 a	 tag	 from	 the	 SyRS	 document

(this	is	probably	a	system	requirements	tag).

xxx	Represents	one	or	more	numbers,	separated	by	periods
if	 more	 than	 one	 integer	 is	 used.	 This	 numeric	 sequence
uniquely	identifies	the	tag	within	the	SyRS.

In	 a	 perfect	 world,	 all	 the	 SyRS	 requirements	 (and	 other
items	requiring	a	tag)	would	be	numbered	sequentially	from	1
with	no	correlation	between	the	 integers	and	the	meanings	of
the	text	blocks	to	which	they	refer.

Consider	 the	 following	 two	 requirements	 in	 an	 SyRS
document:

[POOL_SYRS_001]:	Pool	temperature	monitoring

The	system	shall	monitor	the	pool	temperature.

[POOL_SYRS_002]:	Maximum	pool	temperature

The	system	shall	turn	on	the	“High	Temp”	LED	if	the	pool
temperature	exceeds	86	degrees	Fahrenheit.

Let’s	 say	 that	 150	 additional	 requirements	 follow
[POOL_SYRS_002].

Now	suppose	that	someone	suggests	a	requirement	that	the
pool	heater	be	 turned	on	if	 the	pool	 temperature	drops	below
70	 degrees	 Fahrenheit.	 You	 could	 add	 the	 following
requirements:

[POOL_SYRS_153]:	Minimum	pool	temperature

The	 system	 shall	 turn	 on	 the	 pool	 heater	 if	 the	 pool
temperature	drops	below	70	degrees	Fahrenheit.

[POOL_SYRS_154]:	Maximum	heater	on	temperature

The	 system	 shall	 turn	 off	 the	 pool	 heater	 if	 the	 pool
temperature	exceeds	70	degrees	Fahrenheit.

In	the	SyRS,	it	makes	sense	to	arrange	related	requirements
close	to	one	another,	so	the	reader	can	locate	all	the	pertinent
requirements	for	a	given	feature	at	one	point	in	the	document.
You	can	see	why	you	wouldn’t	want	 to	sort	 the	requirements
by	their	tags—doing	so	would	push	the	two	new	requirements
for	the	pool	heater	to	the	end	of	the	document,	away	from	the
other	pool	temperature	requirements.

There’s	 nothing	 stopping	 you	 from	 moving	 the
requirements	 together;	 however,	 it’s	 somewhat	 confusing	 to
see	a	set	of	requirements	like	this:

[POOL_SYRS_001]:	Pool	temperature	monitoring

The	system	shall	monitor	the	pool	temperature.

[POOL_SYRS_153]:	Minimum	pool	temperature

The	 system	 shall	 turn	 on	 the	 pool	 heater	 if	 the	 pool
temperature	drops	below	70	degrees	Fahrenheit.

[POOL_SYRS_154]:	Maximum	heater	on	temperature

The	 system	 shall	 turn	 off	 the	 pool	 heater	 if	 the	 pool
temperature	exceeds	70	degrees	Fahrenheit.

[POOL_SYRS_002]:	Maximum	pool	temperature

The	system	shall	turn	on	the	“High	Temp”	LED	if	the	pool
temperature	exceeds	86	degrees	Fahrenheit.

A	 better	 solution	 is	 to	 renumber	 the	 tags	 using	 dotted
sequences	 to	 expand	 the	 tag	 numbers.	 A	 dotted	 sequence
consists	 of	 two	 or	 more	 integers	 separated	 by	 a	 dot.	 For

example:

[POOL_SYRS_001]:	Pool	temperature	monitoring

The	system	shall	monitor	the	pool	temperature.

[POOL_SYRS_001.1]:	Minimum	pool	temperature

The	 system	 shall	 turn	 on	 the	 pool	 heater	 if	 the	 pool
temperature	drops	below	70	degrees	Fahrenheit.

[POOL_SYRS_001.2]:	Maximum	heater	on	temperature

The	 system	 shall	 turn	 off	 the	 pool	 heater	 if	 the	 pool
temperature	exceeds	70	degrees	Fahrenheit.

[POOL_SYRS_002]:	Maximum	pool	temperature

The	system	shall	turn	on	the	“High	Temp”	LED	if	the	pool
temperature	exceeds	86	degrees	Fahrenheit.

This	 allows	 you	 to	 flow	 in	 new	 requirements	 or	 changes
anywhere.	Note	that	001.1	and	001.10	are	not	the	same.	These
numbers	 are	 not	 floating-point	 numeric	 values;	 they’re	 two
integers	separated	by	a	period.	The	number	001.10	is	probably
the	 10th	 value	 in	 the	 sequence	 001.1	 through	 001.10.
Likewise,	001	is	not	the	same	as	001.0.

If	 you	 need	 to	 insert	 a	 requirement	 between	 001.1	 and
001.2,	 you	 can	 simply	 add	 another	 period	 to	 the	 end	 of	 the
sequence,	 such	 as	 001.1.1.	You	 can	 also	 leave	 gaps	 between
your	tag	numbers	if	you	expect	to	insert	additional	tags	in	the
future,	like	so:

[POOL_SYRS_010]:	Pool	temperature	monitoring

The	system	shall	monitor	the	pool	temperature.

[POOL_SYRS_020]:	Maximum	pool	temperature

The	system	shall	turn	on	the	“High	Temp”	LED	if	the	pool
temperature	exceeds	86	degrees	Fahrenheit.

So	when	you	decide	to	add	the	other	two	requirements,	you
have:

[POOL_SYRS_010]:	Pool	temperature	monitoring

The	system	shall	monitor	the	pool	temperature.

[POOL_SYRS_013]:	Minimum	pool	temperature

The	 system	 shall	 turn	 on	 the	 pool	 heater	 if	 the	 pool
temperature	drops	below	70	degrees	Fahrenheit.

[POOL_SYRS_017]:	Maximum	heater	on	temperature

The	 system	 shall	 turn	 off	 the	 pool	 heater	 if	 the	 pool
temperature	exceeds	70	degrees	Fahrenheit.

[POOL_SYRS_020]:	Maximum	pool	temperature

The	system	shall	turn	on	the	“High	Temp”	LED	if	the	pool
temperature	exceeds	86	degrees	Fahrenheit.

Keep	 in	 mind	 that	 it’s	 important	 to	 make	 all	 the	 tags
unique.

NOTE

Thus	far	in	this	section,	tags	have	been	part	of	a	paragraph	title,	which	is
useful	 when	 people	 want	 to	 search	 for	 the	 tags	 within	 the	 document
(particularly,	 if	 the	document	 is	not	 in	electronic	 form).	However,	you	can
also	place	tags	within	paragraphs.

9.2.2.2	SRS	Tags

For	 system	 document	 sets	 that	 have	 only	 the	 SRS—not	 an
SyRS—as	 the	 requirements	 document,	 “SRS”	 can	 simply
replace	 “SYRS”	 in	 the	 tag:	 [POOL_SRS_010]:	 Pool
temperature	monitoring.

However,	when	a	project’s	document	 set	 includes	both	an
SyRS	 and	 an	 SRS,	 this	 book	 uses	 a	 convention	 that	 builds
reverse	traceability	from	the	SRS	to	the	SyRS	directly	into	the
SRS	 tag.	 Such	 SRS	 tags	 have	 the	 format
[productID_SRS_xxx_yyy].

The	 productID	 is	 the	 same	 as	 for	 the	 SyRS	 tag:	 SRS
denotes	 a	 Software	Requirements	 Specification	 tag	 (versus	 a
System	Requirements	Specification	 tag),	 and	xxx	and	yyy	 are
decimal	numbers,	where	xxx	is	the	number	of	a	corresponding
SyRS	tag	(see	“SyRS	Tags”	on	page	172).

Including	 the	 tag	number	of	 the	parent	SyRS	 requirement
embeds	 reverse	 traceability	 information	 for	 an	 SRS
requirement	 directly	 into	 its	 tag.	 Because	 almost	 all	 SRS
requirements	are	derived	from	a	corresponding	SyRS	tag,	and
there	 is	 a	 one-to-many	 relationship	 between	 SyRS
requirements	 and	 SRS	 requirements,	 a	 single	 SyRS
requirement	can	generate	one	or	more	SRS	requirements,	but
each	 SRS	 requirement	 can	 be	 traced	 back	 to	 just	 one	 SyRS
requirement,	as	shown	in	Figure	9-2.

Figure	9-2:	An	SyRS-to-SRS	relationship

The	yyy	component	is	the	SRS	tag	value.	As	a	general	rule
(and	the	convention	this	book	follows),	yyy	doesn’t	have	to	be
unique	among	all	 the	SRS	 tags,	but	 the	combination	xxx_yyy
must	be	unique.	The	following	are	all	valid	(and	unique)	SRS
tags:

[POOL_SRS_020_001]

[POOL_SRS_020_001.5]

[POOL_SRS_020_002]

[POOL_SRS_030.1_005]

[POOL_SRS_031_003]

This	 book	 also	 uses	 the	 convention	 of	 restarting	 the	 yyy
numbering	with	each	xxx	value.

By	 constructing	 SRS	 tags	 this	 way,	 you	 build	 automatic
reverse	traceability	from	the	SRS	to	the	SyRS	directly	into	the
tag	identifier.	To	locate	the	SyRS	requirement	associated	with
an	SRS	requirement,	just	extract	the	xxx	value	and	search	for
the	corresponding	tag	in	your	SyRS	document.	It’s	also	easy	to
locate	 SRS	 tags	 associated	 with	 an	 SyRS	 tag	 in	 the	 SRS
document.	 For	 example,	 to	 find	 all	 SRS	 requirements
associated	with	POOL_SYRS_030,	search	for	all	instances	of
“SRS_030”	in	your	SRS	document.

It’s	 possible	 that	 an	 SRS	 document	 might	 produce	 some
brand-new	requirements	that	are	not	based	on	a	specific	SyRS
requirement.	If	so,	there	won’t	be	an	xxx	number	to	use	as	part
of	the	SRS	tag.	This	book	reserves	SyRS	tag	number	000	(that
is,	 there	will	never	be	an	SyRS	tag	[productID_SYRS_000]),
and	 any	 new	 SRS	 requirement	 that	 isn’t	 based	 on	 an	 SyRS
requirement	will	take	the	form	[productID_SRS_000_yyy].

NOTE

Another	convention	this	book	uses	is	to	substitute	an	asterisk	(*)	 in	place
of	the	000	value.

It’s	a	good	idea	to	include	all	software-related	requirements
from	 the	SyRS	directly	 in	 the	SRS. 	This	 allows	 the	SRS	 to
serve	 as	 a	 stand-alone	 document	 for	 software	 developers	 to
use.	When	copying	SyRS	requirements	directly	into	the	SRS,
we’ll	use	the	syntax	[productID_SRS_xxx_000]	for	the	copied
requirement	tags.	That	is,	a	yyy	value	of	000	denotes	a	copied
tag.

9.2.2.3	SDD	Tags

Unfortunately,	there	is	not	a	one-to-many	relationship	between
SRS	 requirements	 and	SDD	design	 elements. 	That	makes	 it
more	difficult	to	build	reverse	traceability	from	an	SDD	tag	to
the	 corresponding	 SRS	 tag	 into	 the	 SDD	 tag	 syntax.	 You’ll
have	to	rely	on	an	external	RTM	document	to	provide	the	links
between	the	SRS	and	SDD	documents.

Given	 that	 reverse	 traceability	 is	not	practical	 in	 the	SDD
tag,	 this	 book	 uses	 the	 simplified	 SDD	 tag	 format
[productID_SDD_ddd],	 where	 productID	 has	 the	 usual
meaning,	 and	ddd	 is	 a	 unique	 identifier	 similar	 to	 xxx	 in	 the
SyRS	tag.

9.2.2.4	STC	Tags

There	 should	 be	 a	 one-to-many	 relationship	 between	 SRS
requirements	and	STC	test	cases,	as	shown	in	Figure	9-3.

3

4

Figure	9-3:	An	SRS-to-STC	tag	relationship

This	means	you	can	build	reverse	traceability	from	the	STC
to	the	SRS	into	 the	 tags,	 just	as	you	did	from	the	SRS	to	 the
SyRS.	 For	 STC	 tags,	 this	 book	 uses	 the	 syntax
[productID_STC_xxx_yyy_zzz].	 If	 all	 your	 yyy	 values	 were
unique	 (rather	 than	 the	 xxx_yyy	 combination	 being	 unique),
you	could	drop	the	xxx	from	the	tag,	but	having	both	xxx	and
yyy	 does	 provide	 reverse	 traceability	 to	 both	 the	 SRS	 and
SyRS,	which	can	be	convenient	(at	the	expense	of	extra	typing
for	your	STC	tags).

Although	 it	 rarely	 occurs,	 it’s	 possible	 to	 create	 a	 unique
test	 case	 that	 isn’t	 based	 on	 any	 SRS	 requirement. 	 For
example,	the	software	engineers	using	the	SDD	to	implement
the	code	might	create	test	cases	based	on	the	source	code	they
write.	 In	 such	 situations,	 this	 book	 uses	 the	 scheme	 shown
previously	for	SRS	requirements	that	aren’t	based	on	an	SyRS
requirement:	we	reserve	the	xxx_yyy	value	of	000_000	or	*_*,
and	any	new	STC	tags	that	aren’t	based	on	a	requirement	tag
will	use	000	as	the	tag	number	suffix.	An	xxx_000	component
means	that	the	test	case	is	based	on	an	SyRS	requirement	but
not	any	underlying	SRS	requirement	(or	perhaps	it’s	based	on
the	 SRS	 tag	 copied	 from	 the	 SyRS	 using	 the	 syntax	 shown
earlier);	this	is	not	a	stand-alone	test	case.

STC	 tags	 that	 have	 the	 numeric	 form	 000_000	 don’t

5

contain	any	traceability	information.	In	such	cases,	you’ll	need
to	explicitly	provide	link	information	to	describe	the	origin	of
the	test	case.	Here	are	a	few	suggestions:

Use	:source	after	the	tag	to	describe	the	source	of	the	test	case	(where	source	is
the	name	of	the	file	or	other	document	containing	the	information	producing	the
test	case).

Use	 an	 RTM	 to	 provide	 the	 source	 information	 (see	 the	 next	 section,	 “The
Requirements/Reverse	Traceability	Matrix,”	for	more	details).

Ensure	 that	 the	 document	 containing	 the	 source	 of	 the	 test	 case	 contains	 a
comment	or	other	link	specifying	the	STC	tag.

9.2.2.5	STP	Tags

STC	test	cases	have	a	many-to-one	relationship	with	STP	test
procedures,	as	shown	in	Figure	9-4.

Figure	9-4:	An	STC-to-STP	tag	relationship

This	 means,	 as	 with	 the	 SDD,	 you	 can’t	 encode	 reverse
traceability	information	into	the	STP	tags.	Therefore,	for	STP
tags	 this	 book	 uses	 the	 syntax	 [productID_STP_ppp],	 where
productID	has	the	usual	meaning,	and	ppp	is	a	unique	STP	tag
value.

9.2.3	The	Requirements/Reverse	Traceability	Matrix
As	mentioned,	it	isn’t	possible	to	build	reverse	traceability	into
the	 SDD	 and	 STP	 tags,	 so	 you’ll	 need	 the
Requirements/Reverse	Traceability	Matrix	(RTM).

As	its	name	implies,	an	RTM	is	a	two-dimensional	matrix,
or	table,	wherein:

Each	row	specifies	a	link	between	requirements,	design	items,	test	cases,	or	test
procedures.

Each	column	specifies	a	particular	document	(SyRS,	SRS,	SDD,	STC,	or	STP).

Each	cell	contains	the	tag	for	the	associated	document	type.

A	typical	row	in	the	table	might	contain	entries	such	as	the
following:

In	 general,	 the	 SyRS	 or	 SRS	 requirement	 tags	 drive	 the
RTM,	 and	 you’d	 usually	 organize	 the	 table	 by	 sorting	 it	 via
these	columns.

Because	there	is	a	one-to-many	relationship	between	SyRS
requirements	 and	 SRS	 requirements,	 you	 might	 need	 to
replicate	 the	 SyRS	 requirements	 across	 multiple	 rows,	 as	 in
this	example:

Rows	1,	 2,	 and	3	 share	 the	 same	SyRS	 tag	with	different
SRS	 tags;	 rows	3	and	4	 share	 the	 same	SRS	 tags	 (and	SyRS
tags)	with	differing	STC	tags.

Sometimes,	it	might	be	cleaner	to	omit	duplicate	SyRS	and
SRS	tags	when	they	can	be	inferred	from	previous	rows,	 like
so:

Although	you	could	create	an	RTM	using	a	word	processor
(for	 example,	 Microsoft	 Word	 or	 Apple	 Pages),	 a	 far	 better
solution	 is	 to	 use	 a	 spreadsheet	 program	 (for	 example,
Microsoft	Excel	or	Apple	Numbers)	or	a	database	application,
which	allows	you	to	easily	sort	the	rows	in	the	table	based	on
your	current	requirements.	This	book	assumes	you’re	using	a
spreadsheet	program.

9.2.3.1	Adding	Extra	Columns

At	a	bare	minimum,	you’ll	want	one	column	 in	 the	RTM	for
each	 system	 document	 type—SyRS	 (if	 present),	 SRS,	 SDD,
STC,	 and	 STP—but	 you	 might	 want	 to	 include	 other
information	 in	 the	 RTM	 as	 well.	 For	 example,	 you	 might
consider	a	“Description”	column	that	can	help	make	sense	of
all	the	tags.

Or,	 if	 you	 have	 an	 SyRS	 document,	 an	 “Allocations”
column	might	 be	 useful	 to	 specify	whether	 an	 SyRS	 item	 is
hardware,	 software,	 or	 other.	Note	 that	 SRS,	 SDD,	STP,	 and
STC	 (by	 definition)	 are	 always	 software	 related,	 so	 the
Allocations	 entry	 would	 be	 either	 “N/A”	 (not	 applicable)	 or
always	“software”	for	such	tags.

Another	 useful	 column	 might	 be	 “Verification,”	 which
describes	 how	 a	 particular	 requirement	 might	 be	 tested	 (or
verified)	 in	 the	 system.	Examples	of	verification	 types	might

be	 test	 (as	 part	 of	 a	 software	 test	 procedure),	 by	 review,	 by
inspection,	by	design,	by	analysis,	other,	or	no	test	possible.

One	 last	 option	 is	 an	 additional	 column	 (or	 columns)
containing	some	row	numbers	you	can	use	to	quickly	sort	data
in	 different	 ways.	 For	 example,	 you	 might	 add	 a	 column
numbered	1	 through	n	 (where	n	 is	 the	number	of	 rows)	 that,
when	sorted,	lists	the	rows	in	order	of	requirements	(SyRS	and
SRS);	another	column	numbered	1	through	n	that	could	order
the	rows	by	SDD	tag	values;	and	so	on.

9.2.3.2	Sorting	the	RTM

Of	course,	if	you	fill	 in	every	cell	 in	the	matrix,	you	can	sort
by	 column	values	 (or	multiple	 column	values).	For	 example,
suppose	 you’re	 using	 Microsoft	 Excel	 and	 the	 columns	 are
organized	as	follows:

A:	Description

B:	SyRS	tags

C:	Allocations

D:	SRS	tags

E:	Testing	method

F:	SDD	tags

G:	STC	tags

H:	STP	tags

Sorting	by	column	B,	 then	by	D,	 then	by	G,	will	 sort	 the
document	in	requirements	order.	Sorting	by	column	F,	then	by
B,	then	by	D,	will	sort	the	document	in	design	element	order.
Sorting	 by	 column	 H,	 then	 by	 D,	 then	 by	 G,	 will	 sort	 the
document	in	test	procedure	order.

To	use	the	RTM	to	trace	from	an	SyRS	or	SRS	requirement
to	 an	 SRS	 requirement,	 SDD	 design	 item,	 STC	 test	 case,	 or
STP	 test	 procedure,	 simply	 sort	 the	 matrix	 by	 requirements
order,	find	the	SyRS	or	SRS	tag	you’re	interested	in,	and	then
pick	 out	 the	 corresponding	 tag(s)	 for	 the	 other	 document(s)
from	 the	 same	 row	 as	 the	 requirement	 tag.	You	 can	 use	 this
same	scheme	to	trace	from	STC	tags	to	the	corresponding	test
procedure	(because	the	requirements	sort	will	also	sort	the	test
case	tags).

Reverse	traceability	from	STC	to	SRS	to	SyRS	is	inherent
in	 the	 tag	 syntax,	 so	 nothing	 special	 is	 needed	 for	 this
operation.	Reverse	 traceability	 from	 the	SDD	 to	 the	SRS	 (or
SyRS)	and	from	the	STP	to	the	STC/SRS/SyRS	is	a	little	more
involved.	First,	 sort	 the	matrix	by	SDD	 tag	order	or	STP	 tag
order.	 This	 will	 give	 you	 a	 list	 of	 SDD	 or	 STP	 tags	 all
collected	 together	 (and	 sorted	 in	 lexicographical	order).	Now
all	the	tags	on	the	rows	containing	a	particular	SDD	or	STP	tag
will	 be	 the	 tags	 of	 interest	 to	 you.	 The	 following	 example
shows	the	previous	RTM	examples	sorted	by	test	procedure:

In	 this	 table,	you	can	easily	see	 that	 test	procedure	005	 is
associated	 with	 SyRS	 tag	 020	 and	 SRS	 tags	 020_001	 and
020_002.	 In	 this	 simple	 example,	 you	wouldn’t	 have	 to	 sort
the	 data	 to	 determine	 these	 links.	 But	 with	 a	 more	 complex
RTM	 (with	 dozens,	 hundreds,	 or	 even	 thousands	 of

requirements),	 it	 would	 be	 significantly	 more	 work	 to
manually	 search	 for	 these	 reverse	 links	 if	 the	 table	 wasn’t
sorted	by	STP	tags.

9.3	VALIDATION,	VERIFICATION,
AND	REVIEWS
Validation	 (see	 “The	 Iterative	 Model”	 on	 page	 46)	 is	 the
process	of	showing	that	the	product	meets	the	end	users’	needs
(that	 is,	 “Are	 we	 building	 the	 right	 product?”),	 while
verification	 is	 ensuring	 that	 you’ve	 built	 it	 to	 satisfy	 the
project	 specifications	 (that	 is,	 “Are	 we	 building	 the	 product
right?”).	 While	 validation	 takes	 place	 at	 the	 end	 of	 the
requirements	phase(s)	and	at	the	end	of	the	entire	development
cycle	 (see	 “Reducing	 Costs	 via	 Validation”	 on	 page	 182),
verification	 typically	 occurs	 at	 the	 end	 of	 each	 phase	 in	 the
software	development	process	to	ensure	that	the	phase	respects
all	 the	 input	 requirements.	 For	 example,	 verification	 of	 the
SDD	 would	 consist	 of	 ensuring	 that	 it	 covers	 all	 the
requirements	in	the	SRS	document	(the	SRS	requirements	are
the	input	to	the	SDD	stage).

The	verification	steps	for	each	phase	are	as	follows:

SyRS/SRS	Ensuring	that	the	requirements	in	the	document
fully	 cover	 all	 the	 requirements	provided	by	 the	 customer
—perhaps	from	UML	use	cases	(see	“The	UML	Use	Case
Model”	 on	 page	 74)	 or	 the	 customer’s	 functional
specification.

SDD	Ensuring	that	the	design	covers	all	requirements.	The
input	is	the	requirements	from	the	SRS.

STC	 Ensuring	 that	 at	 least	 one	 test	 case	 exists	 for	 each
(testable)	 requirement.	 The	 inputs	 are	 the	 requirements
from	the	SRS.

STP	Ensuring	that	all	the	test	cases	are	covered	by	the	test
procedures.	 The	 inputs	 are	 the	 test	 cases	 from	 the	 STC
(and,	 indirectly,	 the	 requirements	 on	 which	 the	 test	 cases
are	based).

To	verify	each	preceding	phase,	you’ll	need	 to	 review	 the
document	resulting	from	it.	The	RTM	will	prove	useful	during
these	reviews.	For	example,	when	reviewing	 the	SDD,	you’d
search	 for	 each	 requirement	 in	 the	 SRS,	 look	 up	 the
corresponding	 SDD	 tag,	 and	 then	 verify	 that	 the	 design
element	 implements	 the	specified	 requirement.	You’d	use	 the
same	process	 to	verify	 that	 the	STC	document	 covers	 all	 the
requirements	with	test	cases.

When	you’re	reviewing	the	code,	the	safest	approach	is	to
go	through	all	 the	 inputs	 to	a	phase	(that	 is,	 requirements	for
the	SDD	and	STC,	and	test	cases	for	the	STP)	and	physically
check	each	input	off	after	verifying	that	you	properly	handled
it.	This	final	list	becomes	part	of	the	review	document	for	that
phase.

In	 the	 review	 process,	 you	 should	 also	 confirm	 the
correctness	of	the	outputs	from	the	phase.	For	example,	when
reviewing	 the	 SRS,	 you	 should	 check	 each	 requirement	 to
make	 sure	 it’s	 useful	 (see	 “The	 Software	 Requirements
Specification	Document”	 on	 page	 194);	 when	 reviewing	 the
SDD,	 you	 should	make	 sure	 each	 design	 item	 is	 correct	 (for
example,	 you’re	 using	 suitable	 algorithms	 and	 handling
concurrent	operations	appropriately);	when	reviewing	the	STC

documentation,	you	should	ensure	each	test	case	properly	tests
the	associated	requirement;	and	when	reviewing	the	STP,	you
should	 verify	 that	 each	 test	 procedure	 properly	 tests	 its
associated	test	cases.

If	at	all	possible,	and	for	the	best	results,	an	engineer	other
than	 the	 document	 author	 should	 conduct	 the	 final,	 formal
review,	or	a	 second	engineer	should	participate	 in	 the	 review
process.	The	document	author	is	more	likely	to	gloss	over	an
omission,	 because	 they’re	 too	 close	 to	 that	 portion	 of	 the
project	and	could	mentally	fill	in	missing	elements	during	the
review.	 Of	 course,	 they	 should	 do	 their	 own	 review	 of	 the
document	prior	to	submitting	it	for	formal	review.

9.4	REDUCING	DEVELOPMENT
COSTS	USING	DOCUMENTATION
Documentation	 costs	 are	 often	 a	 major	 component	 of	 a
project’s	overall	cost.	Part	of	the	reason	is	that	there	is	so	much
documentation.	But	 another	 reason	 is	 that	 the	 documents	 are
interdependent,	 which	 makes	 them	 difficult	 to	 update	 and
maintain.	 In	Code	 Complete	 (Microsoft	 Press,	 2004),	 Steve
McConnell	 reports	 that,	compared	 to	 the	 requirements	phase,
correcting	errors	is	3	times	more	expensive	during	the	design
(architectural)	 phase,	 5	 to	 10	 times	 more	 expensive	 during
coding,	 and	 10	 times	more	 expensive	 during	 system	 testing.
There	a	couple	of	reasons	for	this:

If	 you	 fix	 a	 defect	 early	 in	 the	 development	 process,	 you	 don’t	 waste	 time
writing	 additional	 documentation,	 coding,	 and	 testing	 defective	 designs.	 For
example,	 it	 takes	 time	 to	 write	 the	 SDD	 documentation	 for	 a	 requirement,	 to
write	code	to	implement	that	requirement,	to	write	test	cases	and	test	procedures
for	the	requirement,	and	to	run	those	tests.	If	the	requirement	was	wrong	to	begin

with,	you’ve	wasted	all	that	effort.

If	you	discover	a	defective	item	in	one	phase	of	the	system,	you	have	to	locate
and	edit	anything	associated	with	 that	defect	 throughout	 the	rest	of	 the	system.
This	 can	 be	 laborious	 work,	 and	 it’s	 easy	 to	 miss	 changes,	 which	 creates
inconsistencies	and	other	problems	down	the	line.

9.4.1	Reducing	Costs	via	Validation
Nowhere	is	the	validation	activity	more	important	than	in	the
requirements	 phase	 (SyRS	 and	 SRS	 development).	 If	 you
insist	 that	 the	 customer	 understands	 and	 approves	 all
requirements	before	moving	on	to	later	phases,	you	can	ensure
there	 are	 no	 unwanted	 requirements	 and	 that	 you’re	 solving
the	customer’s	problems.	Few	things	are	worse	than	spending
several	months	documenting,	coding,	and	testing	a	program’s
feature	 only	 to	 have	 the	 customer	 say,	 “This	 isn’t	 what	 we
were	 asking	 for.”	A	 good	 validation	 process	 can	 help	 reduce
the	likelihood	of	this	scenario.

Validation,	 which	 should	 take	 place	 at	 the	 end	 of	 the
requirements	phase(s)	and	at	the	end	of	the	development	cycle,
involves	asking	the	following	questions:

SyRS	(if	present)
1.	 Is	each	existing	requirement	important?	Does	the	requirement	describe	some

feature	that	the	customer	wants?

2.	 Is	 each	 requirement	 correct?	 Does	 it	 precisely	 state	 (without	 ambiguity)
exactly	what	the	customer	wants?

3.	 Are	there	any	missing	requirements?

SRS
1.	 Are	all	software	requirements	listed	in	the	SyRS	(if	present)	also	listed	in	the

SRS?

2.	 Is	each	existing	requirement	important?	Is	this	feature	important	to	the	system
architect	and	agreed	upon	by	the	customer?

3.	 Is	 each	 requirement	 correct?	 Does	 it	 precisely	 state	 (without	 ambiguity)
exactly	what	the	software	must	do	to	be	effective?

4.	 Are	there	any	missing	requirements?

During	final	acceptance	testing,	the	test	engineer(s)	should
have	 a	 list	 of	 all	 the	 requirements	 in	 the	SRS	 in	 a	 checkbox
form.	 They	 should	 check	 off	 each	 requirement	 as	 it’s	 tested
(perhaps	 when	 following	 the	 test	 procedures	 in	 the	 STP)	 to
ensure	that	the	software	implements	it	correctly.

9.4.2	Reducing	Costs	via	Verification
As	 mentioned	 in	 “Validation,	 Verification,	 and	 Reviews”	 on
page	 181,	 verification	 should	 occur	 after	 each	 phase	 of	 the
software	development	process.	In	particular,	there	should	be	a
verification	step	associated	with	each	of	the	system	documents
after	 the	 SRS.	 Here	 are	 some	 questions	 you	might	 ask	 after
completing	each	document:

SDD
1.	 Do	the	design	components	completely	cover	all	the	requirements	in	the	SRS?

2.	 Is	 there	 a	 many-to-one	 (or	 one-to-one)	 relationship	 between	 requirements
(many)	 and	 software	 design	 elements	 (one)?	Although	 a	 design	 item	might
satisfy	multiple	requirements,	 it	should	not	 take	multiple	design	elements	 to
satisfy	a	single	requirement.

3.	 Does	 a	 software	 design	 element	 provide	 an	 accurate	 design	 that	 will
implement	the	given	requirement(s)?

STC
1.	 Is	there	a	one-to-many	(or	one-to-one)	relationship	between	requirements	and

test	cases?	(That	is,	a	requirement	can	have	multiple	associated	test	cases,	but
you	shouldn’t	have	multiple	requirements	sharing	the	same	test	case.)

2.	 Does	a	particular	test	case	accurately	test	the	associated	requirement?

3.	 Do	all	the	test	cases	associated	with	a	requirement	completely	test	the	correct
implementation	of	that	requirement?

STP
1.	 Is	 there	 a	many-to-one	 relationship	 between	 test	 cases	 in	 the	 STC	 and	 test

procedures	in	the	STP?	That	is,	does	a	test	procedure	implement	one	or	more

6

test	cases	while	each	test	case	is	handled	by	exactly	one	test	procedure?

2.	 Does	a	given	test	procedure	accurately	implement	all	its	associated	test	cases?

9.5	FOR	MORE	INFORMATION
Bremer,	 Michael.	 The	 User	 Manual	 Manual:	 How	 to
Research,	 Write,	 Test,	 Edit,	 and	 Produce	 a	 Software
Manual.	 Grass	 Valley,	 CA:	 UnTechnical	 Press,	 1999.	 A
sample	 chapter	 is	 available	 at
http://www.untechnicalpress.com/Downloads/UMM%20sa
mple%20doc.pdf.

IEEE.	 “IEEE	 Standard	 830-1998:	 IEEE	 Recommended
Practice	 for	 Software	 Requirements	 Specifications.”
October	 20,	 1998.
https://doi.org/10.1109/IEEESTD.1998.88286.

Leffingwell,	 Dean,	 and	 Don	 Widrig.	 Managing	 Software
Requirements.	 Boston:	 Addison-Wesley	 Professional,
2003.

McConnell,	 Steve.	Code	Complete.	 2nd	 ed.	 Redmond,	WA:
Microsoft	Press,	2004.

Miles,	 Russ,	 and	 Kim	 Hamilton.	 Learning	 UML	 2.0:	 A
Pragmatic	Introduction	to	UML.	Sebastopol,	CA:	O’Reilly
Media,	2003.

Pender,	Tom.	UML	Bible.	Indianapolis:	Wiley,	2003.

Roff,	 Jason	 T.	 UML:	 A	 Beginner’s	 Guide.	 Berkeley,	 CA:
McGraw-Hill	Education,	2003.

Wiegers,	 Karl	 E.	 Software	 Requirements.	 Redmond,	 WA:

http://www.untechnicalpress.com/Downloads/UMM%20sample%20doc.pdf
https://doi.org/10.1109/IEEESTD.1998.88286

Microsoft	Press,	2009.

———.	 “Writing	 Quality	 Requirements.”	 Software
Development	7,	no.	5	(May	1999):	44–48.

10
REQUIREMENTS	DOCUMENTATION

Requirements	 state	 what	 the	 software	 must	 do	 in	 order	 to
satisfy	the	customer’s	needs,	specifically:

What	functions	the	system	must	carry	out	(a	functional	requirement)

How	well	the	system	must	perform	them	(a	nonfunctional	requirement)

The	 resource	 or	 design	 parameters	 in	 which	 the	 software	 must	 operate
(constraints,	which	are	also	nonfunctional	requirements)

If	a	piece	of	software	does	not	fulfill	a	particular	requirement,
you	cannot	consider	the	software	complete	or	correct.	A	set	of
software	 requirements,	 therefore,	 is	 the	 fundamental	 starting
point	for	software	development.

10.1	REQUIREMENT	ORIGINS	AND
TRACEABILITY
Every	 software	 requirement	must	 have	 an	 origin.	 This	 could
be	 a	 higher-level	 requirements	 document	 (for	 example,	 a
requirement	 in	 a	 Software	Requirements	 Specification	 [SRS]
might	 originate	 from	 a	 System	 Requirements	 Specification

[SyRS],	or	a	requirement	in	 the	SyRS	might	originate	from	a
customer-supplied	 functional	 requirements	 document),	 a
specific	use	case	document,	a	customer	“statement	of	work	to
be	 done,”	 a	 customer’s	 verbal	 communication,	 or	 a
brainstorming	 meeting.	 You	 should	 be	 able	 to	 trace	 any
requirement	 to	 its	 origin;	 if	 you	 can’t,	 it	 probably	 isn’t
necessary	and	should	be	removed.

Reverse	 traceability	 is	 the	 ability	 to	 trace	 a	 requirement
back	 to	 its	 origin.	 As	 discussed	 in	 Chapter	 9,	 the	 Reverse
Traceability	Matrix	(RTM)	is	a	document	or	database	that	lists
all	 requirements	 and	 their	 origins.	 With	 an	 RTM,	 you	 can
easily	 identify	 the	 origin	 of	 a	 requirement	 to	 determine	 its
importance	 (see	 “The	 Requirements/Reverse	 Traceability
Matrix”	on	page	178	for	an	in-depth	description	of	the	RTM).

10.1.1	A	Suggested	Requirements	Format
A	written	requirement	should	take	one	of	the	following	forms:

[Trigger]	Actor	shall	Action	Object	[Condition]

[Trigger]	Actor	must	Action	Object	[Condition]

where	 the	 items	 inside	 the	 square	 brackets	 are	 optional.	 The
word	shall	 indicates	a	 functional	 requirement;	 the	word	must
indicates	a	nonfunctional	requirement.	Each	item	is	described
as	follows,	based	on	this	sample	requirement:

When	the	pool	temperature	is	in	the	range	40	degrees	F
to	 65	 degrees	 F	 the	 pool	 monitor	 shall	 turn	 off	 the
“good”	indication	unless	the	atmospheric	temperature	is
above	90	degrees	F.

Trigger	 A	 trigger	 is	 a	 phrase	 indicating	 when	 the
requirement	applies.	The	absence	of	a	 trigger	 implies	 that

the	requirement	always	applies.	In	the	example,	the	trigger
is	“When	the	pool	temperature	is	in	the	range	40	degrees	F
to	65	degrees	F.”

Actor	 The	 actor	 is	 the	 person	 or	 thing	 that	 is	 performing
the	action—in	this	case,	“the	pool	monitor.”

Action	 The	 action	 is	 the	 activity	 that	 the	 requirement
causes	(“turn	off”).

Object	 The	 object	 is	 the	 thing	 being	 acted	 upon	 (“the
‘good’	indication”).

Condition	 The	 condition	 is	 typically	 a	 negative
contingency	 that	 stops	 the	 action	 (if	 a	 positive	 condition
causes	 the	 action,	 it’s	 a	 trigger).	 In	 the	 example,	 the
condition	 is	 “unless	 the	 atmospheric	 temperature	 is	 above
90	degrees	F.”

Some	 authors	 allow	 the	words	 should	 or	may	 in	 place	 of
shall	 or	 must;	 however,	 these	 terms	 suggest	 that	 the
requirement	is	optional.	This	book	subscribes	to	the	view	that
all	 requirements	 are	 necessary	 and	 therefore	 should	 not
include	the	words	should	or	may.

10.1.2	Characteristics	of	Good	Requirements
This	 section	 discusses	 the	 attributes	 that	 characterize	 good
requirements.

10.1.2.1	Correct

That	 requirements	must	be	 correct	 should	go	without	 saying,
but	research	shows	that	about	40	percent	of	a	project’s	cost	is
due	to	errors	in	requirements.	Therefore,	taking	time	to	review

requirements	and	correct	any	mistakes	is	one	of	the	most	cost-
efficient	ways	to	ensure	quality	software.

10.1.2.2	Consistent

Requirements	must	be	consistent	with	one	another;	that	is,	one
requirement	cannot	contradict	another.	For	example,	 if	a	pool
temperature	monitor	 states	 that	an	alarm	must	be	 triggered	 if
the	 temperature	 falls	 below	70	degrees	 and	 another	 says	 that
the	 same	alarm	must	be	 triggered	when	 the	 temperature	 falls
below	65	degrees,	the	two	requirements	are	inconsistent.

Note	 that	 consistency	 refers	 to	 requirements	 within	 the
same	 document.	 If	 a	 requirement	 is	 not	 consistent	 with	 a
requirement	in	a	higher-level	document,	then	that	requirement
is	incorrect—never	mind	inconsistent.

10.1.2.3	Feasible

If	 you	can’t	 feasibly	 implement	 a	 software	 requirement,	 then
you	 don’t	 have	 a	 requirement.	 After	 all,	 requirements	 state
what	must	be	done	in	order	to	provide	a	satisfactory	software
solution;	 if	 the	 requirement	 is	 not	 viable,	 then	 it’s	 likewise
impossible	to	provide	the	software	solution.

10.1.2.4	Necessary

By	definition,	if	a	software	requirement	is	not	necessary,	it	 is
not	 a	 requirement.	 Requirements	 are	 costly	 to	 implement—
they	 require	 documentation,	 code,	 test	 procedures,	 and
maintenance—so	 you	 do	 not	 want	 to	 include	 a	 requirement
unless	it	is	necessary.	Unnecessary	requirements	are	often	the
result	 of	 “gold	 plating,”	 or	 adding	 features	 simply	 because
somebody	 thought	 they	would	be	cool,	without	 regard	 to	 the
costs	involved	in	implementing	them.

A	requirement	is	necessary	if	it:

makes	the	product	market	competitive;

addresses	a	need	expressed	by	a	customer,	end	user,	or	other	stakeholder;

differentiates	the	product	or	usage	model;	or

is	dictated	by	a	business	strategy,	roadmap,	or	a	sustainability	need.

10.1.2.5	Prioritized

Software	 requirements	 specify	 everything	 you	 must	 do	 to
produce	 the	 desired	 application.	 However,	 given	 various
constraints	(time,	budget,	and	so	on),	you	may	not	be	able	 to
implement	 every	 requirement	 in	 the	 first	 release	 of	 the
software.	Furthermore,	as	time	passes	(and	dollars	are	spent),
some	requirements	may	be	abandoned	because	things	change.
Therefore,	a	good	requirement	will	have	an	associated	priority.
This	can	help	drive	the	schedule,	as	teams	implement	the	most
critical	features	first	and	relegate	the	less	important	ones	to	the
end	of	the	project	development	cycle.	Typically,	three	or	four
levels	 of	 priority	 should	 be	 sufficient:	 critical/mandatory,
important,	desirable,	and	optional	are	good	examples.

10.1.2.6	Complete

A	 good	 requirement	 will	 be	 complete;	 that	 is,	 it	 will	 not
contain	any	TBD	(to	be	determined)	items.

10.1.2.7	Unambiguous

Requirements	 must	 not	 be	 open	 to	 interpretation	 (note	 that
TBD	 is	 a	 special	 case	 of	 this).	 Unambiguous	 means	 that	 a
requirement	has	exactly	one	interpretation.

Because	 most	 requirements	 are	 written	 in	 a	 natural
language	 (such	 as	 English)	 and	 natural	 languages	 are
ambiguous,	 you	 must	 take	 special	 care	 when	 writing

requirements	to	avoid	ambiguity.

Example	of	an	ambiguous	requirement:

When	 the	 pool	 temperature	 is	 too	 cold	 the	 software
shall	signal	an	alarm.

An	unambiguous	example:

When	the	pool	temperature	is	below	65	degrees	(F)	the
software	shall	signal	an	alarm.

Ambiguity	results	whenever	the	following	natural	language
features	appear	in	a	requirement:

Vagueness	 Results	 when	 you	 use	 weak	 words—those
without	a	precise	meaning—in	a	requirement.	This	section
will	discuss	weak	words	shortly.

Subjectivity	 Refers	 to	 the	 fact	 that	 different	 people	 will
assign	a	different	meaning	for	a	term	(a	weak	word)	based
on	their	own	personal	experiences	or	opinion.

Incompleteness	 Results	 from	 using	 TBD	 items,	 partial
specifications,	 or	 unbounded	 lists	 in	 a	 requirement.
Unbounded	 lists	 will	 be	 discussed	 in	 this	 section	 a	 little
later.

Optionality	 Occurs	 when	 you	 use	 phrases	 that	 make	 a
requirement	 optional	 rather	 than	 required	 (for	 example,	 is
caused	 by,	 use	 of,	 should,	 may,	 if	 possible,	 when
appropriate,	as	desired).

Underspecification	 Occurs	 when	 a	 requirement	 does	 not
fully	 specify	 the	 requirement,	 often	 as	 a	 result	 of	 using
weak	words	(such	as	support,	analyzed,	respond,	and	based
on).

Consider	this	requirement:

The	pool	monitor	shall	support	Fahrenheit	and	Celsius
scales.

What	 exactly	 does	 support	mean	 in	 this	 context?	One
developer	could	 interpret	 it	 to	mean	that	 the	end	user	can
select	the	input	and	output	to	be	in	degrees	F	or	C	(fixed),
while	 another	 developer	 could	 interpret	 it	 to	 mean	 that
both	scales	are	used	for	output	and	that	input	allows	either
scale	to	be	used.	A	better	requirement	might	be:

The	 pool	 monitor	 setup	 shall	 allow	 the	 user	 to	 select
either	the	Fahrenheit	or	Celsius	temperature	scale.

Underreference	Refers	to	when	a	requirement	provides	an
incomplete	or	missing	reference	to	another	document	(such
as	a	requirement’s	origin).

Overgeneralization	 Occurs	 when	 a	 requirement	 contains
universal	qualifiers	such	as	any,	all,	always,	and	every,	or,
in	the	negative	sense,	none,	never,	and	only.

Nonintelligibility	 Results	 from	 poor	 writing	 (grammar),
undefined	 terms,	 convoluted	 logic	 (for	 example,	 double
negation),	and	incompleteness.

Passive	 voice	 Refers	 to	 when	 the	 requirement	 does	 not
assign	 an	 actor	 to	 an	 action.	 For	 example,	 a	 bad
requirement	using	the	passive	voice	might	be:

An	alarm	shall	be	raised	if	the	temperature	drops	below
65	degrees	F.

Who	 is	 responsible	 for	 raising	 the	 alarm?	 Different
people	could	interpret	this	differently.	A	better	requirement

might	be:

The	 pool	monitor	 software	 shall	 raise	 an	 alarm	 if	 the
temperature	drops	below	65	degrees	F.

Using	 weak	 words	 in	 requirements	 often	 results	 in
ambiguity.	 Examples	 of	 weak	 words	 include:	 support,
generally,	kind	of,	mostly,	pretty,	 slightly,	 somewhat,	 sort	 of,
various,	 virtually,	 quickly,	 easy,	 timely,	 before,	 after,	 user-
friendly,	effective,	multiple,	as	possible,	appropriate,	normal,
capability,	reliable,	state-of-the-art,	effortless,	and	multi.

For	 example,	 a	 requirement	 such	 as	 “The	 pool	 monitor
shall	provide	multiple	sensors”	is	ambiguous	because	multiple
is	a	weak	word.	What	does	it	mean?	Two?	Three?	A	dozen?

Another	 way	 to	 create	 an	 ambiguous	 requirement	 is	 by
using	 an	 unbounded	 list—a	 list	 missing	 a	 starting	 point,	 an
ending	point,	or	both.	Typical	examples	include	phrasing	like
at	least;	 including,	but	not	 limited	 to;	or	 later;	or	more;	such
as;	and	so	on;	and	etc.

For	 example:	 “The	 pool	 monitor	 shall	 support	 three	 or
more	 sensors.”	 Does	 it	 have	 to	 support	 four	 sensors?	 Ten
sensors?	 An	 infinite	 number	 of	 sensors?	 This	 requirement
doesn’t	make	it	clear	what	the	maximum	number	of	supported
sensors	is.	A	better	requirement	might	be:

The	 pool	monitor	must	 support	 between	 three	 and	 six
sensors.

Unbounded	 lists	 are	 impossible	 to	 design	 and	 test	 against
(so	they	fail	both	the	feasible	and	verifiable	attributes).

10.1.2.8	Implementation-Independent

Requirements	must	be	based	solely	on	the	inputs	and	outputs
of	 a	 system.	 They	 should	 not	 delve	 into	 the	 implementation
details	 of	 the	 application	 (that’s	 the	 purpose	 of	 the	 Software
Design	 Description	 [SDD]	 document).	 Requirements	 must
view	the	system	as	a	black	box	into	which	inputs	are	fed	and
from	which	outputs	are	produced.

For	example,	a	requirement	might	state	that	an	input	to	the
system	is	a	list	of	numbers	that	produce	a	sorted	list	as	output.
The	requirement	should	not	state	something	like	“A	quicksort
algorithm	shall	be	used.”	There	may	be	good	reasons	why	the
software	designer	would	want	to	use	a	different	algorithm;	the
requirements	 should	 not	 force	 the	 software	 designer’s	 or
programmer’s	hand.

10.1.2.9	Verifiable

“If	 it	 isn’t	 testable,	 it	 isn’t	 a	 requirement”	 is	 the	 mantra	 by
which	a	requirements	author	should	live.	If	you	can’t	create	a
test	for	it,	you	also	can’t	verify	that	the	requirement	has	been
fulfilled	 in	 the	 final	 product.	 Indeed,	 the	 requirement	 might
very	 well	 be	 impossible	 to	 implement	 if	 you	 can’t	 come	 up
with	a	way	to	test	it.

If	 you	 can’t	 create	 a	 physical	 test	 that	 can	 be	 run	 on	 the
final	 software	 product,	 there’s	 a	 good	 chance	 that	 your
requirement	is	not	based	solely	on	system	inputs	and	outputs.
For	 example,	 if	 you	 have	 a	 requirement	 that	 states	 “The
system	shall	use	the	quicksort	algorithm	to	sort	the	data,”	how
do	you	test	for	this?	If	you	have	to	resort	to	“This	requirement
is	 tested	 by	 reviewing	 the	 code,”	 then	 you	 may	 not	 have	 a
good	requirement.	That’s	not	to	say	that	requirements	can’t	be
verified	by	inspection	or	analysis,	but	an	actual	test	is	always

the	 best	 way	 to	 verify	 a	 requirement,	 especially	 if	 you	 can
automate	that	test.

10.1.2.10	Atomic

A	 good	 requirement	 statement	 must	 not	 contain	 multiple
requirements—that	is,	it	must	not	be	a	compound	requirement.
Requirements	should	also	be	as	independent	as	possible;	their
implementation	should	not	rely	on	other	requirements.

Some	authors	claim	that	the	words	and	and	or	must	never
appear	in	a	requirement.	Strictly	speaking,	this	isn’t	true.	You
simply	want	to	avoid	using	the	fanboys	conjunctions	(for,	and,
nor,	but,	or,	yet,	so)	 to	combine	separate	 requirements	 into	a
single	 statement.	 For	 example,	 the	 following	 is	 not	 a
compound	requirement:

The	pool	monitor	shall	set	the	“good”	indication	when
the	temperature	is	between	70	degrees	F	and	85	degrees
F.

This	 is	a	single	requirement,	not	 two.	The	presence	of	 the
word	 and	 does	 not	 produce	 two	 requirements.	 If	 you	 really
want	 to	 be	 a	 stickler	 and	 eliminate	 the	word	and,	 you	 could
rewrite	the	requirement	thusly:

The	pool	monitor	shall	set	the	“good”	indication	when
the	temperature	is	in	the	range	from	70	degrees	F	to	85
degrees	F.

However,	 there’s	 really	 nothing	 wrong	 with	 the	 first
version.	Here’s	an	example	of	a	compound	requirement:

The	 pool	 monitor	 shall	 clear	 the	 “good”	 indication
when	 the	 temperature	 is	below	70	degrees	F	or	above

85	degrees	F.

This	should	be	rewritten	as	two	separate	requirements:

The	 pool	 monitor	 shall	 clear	 the	 “good”	 indication
when	the	temperature	is	below	70	degrees	F.

The	 pool	 monitor	 shall	 clear	 the	 “good”	 indication
when	the	temperature	is	above	85	degrees	F.

Note	 that	 compound	 requirements	 will	 create	 problems
later	 when	 you’re	 constructing	 traceability	 matrices,	 as	 this
chapter	will	discuss	in	“Updating	the	Traceability	Matrix	with
Requirement	 Information”	 on	 page	 222.	 Compound
requirements	 also	 create	 testing	 problems.	 The	 test	 for	 a
requirement	must	 produce	 a	 single	 answer:	 pass	 or	 fail.	You
cannot	have	part	 of	 a	 requirement	pass	 and	another	part	 fail.
That’s	a	sure	sign	of	a	compound	requirement.

10.1.2.11	Unique

A	 requirements	 specification	 must	 not	 contain	 any	 duplicate
requirements.	 Duplication	 makes	 the	 document	 much	 more
difficult	 to	 maintain,	 particularly	 if	 you	 ever	 modify
requirements	and	forget	to	modify	the	duplicates.

10.1.2.12	Modifiable

It	 would	 be	 unreasonable	 to	 expect	 the	 requirements	 of	 a
project	 to	 remain	 constant	 over	 its	 lifetime.	 Expectations
change,	 technology	 changes,	 the	 market	 changes,	 and	 the
competition	 changes.	 During	 product	 development,	 you’ll
likely	want	 to	 revise	 some	 requirements	 to	 adapt	 to	 evolving
conditions.	 In	 particular,	 you	 don’t	 want	 to	 choose
requirements	that	enforce	certain	system	constraints	that	other

1

requirements	 will	 be	 based	 on.	 For	 example,	 consider	 the
following	requirement:

The	 pool	 monitor	 shall	 use	 an	 Arduino	 Mega	 2560
single-board	computer	as	the	control	module.

Based	 on	 this	 requirement,	 other	 requirements	 might	 be
“The	 pool	 monitor	 shall	 use	 the	 A8	 pin	 for	 the	 pool	 level
indication”	and	“The	pool	monitor	shall	use	the	D0	pin	as	the
low	temperature	output.”	The	problem	with	such	requirements,
which	are	based	on	the	use	of	the	Mega	2560	board,	is	that	if	a
new	 board	 comes	 along	 (say,	 a	 Teensy	 4.0	 module),	 then
changing	 the	 first	 requirement	 necessitates	 also	 changing	 all
the	 other	 requirements	 that	 depend	 on	 it.	 A	 better	 set	 of
requirements	might	be:

The	pool	monitor	shall	use	a	single-board	computer	that
supports	 8	 analog	 inputs,	 4	 digital	 outputs,	 and	 12
digital	inputs.

The	 pool	 monitor	 shall	 use	 one	 of	 the	 digital	 output
pins	as	the	low	temperature	alarm.

The	pool	monitor	shall	use	one	of	the	analog	input	pins
as	the	pool	level	input.

10.1.2.13	Traceable

All	 requirements	 must	 be	 forward-	 and	 reverse-traceable.
Reverse	traceability	means	that	the	requirement	can	be	traced
to	 its	 origin.	 To	 be	 traceable	 to	 some	 other	 object,	 the
requirement	must	have	a	tag	(a	unique	identifier,	as	introduced
in	Chapter	4).

Each	 requirement	 must	 include	 the	 origin	 as	 part	 of	 the

requirement	 text	 or	 tag;	 otherwise,	 you	 must	 provide	 a
separate	 RTM	 document	 (or	 database)	 that	 provides	 that
information.	 In	 general,	 you	 should	 explicitly	 list	 a
requirement’s	origin	within	the	requirement	itself.

Forward	traceability	provides	a	link	to	all	documents	based
on	 (or	 spawned	 by)	 the	 requirements	 document.	Most	 of	 the
time,	forward	traceability	is	handled	via	an	RTM	document;	it
would	be	too	much	work	to	maintain	this	information	in	each
requirements	 document	 (there	 would	 be	 too	 much	 duplicate
information,	 which,	 as	 previously	 noted,	 makes	 document
maintenance	difficult).

10.1.2.14	Positively	Stated

A	requirement	should	state	what	must	be	 true,	not	what	must
not	 happen.	 Most	 negatively	 stated	 requirements	 are
impossible	 to	 verify.	 For	 example,	 the	 following	 is	 a	 bad
requirement:

The	 pool	 monitor	 shall	 not	 operate	 at	 atmospheric
temperatures	below	freezing.

This	requirement	suggests	that	the	pool	monitor	must	stop
operation	 once	 the	 temperature	 drops	 below	 freezing.	 Does
this	mean	that	the	system	will	sense	the	temperature	and	shut
down	below	freezing?	Or	does	it	simply	mean	that	the	system
cannot	 be	 expected	 to	 produce	 reasonable	 values	 below
freezing?	Better	requirements	might	be:

The	 pool	 monitor	 shall	 automatically	 shut	 off	 if	 the
temperature	falls	below	freezing.

Hopefully,	 there	 is	 a	 requirement	 that	 discusses	 what

should	 happen	 when	 the	 temperature	 rises	 back	 above
freezing.	If	the	pool	monitor	has	been	shut	off,	can	it	sense	this
change?

10.2	DESIGN	GOALS
Although	 requirements	 can’t	 be	 optional,	 it’s	 sometimes
beneficial	 to	 be	 able	 to	 list	 optional	 items	 in	 a	 requirements
document.	Such	items	are	known	as	design	goals.

Design	 goals	 violate	 many	 of	 the	 attributes	 of	 good
requirements.	Obviously,	 they	are	not	necessary,	but	 they	can
also	 be	 incomplete,	 be	 slightly	 ambiguous,	 specify
implementation,	or	not	be	testable.	For	example,	a	design	goal
might	be	to	use	the	C	standard	library’s	built-in	sort()	 function
(an	 implementation	 detail)	 in	 order	 to	 reduce	 development
time.	Another	design	goal	might	be	something	like:

The	 pool	 monitor	 should	 support	 as	 many	 sensors	 as
possible.

As	 you	 can	 see,	 this	 is	 both	 optional	 and	 open-ended.	 A
design	goal	 is	a	suggestion	 that	a	developer	can	use	 to	guide
development	choices.	It	should	not	involve	extra	design	work
or	testing	that	leads	to	further	development	expenses.	It	should
simply	 help	 a	 developer	make	 certain	 developmental	 choices
when	designing	the	system.

Like	 requirements,	 design	 goals	 can	 have	 tags,	 though
there’s	 little	 need	 to	 trace	 design	 goals	 through	 the
documentation	 system.	 However,	 because	 they	 might	 be
elevated	to	requirement	status	at	some	point,	it’s	nice	to	have	a
tag	associated	with	 them	so	 they	can	serve	as	an	origin	 for	a

requirement	in	a	spawned	document.

10.3	THE	SYSTEM	REQUIREMENTS
SPECIFICATION	DOCUMENT
The	System	Requirements	Specification	document	collects	all
the	requirements	associated	with	a	complete	system.	This	may
include	 business	 requirements,	 legislative/political
requirements,	 hardware	 requirements,	 and	 software
requirements.	 The	 SyRS	 is	 usually	 a	 very	 high-level
document,	though	internal	to	an	organization.	Its	purpose	is	to
provide	 a	 single-source	 origin	 for	 all	 requirements	 appearing
in	an	organization’s	subservient	documents	(such	as	the	SRS).

The	SyRS	takes	the	same	form	as	the	SRS	(described	in	the
next	section),	so	I	won’t	further	elaborate	on	its	contents	other
than	to	point	out	that	the	SyRS	spawns	the	SRS	(and	Hardware
Requirements	 Specifications,	 or	 HRS,	 if	 appropriate).	 The
SyRS	 is	 optional	 and	 typically	 absent	 in	 small	 software-only
projects.

SyRS	 requirements	 typically	 state	 “The	 system	 shall”	 or
“The	system	must.”	This	 is	 in	contrast	 to	 requirements	 in	 the
SRS	that	typically	state	“The	software	shall”	or	“The	software
must.”

10.4	THE	SOFTWARE
REQUIREMENTS	SPECIFICATION
DOCUMENT
The	Software	Requirements	 Specification	 is	 a	 document	 that
contains	 all	 the	 requirements	 and	 design	 goals	 for	 a	 given

software	 project.	 There	 are	 (literally)	 hundreds,	 if	 not
thousands,	of	examples	of	SRS	documents	scattered	across	the
internet.	Many	sites	seem	to	have	their	own	ideas	about	what
constitutes	 an	 SRS.	 Rather	 than	 introduce	 yet	 another	 new
template	 into	 the	 cacophony,	 this	 book	 will	 elect	 to	 use	 the
template	 defined	 by	 the	 IEEE:	 the	 IEEE	 830-1998
Recommended	 Practice	 for	 Software	 Requirements
Specifications.

In	 this	 book,	 using	 the	 IEEE	 830-1998	 recommended
practice	is	a	safe	decision,	but	note	that	the	standard	is	by	no
means	perfect.	It	was	created	by	a	committee	and,	as	a	result,
it	 contains	 a	 lot	 of	 bloat	 (extraneous	 information).	 The
problem	 with	 committee-designed	 standards	 is	 that	 the	 only
way	 to	 get	 them	 approved	 is	 by	 letting	 everyone	 inject	 their
own	pet	 ideas	 into	 the	document,	even	 if	 those	 ideas	conflict
with	others	in	the	document.	Nevertheless,	the	IEEE	830-1998
recommendation	 is	 a	 good	 starting	 point.	 You	 need	 not	 feel
compelled	to	implement	everything	in	it,	but	you	should	use	it
as	a	guideline	when	creating	your	SRS.

A	typical	SRS	uses	an	outline	similar	to	the	following:

Table	of	Contents

1	Introduction

1.1	Purpose

1.2	Scope

1.3	Definitions,	Acronyms,	and	Abbreviations

1.4	References

1.5	Overview

2	Overall	Description

2.1	Product	Perspective

2.1.1	System	Interfaces

2.1.2	User	Interfaces

2.1.3	Hardware	Interfaces

2.1.4	Software	Interfaces

2.1.5	Communication	Interfaces

2.1.6	Memory	Constraints

2.1.7	Operations

2.2	Site	Adaptation	Requirements

2.3	Product	Functions

2.4	User	Characteristics

2.5	Constraints

2.6	Assumptions	and	Dependencies

2.7	Apportioning	of	Requirements

3	Specific	Requirements

3.1	External	Interfaces

3.2	Functional	Requirements

3.3	Performance	Requirements

3.4	Logical	Database	Requirements

3.5	Design	Constraints

3.6	Standards	Compliance

3.7	Software	System	Attributes

3.7.1	Reliability

3.7.2	Availability

3.7.3	Security

3.7.4	Maintainability

3.7.5	Portability

3.8	Design	Goals

4	Appendixes

5	Index

Section	 3	 is	 the	 most	 important—this	 is	 where	 you	 will
place	all	of	your	requirements	as	well	as	your	design	goals.

10.4.1	Introduction
The	Introduction	contains	an	overview	of	the	entire	SRS.	The
following	 subsections	 describe	 the	 suggested	 contents	 of	 the
Introduction.

10.4.1.1	Purpose

In	 the	 Purpose	 section,	 you	 should	 state	 the	 purpose	 of	 the
SRS	 and	 who	 the	 intended	 audience	 is.	 For	 an	 SRS,	 the
intended	audience	is	probably	the	customers	who	will	need	to
validate	the	SRS	and	the	developers/designers	who	will	create
the	 SDD,	 software	 test	 cases,	 and	 software	 test	 procedures,
and	will	write	the	code.

10.4.1.2	Scope

The	Scope	section	describes	the	software	product	by	name	(for
example,	Plantation	Productions	Pool	Monitor),	explains	what
the	 product	will	 do,	 and,	 if	 necessary,	 states	what	 it	will	not
do.	 (Don’t	 worry	 that	 this	 doesn’t	 adhere	 to	 the	 “positively
stated”	rule,	since	this	is	a	scope	declaration,	not	a	requirement
statement.)	 The	 Scope	 section	 also	 outlines	 the	 objectives	 of
the	 project,	 the	 benefits	 and	 goals	 of	 the	 product,	 and	 the
application	software	being	written	for	the	product.

10.4.1.3	Definitions,	Acronyms,	and	Abbreviations

The	 Definitions	 section	 provides	 a	 glossary	 of	 all	 terms,
acronyms,	and	abbreviations	the	SRS	uses.

10.4.1.4	References

The	 References	 section	 provides	 a	 link	 to	 all	 external
documents	 that	 the	SRS	 references.	 If	your	SRS	 relies	on	an
external	RTM	document,	you	should	reference	that	document
here.	 If	 the	 documents	 are	 internal	 to	 the	 organization,	 you
should	provide	their	internal	document	numbers/references.	If
the	 SRS	 references	 a	 document	 that	 is	 external	 to	 the
organization,	 the	SRS	should	list	 the	document’s	title,	author,
publisher,	and	date	as	well	as	information	on	how	to	obtain	the
document.

10.4.1.5	Overview

The	Overview	 section	describes	 the	 format	 of	 the	 rest	 of	 the
SRS	and	the	information	it	contains	(this	section	is	particularly
important	 if	 you’ve	 omitted	 items	 from	 the	 IEEE
recommendation).

10.4.2	Overall	Description
The	Overall	Description	section	specifies	 the	requirements	of
the	following	aspects:

10.4.2.1	Product	Perspective

The	Product	Perspective	section	contextualizes	the	product
with	respect	to	other	(possibly	competing)	products.	If	this
product	 is	part	of	a	 larger	system,	 the	product	perspective
should	point	this	out	(and	describe	how	the	requirements	in
this	 document	 relate	 to	 the	 larger	 system).	 This	 section
might	also	describe	various	constraints	on	the	product,	such

as:

10.4.2.1.1	System	Interfaces

This	section	describes	how	the	software	will	interface	with
the	 rest	 of	 the	 system.	 This	 would	 typically	 include	 any
APIs,	 such	 as	 how	 the	 software	 interfaces	 with	 a	 Wi-Fi
adapter	in	order	to	view	pool	readings	remotely.

10.4.2.1.2	User	Interfaces

This	section	lists	all	user	interface	(UI)	elements	needed	to
meet	 the	 requirements.	 For	 example,	 in	 the	 pool	 monitor
scenario,	this	section	could	describe	how	the	user	interacts
with	 the	 device	 via	 an	 LCD	 display	 and	 various	 push
buttons	on	the	device.

10.4.2.1.3	Hardware	Interfaces

This	section	could	describe	how	the	software	interacts	with
the	 underlying	 hardware.	 For	 example,	 the	 pool	 monitor
SRS	 could	 state	 that	 the	 software	 will	 be	 running	 on	 an
Arduino	 Mega	 2560,	 using	 the	 A8	 through	 A15	 analog
inputs	 to	 connect	 to	 the	 sensors	 and	 the	 D0	 through	 D7
digital	lines	as	inputs	connected	to	buttons.

10.4.2.1.4	Software	Interfaces

This	 section	 describes	 any	 additional/external	 software
needed	 to	 implement	 the	 system.	 This	 might	 include
operating	 systems,	 third-party	 libraries,	 database
management	 systems,	 or	 other	 application	 systems.	 For
example,	 the	pool	monitor	SRS	might	describe	 the	use	of
vendor-supplied	libraries	needed	to	read	data	from	various
sensors.	 For	 each	 software	 item,	 you	 should	 include	 the
following	information	in	this	section:

Name

Specification	number	(a	vendor-supplied	value,	if	any)

Version	number

Source

Purpose

Reference	to	pertinent	documentation

10.4.2.1.5	Communication	Interfaces

This	 section	 lists	 any	 communication	 interfaces,	 such	 as
Ethernet,	 Wi-Fi,	 Bluetooth,	 and	 RS-232	 serial	 that	 the
product	will	use.	For	example,	the	pool	monitor	SRS	might
describe	the	Wi-Fi	interface	in	this	section.

10.4.2.1.6	Memory	Constraints

This	 section	 describes	 all	 the	 constraints	 on	memory	 and
data	storage.	For	 the	pool	monitor	 running	on	an	Arduino
Mega	 2560,	 SRS	might	 state	 that	 there	 is	 a	 limitation	 in
program	storage	of	1K	EEPROM	and	8K	RAM	plus	64K
to	128K	Flash.

10.4.2.1.7	Operations

This	 section	 (often	 folded	 into	 the	 UI	 section)	 describes
various	 operations	 on	 the	 product.	 It	 might	 detail	 the
various	 modes	 of	 operation—such	 as	 normal,	 reduced
power,	 maintenance,	 or	 installation	 modes—and	 describe
interactive	 sessions,	 unattended	 sessions,	 and
communication	features.

10.4.2.2	Site	Adaptation	Requirements

This	 section	 describes	 any	 site-specific	 adaptations.	 For
example,	 the	 pool	 monitor	 SRS	 might	 describe	 optional
sensors	for	pools	with	spas	in	this	section.

10.4.2.3	Product	Functions

The	Product	Functions	section	describes	the	software’s	(major)
functionality.	 For	 example,	 the	 pool	monitor	 SRS	might	 use
this	section	to	describe	how	the	software	monitors	pool	levels,
pool	 temperatures,	 atmospheric	 temperature,	 water
conductivity	 (for	 saltwater	 pools),	 water	 flow	 though	 the
filtration	 system,	 and	 filtration	 time	 since	 the	 last	 filter
cleaning.

10.4.2.4	User	Characteristics

The	User	Characteristics	section	describes	the	people	that	will
use	 the	 product.	 For	 example,	 the	 pool	 monitor	 SRS	 might
define	 a	 factory	 test	 technician	 (responsible	 for	 testing	 and
repairing	the	unit),	a	field	installation	technician,	an	advanced
end	 user,	 and	 an	 average	 end	 user.	 There	 may	 be	 different
requirements	for	 the	software	 that	apply	only	 to	certain	 types
of	users.

10.4.2.5	Constraints

The	 Constraints	 section	 describes	 any	 limitations	 that	 may
affect	 the	 developer’s	 choices	 when	 designing	 and
implementing	the	software,	such	as:

Regulatory	policies

Hardware	limitations	(for	example,	signal	timing	requirements)

Interfaces	to	other	applications

Parallel	operation

Audit	functions

Control	functions

High-level	language	requirements

Signal	handshake	protocols	(for	example,	XON-XOFF)

Reliability	requirements

Criticality	of	the	application

Safety	and	security	considerations

10.4.2.6	Assumptions	and	Dependencies

The	items	listed	in	the	Assumptions	and	Dependencies	section
apply	only	to	the	requirements;	they	do	not	present	constraints
on	 the	 design.	 If	 an	 assumption	 were	 to	 change,	 it	 would
require	changing	 requirements	 rather	 than	 the	design	 (though
changing	 requirements	 will	 likely	 affect	 the	 design	 as	 well).
For	example,	in	the	pool	monitor	SRS	an	assumption	might	be
that	the	Arduino	Mega	2560	will	provide	sufficient	computing
power,	 ports,	 and	 memory	 to	 complete	 the	 task.	 If	 this
assumption	is	incorrect,	it	may	affect	some	requirements	with
respect	to	port	usage,	available	memory,	and	the	like.

10.4.2.7	Apportioning	of	Requirements

The	 Apportioning	 of	 Requirements	 section	 divides	 the
requirements	and	features	into	two	or	more	groups:	those	to	be
implemented	 in	 the	 current	 release,	 and	 those	 planned	 for
future	versions	of	the	software.

10.4.3	Specific	Requirements
The	 Specific	 Requirements	 section	 should	 list	 all	 the
requirements	 and	 supporting	 documentation.	 This
documentation	 should	be	written	 such	 that	 a	 system	designer
can	construct	a	design	for	the	software	from	the	requirements
documented.

All	 requirements	 should	 possess	 the	 characteristics
discussed	earlier	 in	 this	chapter.	They	should	also	have	a	 tag
and	 a	 cross-reference	 (trace)	 to	 their	 origin.	 Because	 the
requirements	documentation	will	be	read	far	more	times	than	it
is	written,	you	should	take	special	care	to	make	this	document
as	readable	as	possible.

10.4.3.1	External	Interfaces

The	External	 Interfaces	section	should	describe	all	 the	 inputs
and	outputs	of	the	software	system	in	great	detail	but	without
replicating	 the	 information	 in	 the	 interface	subsections	of	 the
Product	 Perspective	 section.	 Each	 listing	 should	 contain	 the
following	information	(as	appropriate	for	the	system):

Tag

Description

Input	source	or	output	destination

Valid	range	of	values	plus	necessary	accuracy/precision/tolerance

Measurement	units

Timing	and	tolerances

Relationship	to	other	input/output	items

Screen/window	 formats	 (but	 list	 only	 screen	 requirements	 that	 are	 actual
requirements—don’t	design	the	user	interface	here)

Data	formats

Command	formats,	protocols,	and	any	necessary	sentinel	messages

Many	SRS	authors	will	pull	this	section	out	of	the	Specific
Requirements	 section	 and	place	 it	 in	 the	Product	Perspective
section	 in	 order	 to	 avoid	 redundancy,	 though	 the	 IEEE	 830-
1998	standard	suggests	that	this	section	be	part	of	the	Specific
Requirements	section.	However,	the	IEEE	document	is	only	a
recommended	 practice,	 so	 the	 choice	 is	 really	 yours.	 What
matters	most	is	that	the	information	appears	in	the	SRS.

10.4.3.2	Functional	Requirements

The	Functional	Requirements	section	contains	those	items	that
most	 people	 immediately	 recognize	 as	 requirements.	 This
section	lists	the	fundamental	activities	that	take	place	on	inputs
and	 describes	 how	 the	 system	 uses	 the	 inputs	 to	 produce
outputs.	 By	 convention,	 functional	 requirements	 always

contain	 the	 auxiliary	 verb	 shall.	 For	 example,	 “The	 software
shall	raise	an	alarm	when	the	pool	low	input	is	active.”

Typical	functional	requirements	include	the	following:

Input	validity	checks	and	responses	to	invalid	inputs

Operation	sequences

Abnormal	 condition	 responses,	 including:	 overflow,	 underflow,	 arithmetic
exceptions,	 communication	 failures,	 resource	 overruns,	 error	 handling	 and
recovery,	and	protocol	errors

Persistence	of	data	across	executions	of	the	software

Effect	of	parameters

Input/output	relationships,	including:	legal	and	illegal	input	patterns,	relationship
of	 inputs	 to	output,	and	how	outputs	are	computed	 from	 inputs	 (but	be	careful
not	to	incorporate	software	design	into	the	requirements)

10.4.3.3	Performance	Requirements

The	 Performance	 Requirements	 section	 lists	 nonfunctional
requirements	that	specify	either	static	or	dynamic	performance
targets	 that	 the	 software	 must	 hit.	 Like	 most	 nonfunctional
requirements,	 performance	 requirements	 usually	 contain	 the
auxiliary	verb	must—for	example,	“The	software	must	be	able
to	control	an	internal	display	and	a	remote	display.”

Static	performance	requirements	are	those	that	are	defined
for	the	system	as	a	whole	and	do	not	depend	on	the	software’s
capabilities.	A	good	example	for	the	pool	monitor	is	“The	pool
monitor	must	be	able	to	read	sensor	input	data	from	between	5
and	 10	 analog	 sensors.”	This	 is	 a	 static	 requirement	 because
the	number	of	sensors	is	static	for	a	given	installation	(it	isn’t
going	 to	 change	 because	 the	 software	 is	 written	 more
efficiently,	for	example).

Dynamic	 performance	 requirements	 are	 those	 that	 the
software	must	meet	during	execution.	A	good	example	might
be	 “The	 software	must	 read	 each	 sensor	 between	 10	 and	 20

times	per	second.”

10.4.3.4	Logical	Database	Requirements

The	 Logical	 Database	 Requirements	 section	 describes
nonfunctional	 requirements	 that	 specify	 the	 record	 and	 field
formats	 for	 databases	 that	 the	 application	 must	 access.
Typically,	 these	 requirements	 deal	 with	 externally	 accessed
databases.	 Databases	 internal	 to	 the	 application	 (that	 is,	 not
visible	to	the	outside	world)	are	generally	outside	the	domain
of	 the	 software	 requirements,	 although	 the	SDD	might	 cover
these.

10.4.3.5	Design	Constraints

Standards	 compliance	 is	 an	 example	 of	 a	 design	 constraint.
Any	limitation	that	prevents	the	software	designer	from	using
an	 arbitrary	 implementation	 should	 be	 listed	 in	 the	 Design
Constraints	 section.	One	 example	might	 be	 limiting	 readings
from	 a	 16-bit	 A/D	 converter	 to	 13	 bits	 because	 the	 A/D
chip/circuit	 is	 noisy	 and	 the	 low-order	 3	 bits	 may	 not	 be
reliable.

10.4.3.6	Standards	Compliance

The	 Standards	 Compliance	 section	 should	 describe,	 and
provide	 links	 to,	 all	 standards	 to	 which	 the	 software	 must
adhere.	Standards	numbers	and	document	descriptions	should
allow	the	reader	to	research	the	standards	as	necessary.

10.4.3.7	Software	System	Attributes

The	Software	System	Attributes	section	lists	characteristics	for
the	software	system,	including:

10.4.3.7.1	Reliability

The	Requirements	section	will	specify	the	expected	uptime
requirements	 for	 the	 software	 system.	 Reliability	 is	 a
nonfunctional	 requirement	 that	 describes,	 usually	 as	 a
percentage,	the	amount	of	time	that	the	system	will	operate
without	 a	 failure.	 A	 typical	 example	 is	 “an	 expected
reliability	of	99.99	percent,”	meaning	that	the	software	will
fail	no	more	 than	0.01	percent	of	 the	 time.	As	with	many
nonfunctional	 requirements,	 it	 can	 be	 difficult	 to	 provide
tests	to	ensure	that	reliability	targets	are	met.

10.4.3.7.2	Availability

The	availability	attribute	specifies	the	amount	of	downtime
that	 is	 acceptable	 in	 the	 final	 application	 (actually,	 it
specifies	 the	 inverse	 of	 downtime).	 Availability	 specifies
the	ability	of	the	user	to	access	the	software	system	at	any
time.	When	 the	 system	 is	down,	 it	 is	 not	 available	 to	 the
user.	 This	 nonfunctional	 requirement	 might	 differentiate
between	 scheduled	 downtime	 and	 unscheduled	 downtime
(for	example,	a	hardware	failure	that	forces	a	restart	of	the
system).

10.4.3.7.3	Security

The	 security	 attribute	 is	 a	 nonfunctional	 requirement	 that
specifies	the	expected	system	security,	which	could	include
items	 such	as	encryption	expectations	and	network	 socket
types.

10.4.3.7.4	Maintainability

Maintainability	 is	 another	 nonfunctional	 requirement	 that
can	be	hard	to	specify	and	test.	In	most	specifications,	there
is	a	nebulous	statement	like	“the	software	shall	be	easy	to
maintain.”	This	 is	 unhelpful.	 Instead,	 this	 attribute	 should

state,	 “It	 must	 take	 an	 experienced	 maintenance
programmer	no	more	than	a	week	to	come	up	to	speed	on
this	system	and	make	changes	to	it.”

REQUIREMENT	ORGANIZATION

Any	 sufficiently	 complex	 system	 will	 have	 a	 large	 number	 of
requirements,	 so	 the	SRS	can	become	unwieldy	 if	 it	 is	not	organized
properly.	 There	 are	 many	 different	 application	 types,	 and	 an	 equally
large	 number	 of	 ways	 to	 organize	 their	 requirements.	 No	 particular
organization	 is	 correct;	 you’ll	 have	 to	 choose	 one	 of	 the	 following
options	based	on	the	audience	for	your	SRS.

Organizing	by	system	mode
Some	 systems	 operate	 in	 various	 modes—for	 example,	 an
embedded	 system	might	 have	 a	 low-power	 mode	 and	 a	 regular
mode.	 In	 that	 case,	 you	 could	 organize	 the	 system	 requirements
into	those	two	groups.

Organizing	by	user	class
Some	 systems	 support	 different	 classes	 of	 users	 (for	 example,
beginners,	power	users,	and	system	administrators).	In	a	complex
system,	you	might	have	normal	users,	power	users,	maintenance
workers,	and	programmers	accessing	the	system.

Organizing	by	object	class
Objects	are	entities	in	the	software	system	that	correspond	to	real-
world	objects.	You	could	organize	your	requirements	based	on	the
types	or	classes	of	these	objects.

Organizing	by	feature
One	of	 the	more	common	ways	 to	organize	SRS	requirements	 is
by	the	features	they	implement.	This	is	a	particularly	useful	method
of	organization	when	 the	application	provides	a	user	 interface	 for
all	the	features	in	the	system.

Organizing	by	input	stimulus
If	processing	different	inputs	is	a	primary	activity	of	the	application,
then	you	might	consider	organizing	your	SRS	by	the	type	of	inputs
the	application	processes.

Organizing	by	output	response
Similarly,	if	producing	a	wide	range	of	outputs	is	a	primary	activity
of	 the	 application,	 then	 it	 might	 make	 sense	 to	 organize	 the
requirements	by	output	response.

Organizing	by	functional	hierarchy
Another	 common	 SRS	 organization	 approach	 is	 by	 functionality.
This	is	often	the	fallback	position	SRS	authors	use	when	no	other
organization	 seems	 appropriate.	 Grouping	 the	 requirements	 by

common	inputs,	command	outputs,	common	database	operations,
and	 data	 flow	 through	 the	 program	 are	 all	 reasonable	 ways	 to
organize	the	SRS.

10.4.3.7.5	Portability

Portability	 describes	 what	 is	 involved	 in	 moving	 the
software	 to	 a	 different	 environment.	 This	 section	 should
include	a	discussion	of	portability	across	CPUs,	operating
systems,	and	programming	language	dialects.

10.4.3.8	Design	Goals

Often	it	is	tempting	to	put	so-called	optional	requirements	into
an	 SRS.	 However,	 as	 noted	 earlier	 in	 this	 chapter,
requirements	 by	 definition	 cannot	 be	 optional.	 Nevertheless,
there	will	be	times	when	you	might	wish	to	say,	“If	possible,
add	this	feature.”	You	can	state	such	requests	as	design	goals
and	leave	it	up	to	the	designer	or	software	engineer	to	decide	if
the	 feature	 is	worth	 having.	 Place	 design	 goals	 in	 a	 separate
section	and	clearly	state	“As	a	design	goal,	the	software	should
.	.	.	”	in	your	SRS.

10.4.4	Supporting	Information
Any	 good	 software	 requirements	 specification	 will	 contain
supporting	information	such	as	a	table	of	contents,	appendixes,
glossaries,	 and	 an	 index.	 There	 should	 also	 be	 a	 table	 of
requirement	tags	(sorted	numerically	or	lexicographically)	that
lists	 each	 tag,	 a	 short	description	of	 the	 requirement,	 and	 the
page	number	where	it	appears	in	the	document	(this	could	also
be	placed	in	the	RTM	rather	than	in	the	SRS).

10.4.5	A	Sample	Software	Requirements
Specification

This	 section	 provides	 a	 sample	 SRS	 for	 a	 swimming	 pool
monitor	similar	to	the	examples	given	thus	far	in	this	chapter.
For	space	reasons,	this	swimming	pool	monitor	SRS	is	greatly
simplified;	 the	 purpose	 is	 not	 to	 provide	 a	 complete
specification,	but	rather	to	provide	an	illustrative	outline.

Table	of	Contents

1	Introduction

1.1	Purpose

The	pool	monitor	device	will	track	pool	water	levels	and
automatically	refill	the	pool	when	levels	are	low.

1.2	Scope

The	 pool	monitor	 software	will	 be	 produced	 from	 this
specification.

The	 objectives	 of	 the	 hardware	 and	 software
development	 are	 to	 provide	 functions,	 status
information,	 monitor	 and	 control	 hardware,
communications,	 and	 self-test	 functions	 per	 the
requirements	 that	 have	 been	 allocated	 to	 the	 pool
monitor	system.

1.3	Definitions,	Acronyms,	and	Abbreviations

Term Definition

Accuracy The	degree	of	agreement	with	the	true	value	of	the	
measured	input,	expressed	as	percent	of	reading	for	
digital	readouts	(ANSI	N42.18-1980).

Anomaly Anything	observed	in	the	documentation	or	operation	
of	software	that	deviates	from	expectations.	(Derived	
from	IEEE	Std	610.12-1990.)

Catastrophic	event An	event	without	warning	from	which	recovery	is	
impossible.	Catastrophic	events	include	hardware	or	
software	failures	resulting	in	computation	and	
processing	errors.	The	processor	will	halt	or	reset,	
based	on	a	configuration	item,	after	a	catastrophic	
event.

Handled	conditions Conditions	that	the	system	is	designed	to	handle	and	
continue	processing.	These	conditions	include	
anomalies,	faults,	and	failures.

SBC Single-board	computer

Software	
Requirements	
Specification	(SRS)

Documentation	of	the	essential	requirements	
(functions,	performance,	design	constraints,	and	
attributes)	of	the	software	and	its	external	interfaces	
(IEEE	Std	610.12-1990).

SPM Swimming	pool	monitor

System	
Requirements	
Specification	(SyRS)

A	structured	collection	of	information	that	embodies	
the	requirements	of	the	system	(IEEE	Std	1233-1998).	
A	specification	that	documents	the	requirements	to	
establish	a	design	basis	and	the	conceptual	design	for	a	
system	or	subsystem.

1.4	References

[None]

1.5	Overview

Section	 2	 provides	 an	 overall	 description	 of	 the
swimming	pool	monitor	(hardware	and	software).

Section	 3	 lists	 the	 specific	 requirements	 for	 the
swimming	pool	monitor	system.

Sections	4	and	5	provide	any	necessary	appendixes	and
an	index.

In	section	3,	requirements	tags	take	the	following	form:

<whitespace> [POOL_SRS_xxx]

<whitespace> [POOL_SRS_xxx.yy]

<whitespace> [POOL_SRS_xxx.yy.zz]

<and	so	on>. 	

where	 xxx	 is	 a	 three-	 or	 four-digit	 SRS	 requirement
number.

Should	 the	need	arise	 to	 insert	a	new	SRS	requirement
tag	 between	 two	 other	 values	 (for	 example,	 add	 a
requirement	 between	 POOL_SRS_040	 and
POOL_SRS_041),	 then	 a	 decimal	 fractional	 number
shall	be	appended	to	the	SRS	tag	number	(for	example,
POOL_SRS_040.5).	 Any	 number	 of	 decimal	 point
suffixes	 can	 be	 added,	 if	 needed	 (for	 example,
POOL_SRS_40.05.02).

2	Overall	Description

The	purpose	behind	the	swimming	pool	monitor	(SPM)	is
to	provide	an	automatic	system	for	maintaining	water	level
in	 the	 pool.	 This	 task	 is	 sufficiently	 simple	 to	 allow	 the
creation	 of	 an	 SRS	 that	 is	 short	 enough	 to	 fit	 within	 this
chapter.

2.1	Product	Perspective

In	the	real	world,	an	SPM	would	probably	provide	many
additional	 features;	 adding	 those	 features	 here	 would
only	 increase	 the	 size	 of	 the	 SRS	 without	 providing
much	 additional	 educational	 benefit.	 This	 specification
is	 intentionally	 simplified	 in	 order	 to	 fit	 within	 the
editorial	requirements	of	this	book.

2.1.1	System	Interfaces

The	SPM	design	assumes	 the	use	of	an	Arduino-
compatible	 SBC.	 Accordingly,	 the	 software	 will
interface	 to	 the	 hardware	 using	 Arduino-
compatible	libraries.

2.1.2	User	Interfaces

The	user	interface	shall	consist	of	a	small	four-line
display	 (minimum	 20	 characters/line),	 six	 push
buttons	 (up,	 down,	 left,	 right,	 cancel/back,	 and
select/enter),	and	a	rotary	encoder	(rotating	knob).

2.1.3	Hardware	Interfaces

This	document	doesn’t	specify	a	particular	SBC	to
use.	However,	 the	SBC	must	 provide	 at	 least	 the
following:

16	digital	inputs

1	analog	input

2	digital	outputs

A	 small	 amount	 of	 nonvolatile,	 writable	 memory	 (for	 example,
EEPROM)	to	store	configuration	values.

A	real-time	clock	(RTC;	this	can	be	an	external	module)

A	watchdog	timer	to	monitor	the	system’s	software	operation

The	 SPM	 provides	 pool	 sensors	 to	 determine
when	the	pool	level	is	high	or	low.	It	also	provides
a	solenoid	interface	to	a	water	valve,	allowing	the
SPM	to	turn	on	or	off	a	water	source	for	the	pool.

2.1.4	Software	Interfaces

The	SPM	software	 is	self-contained	and	provides
no	 external	 interfaces,	 nor	 does	 it	 require	 any
external	software	interfaces.

2.1.5	Communication	Interfaces

The	 SPM	 is	 self-contained	 and	 does	 not
communicate	with	the	outside	world.

2.1.6	Memory	Constraints

As	the	SPM	is	running	on	an	Arduino-compatible
SBC,	 there	 will	 be	 (severe)	 memory	 constraints,
depending	 on	 the	 exact	 model	 chosen	 (for
example,	 an	 Arduino	 Mega	 2560	 SBC	 provides
only	8KB	of	static	RAM	on	board).

2.1.7	Operations

The	 SPM	 operates	 in	 an	 always-on	 mode,
monitoring	 the	 pool	 24/7/365.	 Therefore,	 the
module	 itself	 should	 not	 consume	 excessive
electrical	power.	It	will,	however,	be	connected	to
line	voltage	via	 a	power	 supply,	 so	 extreme	 low-
power	operation	is	unnecessary.	It	will	constantly
monitor	 the	 pool’s	 water	 level	 and	 automatically
turn	on	a	water	source	if	the	pool	level	is	low.	To

avoid	flooding	if	there	is	a	sensor	failure,	the	SPM
will	 limit	 the	 amount	 of	 water	 introduced	 to	 the
pool	 on	 a	 daily	 basis	 (time	 limit	 is	 user-
selectable).

2.2	Site	Adaptation	Requirements

For	 this	particular	variant	of	 the	SPM,	 there	 is	 little	 in
the	 way	 of	 site	 adaptation	 requirements.	 There	 are	 no
optional	 sensors	 or	 operations	 and	 the	 only	 interfaces
outside	 the	 SPM	 itself	 is	 a	 source	 of	 power	 for	 the
system	 and	 a	water	 source	 (interfaced	 via	 the	 solenoid
valve).

2.3	Product	Functions

The	 product	 shall	 use	 seven	 water-level	 sensors	 to
determine	 the	 pool	 level:	 three	 digital	 sensors	 that
provide	a	 low-pool	 indication,	 three	digital	sensors	 that
provide	a	high-pool	indication,	and	an	analog	sensor	that
provides	 a	 pool	 level	 depth	 indication	 (perhaps	 only	 a
couple	 inches	 or	 centimeters	 in	 range).	 The	 three	 low-
pool	digital	sensors	are	active	when	the	water	level	is	at
the	level	of	the	sensor.	The	system	will	begin	filling	the
pool	 when	 there	 is	 a	 low-pool	 indication.	 To	 avoid
flooding	when	a	sensor	fails,	the	three	sensors	operate	in
a	 two	 out	 of	 three	 configuration,	meaning	 at	 least	 two
sensors	 must	 indicate	 a	 low-pool	 condition	 before	 the
SPM	will	 attempt	 to	 fill	 the	 pool.	 The	 three	 high-pool
sensors	 work	 in	 a	 likewise	 fashion	 when	 the	 SPM
should	 stop	 filling	 the	 pool	 (water	 level	 is	 high).	 The
analog	sensor	provides	a	small	range	of	depth;	the	SPM
will	use	the	analog	sensor	as	a	backup	to	verify	that	the

pool	level	is	low	prior	to	filling	the	pool.	The	SPM	will
also	use	the	analog	sensor	 to	determine	that	 the	pool	 is
actually	 filling	while	 the	SPM	has	 turned	on	 the	water
source.

2.4	User	Characteristics

There	are	two	types	of	SPM	users:	technicians	and	end
users.	 A	 technician	 is	 responsible	 for	 installing	 and
adjusting	the	SPM.	An	end	user	is	the	pool’s	owner	who
uses	the	SPM	on	a	day-to-day	basis.

2.5	Constraints

The	 SPM	 should	 be	 carefully	 designed	 to	 prevent
inadvertent	 flooding	 and	 excessive	 water	 use.	 In
particular,	 the	 software	 must	 be	 robust	 enough	 to
determine	 that	 the	pool	 is	not	being	properly	filled	and
to	cease	attempting	to	fill	the	pool	if	the	sensors	do	not
indicate	 proper	 operation.	 Should	 any	 sensor	 fail,	 the
software	 should	 be	 smart	 enough	 to	 avoid	 blindly
keeping	the	water	turned	on	(which	could	lead	to	flood
damage).	 For	 example,	 if	 the	 SPM	 is	 attached	 to	 an
aboveground	pool	and	that	pool	has	a	leak,	it	might	not
ever	 be	 possible	 to	 fill	 the	 pool.	 The	 software	 should
handle	such	situations.

The	system	should	be	fail-safe	insofar	as	a	power	failure
should	 automatically	 shut	 off	 the	 water	 valve.	 A
watchdog	timer	of	some	sort	should	also	check	that	the
software	 is	 operating	 properly	 and	 turn	 off	 the	 water
valve	 if	 a	 timeout	 occurs	 (for	 example,	 should	 the
software	hang	up).

To	avoid	flooding	because	of	a	malfunctioning	relay,	the
SPM	should	use	 two	 relays	 in	 series	 to	open	 the	water
valve.	Both	 relays	must	be	actuated	by	 the	 software	 in
order	to	turn	on	the	solenoid	valve.

2.6	Assumptions	and	Dependencies

The	requirements	in	this	document	assume	that	the	SBC
contains	 sufficient	 resources	 (computing	 power)	 to
handle	 the	 task	 and	 that	 the	 device	 can	 reasonably
operate	in	a	24/7/365	real-time	environment.

2.7	Apportioning	of	Requirements

These	requirements	define	a	very	simple	swimming	pool
monitor	 for	 the	 purposes	 of	 demonstrating	 a	 complete
SRS.	 As	 this	 is	 a	 minimal	 requirement	 set	 for	 a	 very
small	SPM,	the	assumption	is	that	a	product	built	around
these	requirements	would	implement	all	of	them.	A	real
product	 would	 probably	 include	 many	 additional
features	beyond	 those	 listed	here,	with	a	corresponding
increase	in	the	number	of	requirements	appearing	in	this
document.

3	Specific	Requirements

3.1	External	Interfaces

[POOL_SRS_001]

The	 SPM	 shall	 provide	 a	 digital	 input	 for	 the
navigation	up	button.

[POOL_SRS_002]

The	 SPM	 shall	 provide	 a	 digital	 input	 for	 the
navigation	down	button.

[POOL_SRS_003]

The	 SPM	 shall	 provide	 a	 digital	 input	 for	 the
navigation	left	button.

[POOL_SRS_004]

The	 SPM	 shall	 provide	 a	 digital	 input	 for	 the
navigation	right	button.

[POOL_SRS_005]

The	 SPM	 shall	 provide	 a	 digital	 input	 for	 the
cancel/back	button.

[POOL_SRS_006]

The	 SPM	 shall	 provide	 a	 digital	 input	 for	 the
select/enter	button.

[POOL_SRS_007]

The	 SPM	 shall	 provide	 four	 digital	 inputs	 for	 the
rotary	encoder	(quadrature)	input.

[POOL_SRS_008.01]

The	 SPM	 shall	 provide	 a	 digital	 input	 for	 the
primary	water	level	low	sensor.

[POOL_SRS_008.02]

The	 SPM	 shall	 provide	 a	 digital	 input	 for	 the
secondary	water	level	low	sensor.

[POOL_SRS_008.03]

The	 SPM	 shall	 provide	 a	 digital	 input	 for	 the
tertiary	water	level	low	sensor.

[POOL_SRS_009.01]

The	 SPM	 shall	 provide	 a	 digital	 input	 for	 the
primary	water	level	high	sensor.

[POOL_SRS_009.02]

The	 SPM	 shall	 provide	 a	 digital	 input	 for	 the
secondary	water	level	high	sensor.

[POOL_SRS_009.03]

The	 SPM	 shall	 provide	 a	 digital	 input	 for	 the
tertiary	water	level	high	sensor.

[POOL_SRS_011]

The	SPM	shall	 provide	 an	 analog	 input	 (minimum
8-bit	resolution)	for	the	water	level	sensor.

[POOL_SRS_012]

The	 SPM	 shall	 provide	 two	 digital	 outputs	 to
control	the	water	source	solenoid	valve.

3.2	Functional	Requirements

[POOL_SRS_013]

The	SPM	 shall	 allow	 the	 user	 to	 set	 the	RTC	date
and	time	via	the	user	interface.

[POOL_SRS_014]

The	 SPM	 shall	 have	 a	 maximum	 fill	 time,
specifying	 the	 maximum	 amount	 of	 time
(hours:mins)	 that	 the	 water	 valve	 can	 be	 actuated
during	a	24-hour	period.

[POOL_SRS_015]

The	user	shall	be	able	to	set	the	maximum	fill	time
from	 the	 SPM	user	 interface	 (using	 the	 navigation
and	enter	buttons).

[POOL_SRS_015.01]

Once	 the	 user	 has	 selected	 the	maximum	 fill	 time
from	 the	 user	 interface,	 the	 user	 shall	 be	 able	 to
select	 the	 hours	 or	 minutes	 fields	 using	 the
navigation	buttons.

[POOL_SRS_015.02]

The	 user	 shall	 be	 able	 to	 independently	 set	 the
maximum	 fill-time	 hours	 value	 using	 the	 rotary
encoder	after	selecting	the	hours	field.

[POOL_SRS_015.03]

The	 user	 shall	 be	 able	 to	 independently	 set	 the
maximum	 fill-time	 minutes	 value	 using	 the	 rotary
encoder	after	selecting	the	minutes	field.

[POOL_SRS_015.04]

The	software	shall	not	allow	a	maximum	fill	time	of
greater	than	12	hours.

[POOL_SRS_016]

The	SPM	shall	check	 the	pool	 level	once	every	24
hours,	at	a	specific	time,	to	determine	if	it	needs	to
add	water	to	the	pool.

[POOL_SRS_017]

The	 user	 shall	 be	 able	 to	 set	 the	 time	 the	 SPM
checks	the	pool	level	(and,	therefore,	when	the	SPM

fills	the	pool)	from	the	SPM	user	interface.

[POOL_SRS_017.01]

Once	the	user	has	selected	the	pool-level	check	time
from	 the	 user	 interface,	 the	 user	 shall	 be	 able	 to
select	 the	 hours	 or	 minutes	 fields	 using	 the
navigation	buttons.

[POOL_SRS_017.02]

The	user	shall	be	able	to	independently	set	the	pool-
level	 check-time	 hours	 value	 using	 the	 rotary
encoder	after	selecting	the	hours	field.

[POOL_SRS_017.03]

The	user	shall	be	able	to	independently	set	the	pool-
level	 check-time	 minutes	 value	 using	 the	 rotary
encoder	after	selecting	the	minutes	field.

[POOL_SRS_017.04]

The	default	(factory	reset)	pool	check	time	shall	be
1:00	AM.

[POOL_SRS_018]

At	 the	 pool	 check	 time	 each	 day,	 the	 system	 shall
read	 the	 three	 pool	 level	 low	 sensors	 and	 begin	 a
pool	fill	operation	if	at	least	two	of	the	three	sensors
indicate	a	pool	low	condition.

[POOL_SRS_018.01]

During	 a	 pool	 fill	 operation	 the	 software	 shall
accumulate	a	running	fill	time.

[POOL_SRS_018.02]

During	a	pool	 fill	operation	 if	 the	running	fill	 time
exceeds	 the	maximum	 fill	 time,	 the	 software	 shall
cease	the	pool	fill	operation.

[POOL_SRS_018.03]

During	a	pool	fill	operation	the	software	shall	 read
the	 pool	 level	 high	 sensors	 and	 cease	 the	 pool	 fill
operation	if	at	least	two	of	the	three	sensors	indicate
a	high	pool	level.

[POOL_SRS_018.04]

During	a	pool	fill	operation	the	software	shall	 read
the	analog	pool-level	 sensor	and	shut	off	 the	water
flow	if	the	level	isn’t	increasing	after	each	half-hour
of	operation.

[POOL_SRS_019]

The	software	shall	allow	the	user	to	select	a	manual
pool	fill	mode	that	turns	on	the	water	source	to	the
pool.

[POOL_SRS_019.01]

The	software	 shall	 allow	 the	user	 to	 select	an	auto
pool	 fill	 mode	 that	 turns	 off	 the	 manual	 pool	 fill
mode.

[POOL_SRS_019.02]

In	 the	 manual	 pool	 fill	 mode,	 the	 software	 shall
ignore	the	maximum	fill	time.

[POOL_SRS_019.03]

In	 the	 manual	 pool	 fill	 mode,	 the	 software	 shall
ignore	the	pool	level	high	and	pool	level	low	sensors
(filling	stops	when	the	user	turns	off	the	manual	fill
mode).

[POOL_SRS_020]

The	 software	 shall	 update	 the	 system	 watchdog
timer	 at	 least	 twice	 as	 frequently	 as	 the	 watchdog
timeout	period.

[POOL_SRS_020.01]

The	watchdog	timeout	period	shall	be	no	less	than	5
seconds	and	no	greater	than	60	seconds.

3.3	Performance	Requirements

[POOL_SRS_001.00.01]

The	SPM	shall	debounce	all	button	inputs.

[POOL_SRS_007.00.01]

The	 SPM	 shall	 be	 capable	 of	 reading	 the	 rotary
encoder	 inputs	 without	 losing	 any	 changes	 on	 the
inputs.

[POOL_SRS_015.00.01]

The	SPM	shall	maintain	an	accuracy	of	at	least	one
minute	for	the	maximum	pool	fill	time.

[POOL_SRS_017.00.01]

The	SPM	shall	maintain	an	accuracy	of	at	least	one
minute	for	the	pool	level	check	time.

3.4	Logical	Database	Requirements

[POOL_SRS_014.00.01]

The	 SPM	 shall	 store	 the	 maximum	 fill	 time	 in
nonvolatile	memory.

[POOL_SRS_016.00.01]

The	 SPM	 shall	 store	 the	 pool	 check	 time	 in
nonvolatile	memory.

3.5	Design	Constraints

[None]

3.6	Standards	Compliance

[None]

3.7	Software	System	Attributes

3.7.1	Reliability

The	 software	 will	 run	 24/7/365.	 Therefore,
robustness	is	a	critical	factor	in	system	design.	In
particular,	the	system	should	be	fail-safe	insofar	as
a	 software	 or	 other	 failure	 should	 result	 in	 the
closure	of	the	water	valve.

3.7.2	Availability

The	 software	 should	 be	 running	 continuously
(24/7/365).	 The	 software	 must	 not	 be	 subject	 to
counter	 overflows	 or	 other	 problems	 associated
with	 long-term	 execution.	 The	 end	 user	 should
expect	at	least	99.99	percent	uptime.

3.7.3	Security

There	are	no	security	requirements	for	the	system

(closed,	disconnected,	air-gapped	system).

3.7.4	Maintainability

There	 are	 no	 maintainability	 requirements	 other
than	those	customarily	expected	of	a	professional
software	engineering	project.

That	 said,	 this	 is	 a	 bare-bones	 requirements
document.	 Should	 someone	 actually	 build	 this
system,	 one	 would	 expect	 future	 enhancements.
Thus,	 the	 system	 should	 be	 designed	 and
implemented	with	such	expectations	in	mind.

3.7.5	Portability

The	 software	 is	 expected	 to	 run	 on	 an	 Arduino-
class	 device.	 No	 portability	 requirements	 exist
other	 than	 the	 possibility	 of	 selecting	 different
Arduino-compatible	 modules	 (for	 example,
Arduino	 Mega	 2560	 versus	 Teensy	 4.0)	 during
implementation.

3.8	Design	Goals

None	for	this	project.

4	Appendixes

[None]

5	Index

Given	the	(small)	size	of	this	SRS,	no	index	appears	here	in
order	to	reduce	page	count	for	this	book.

10.5	CREATING	REQUIREMENTS
Up	to	this	point	this	chapter	has	defined	requirements	as	well
as	 requirements	 documentation.	 But	 you	 might	 be	 asking,
“How	 does	 someone	 come	 up	 with	 the	 requirements	 in	 the
first	 place?”	This	 section	will	 provide	 some	 insight	 into	 that
question.

The	 modern	 approach	 to	 requirements	 creation	 involves
use	 cases,	 which	 were	 introduced	 in	 Chapter	 4.	 The	 system
architect	studies	how	an	end	user	would	use	a	system	(the	user
story)	 and	 creates	 a	 set	 of	 scenarios	 (use	 cases)	 from	 that
study.	 Each	 use	 case	 becomes	 the	 basis	 for	 a	 set	 of	 one	 or
more	 requirements.	 This	 section	 departs	 from	 the	 swimming
pool	 monitor	 scenario	 to	 consider	 an	 example	 from	 a	 real-
world	 system,	 the	 Plantation	 Productions	 digital	 data
acquisition	and	control	(DAQ)	system.

The	 DAQ	 system	 consists	 of	 multiple	 interconnecting
circuit	boards,	including	analog	I/O	boards,	digital	I/O	boards,
digital	 output	 boards	 (relay	 boards),	 and	 an	 SBC,	 the
Netburner	MOD54415,	 that	 runs	 the	 system	 firmware.	These
components	 allow	 a	 system	 designer	 to	 read	 various	 analog
and	digital	 inputs,	 compute	 results	 and	make	decisions	based
on	those	 inputs,	and	then	control	external	devices	by	sending
digital	and	analog	output	values	to	those	devices.	For	example,
the	DAQ	system	was	originally	designed	to	control	a	TRIGA
research	reactor.

The	 firmware	 requirements	 for	 the	 DAQ	 system	 are	 too
large	to	duplicate	here,	so	this	chapter	will	limit	the	discussion
to	 certain	 I/O	 initialization	 that	 must	 take	 place	 when	 the
system	first	powers	up.	The	Netburner	MOD54415	includes	a
set	 of	 eight	 DIP	 switches,	 which	 the	 DAQ	 system	 uses	 to

2

3

initialize	various	 system	components.	These	DIP	switches	do
the	following:
1.	 Enable/disable	RS-232	port	command	processing.

2.	 Enable/disable	USB	port	command	processing.

3.	 Enable/disable	Ethernet	port	command	processing.

4.	 Specify	one	Ethernet	connection	or	five	simultaneous	Ethernet	connections.

5.	 Specify	 one	 of	 four	 different	 Ethernet	 addresses	 using	 two	DIP	 switches;	 see
Table	10-1.

6.	 Enable/disable	test	mode.

7.	 Enable/disable	debug	output.

Table	10-1:	Ethernet	Address	Selection

DIP	switch	A DIP	switch	A	+	1 Ethernet	address

0 0 192.168.2.70

1 0 192.168.2.71

0 1 192.168.2.72

1 1 192.168.2.73

One	 final	 thing	 to	 note	 about	 the	 DAQ	 software
initialization:	 debug	 output	 uses	 the	 Netburner	 COM1:	 port.
The	Netburner	 shares	 this	 serial	port	hardware	with	 the	USB
port.	 There	 is	 a	 conflict	 if	 the	 user	 enables	 both	 the	 debug
output	and	the	USB	command	ports.	Therefore,	 to	enable	the
debug	port,	two	conditions	must	be	met:	debug	output	must	be
enabled	and	USB	port	command	processing	must	be	disabled.

To	 enable	 commands	 from	 the	RS-232	 or	USB	 ports,	 the
software	 must	 read	 the	 switches.	 If	 the	 particular	 switch
indicates	that	the	command	stream	is	active,	then	the	software
must	 create	 a	 new	 task 	 to	 handle	 input	 from	 that	 port.	 The4

newly	created	 task	 is	 responsible	 for	 reading	characters	 from
the	given	port	and	sending	entire	lines	of	text	to	the	system’s
command	processor	upon	receiving	a	newline	character.	If	the
corresponding	DIP	 switches	 are	 in	 the	 disabled	 position,	 the
software	 won’t	 create	 the	 RS-232	 or	 USB	 tasks,	 and	 the
system	will	ignore	these	ports.

Enabling	Ethernet	commands	is	slightly	more	complicated.
There	are	four	DIP	switches	associated	with	the	Ethernet	port.
The	Ethernet	initialization	operation	must	consider	the	settings
for	all	four	DIP	switches.

One	DIP	switch	controls	 the	number	of	concurrent	clients
the	 DAQ	 software	 supports.	 In	 one	 position,	 the	 DAQ
software	 supports	 only	 a	 single	 Ethernet	 client;	 in	 the	 other
position,	 the	 software	 supports	up	 to	 five	Ethernet	 clients.	 In
some	 environments,	 you	 might	 need	 to	 allow	 multiple	 host
computers	to	access	the	data	acquisition	and	control	hardware;
for	 example,	 while	 debugging	 you	 may	 want	 to	 have	 a	 test
computer	 monitoring	 the	 operations.	 In	 some	 secure
applications	(after	deployment),	you	may	want	to	limit	access
to	the	DAQ	system	to	a	single	computer.

The	 third	 and	 fourth	 Ethernet	 DIP	 switches	 allow	 an
operator	 to	 select	 one	of	 four	 separate	 IP/Ethernet	 addresses.
This	allows	control	of	up	to	four	separate	Netburner	modules
in	the	same	system.	As	noted	in	Table	10-1,	the	four	selectable
Ethernet	addresses	are	192.168.2.70	through	192.168.2.73	(the
requirements	 could	 be	 changed	 to	 support	 different	 IP
addresses,	of	course,	but	 these	were	convenient	addresses	 for
the	initial	DAQ	system	that	was	built).

10.6	USE	CASES

Given	the	preceding	user	story,	the	next	step	is	to	build	a	set	of
use	cases	that	describe	these	operations.	Remember,	use	cases
are	 more	 than	 a	 few	 UML	 diagrams—they	 also	 include	 a
descriptive	narrative	(see	“Use	Case	Narratives”	on	page	80).

Actors	There	 is	 a	 single	 actor	 in	 the	 following	use	 cases,
the	System	User.

Triggers	 In	all	of	 the	following	use	cases,	 the	 trigger	 that
activates	 each	 use	 case	 is	 system	 boot.	 The	 system	 reads
the	DIP	switch	settings	at	boot	time	and	initializes	based	on
those	settings	(see	Figure	10-1).

Scenarios/Flow	 of	 Events	 These	 are	 the	 activities	 that
occur	for	a	given	use	case.

Associated	 Requirements	 The	 Associated	 Requirements
provide	 cross-references	 to	 the	 DAQ	 System	 SRS.	 The
requirements	 appear	 in	 the	 following	 sections	 (see
“(Selected)	DAQ	Software	Requirements	 (from	SRS)”	 on
page	219).	You	must	create	the	requirements	before	 filling
in	this	section;	otherwise,	you’d	simply	be	guessing	at	the
requirements	you’ll	need.

Figure	10-1:	Read	DIP	switches	use	case

10.6.1	Enable/Disable	Debug	Mode
Goal	 Enabling	 and	 disabling	 debug	 output	 on	 DAQ

system.

Precondition	System	has	booted.

End	 condition	 Debug	 mode	 is	 active	 or	 inactive,	 as
appropriate.

10.6.1.1	Scenarios/Flow	of	Events

Enable/Disable	Debug	Mode
1.	 During	system	initialization,	read	DIP	switches.

2.	 Save	the	value	of	DIP	switch	8	(on	=	debug	mode	on,	off	=	debug	mode	off).

3.	 Debug	mode	is	enabled	if	DIP	switch	8	is	on	and	DIP	switch	2	(USB	mode)	is
off.

4.	 Start	the	maintPrintf	task.

10.6.1.2	Associated	Requirements

DAQ_SRS_721_001:	PPDAQ	Debug	Mode	Enabled

DAQ_SRS_721_002:	PPDAQ	Debug	Mode	Disabled

10.6.2	Enable/Disable	Ethernet
Goal	Enabling	and	disabling	Ethernet	command	processing
on	DAQ	system.

Precondition	System	has	booted.

End	 condition	 Ethernet	 communication	 is	 active	 or
inactive,	as	appropriate.	If	active,	Ethernet	input	processing
tasks	are	running.

10.6.2.1	Scenarios/Flow	of	Events

Enable/Disable	Ethernet

1.	During	system	initialization,	read	DIP	switches.

2.	Use	 the	value	of	DIP	 switch	3	 to	determine	 if	Ethernet	 is
enabled	(switch	is	on)	or	disabled	(switch	is	off).

3.	Save	the	value	of	DIP	switch	4	to	determine	if	 the	system
supports	one	connection	(switch	is	off)	or	 five	concurrent
connections	(switch	is	on).

4.	Use	the	values	of	DIP	switches	5	and	6	to	determine	the	IP
address.

5.	If	Ethernet	is	enabled	(DIP	switch	3	is	on),	then:

5.1	 Set	 the	 Ethernet	 address	 based	 on	 the	 value	 of	 DIP
switches	5	and	6	as:

5.1.1	192.168.2.70

5.1.2	192.168.2.71

5.1.3	192.168.2.72

5.1.4	192.168.2.73

5.2	Start	the	ethernetListenTask	task	with	priority	ETHL_PRIO.

6.	Else	(if	Ethernet	is	not	enabled):

6.1	Do	not	start	the	ethernetListenTask.

ethernetListenTask

1.	 Initialize	 an	 array	 of	 five	 descriptors	 with	 zero	 elements
(empty	descriptor	slots).

2.	Wait	for	an	external	connection	request	on	Ethernet	socket
0x5050.

3.	If	a	connection	request	is	made:

3.1	Search	for	an	empty	slot	(array	element	containing	zero)
in	the	descriptor	array.

3.2	If	there	are	no	slots	available:

3.2.1	Refuse	connection.

3.2.2	Go	to	step	2.

3.3	Else	if	a	slot	is	available:

3.3.1	Accept	connection	and	store	 its	 file	descriptor	 in
the	available	slot.

3.3.2	Create	 a	 new	Ethernet	 command	 task	 associated
with	 the	new	connection;	 the	priority	of	 the	new
task	 shall	 be	 ETH1_PRIO	 through	 ETH5_PRIO,
selected	 by	 the	 index	 into	 the	 descriptor	 slot
array;	note	that	SER_PRIO	<	ETHL_PRIO	<	ETH1_PRIO
to	ETH5_PRIO	<	USB_PRIO	 (where	smaller	numbers
mean	 the	 task	 has	 a	 higher	 priority	 in	 the	 task
queue).

3.3.3	Go	to	step	2.

4.	Else	if	the	listen	connection	is	broken,	terminate	listen	task.

10.6.2.2	Associated	Requirements

DAQ_SRS_708_000:	PPDAQ	Ethernet	IP	Address

DAQ_SRS_709_000:	 PPDAQ	 Ethernet	 IP	 Address
192.168.2.70

DAQ_SRS_710_000:	 PPDAQ	 Ethernet	 IP	 Address
192.168.2.71

DAQ_SRS_711_000:	 PPDAQ	 Ethernet	 IP	 Address
192.168.2.72

DAQ_SRS_712_000:	 PPDAQ	 Ethernet	 IP	 Address
192.168.2.73

DAQ_SRS_716_000:	PPDAQ	Ethernet	Enabled

DAQ_SRS_716.5_000:	PDAQ	Ethernet	Disabled

DAQ_SRS_716_001:	PPDAQ	Ethernet	Task

DAQ_SRS_716_002:	PPDAQ	Ethernet	Task	Priority

DAQ_SRS_717_000:	PPDAQ	Ethernet	Port

DAQ_SRS_718_000:	 PPDAQ	 Ethernet	 Multiple	 Clients
Enabled

DAQ_SRS_718_001:	 PPDAQ	 Ethernet	 Multiple	 Clients
Disabled

DAQ_SRS_728_000:	PPDAQ	Command	Source	#3

DAQ_SRS_737_000:	 PPDAQ	 Maximum	 Ethernet
Connections	#1

DAQ_SRS_738_000:	 PPDAQ	 Maximum	 Ethernet
Connections	#2

DAQ_SRS_738_001:	 PPDAQ	 Ethernet	 Command
Processing	Tasks

DAQ_SRS_738_002:	 PPDAQ	 Ethernet	 Command	 Task
Priorities

10.6.3	Enable/Disable	RS-232
(Similar	to	the	previous	use	cases;	deleted	for	brevity.)

10.6.4	Enable/Disable	Test	Mode
(Similar	to	the	previous	use	cases;	deleted	for	brevity.)

10.6.5	Enable/Disable	USB
(Similar	to	the	previous	use	cases;	deleted	for	brevity.)

10.6.6	Read	DIP	Switches
(Similar	to	the	previous	use	cases;	deleted	for	brevity.)

10.7	CREATING	DAQ	SOFTWARE
REQUIREMENTS	FROM	THE	USE
CASES

Converting	 an	 informal	 use	 case	 to	 a	 formal	 requirement
consists	of	extracting	 the	 information	from	a	use	case,	 filling
in	missing	details,	 and	 structuring	 the	 result	 in	 the	 form	of	 a
requirement.

Consider	 the	 use	 case	 for	 “Enable/Disable	Debug	Mode.”
You	might	be	 tempted	 into	 thinking	 this	use	case	generates	a
single	requirement:

The	PPDAQ	software	 shall	operate	 in	a	 special	debug
mode	 if	 the	Netburner	DIP	 switch	 8	 is	 set	 to	 the	ON
position	and	USB	(DIP	switch	2)	is	not	enabled;	it	shall
operate	in	a	non-debug	mode	if	switch	8	is	in	the	OFF
position	or	DIP	switch	2	is	enabled.

The	problem	is	that	this	is	actually	two	separate	requirements
—not	 because	 of	 the	 “and”	 and	 “or”	 components	 (you’ll	 see
why	in	a	moment),	but	because	of	the	semicolon	separating	the
two	clauses.	The	two	separate	requirements	are:

The	PPDAQ	software	 shall	operate	 in	a	 special	debug
mode	 if	 the	Netburner	DIP	 switch	 8	 is	 set	 to	 the	ON
position	and	USB	(DIP	switch	2)	is	not	enabled.

and

The	 PPDAQ	 software	 shall	 operate	 in	 a	 non-debug
mode	if	switch	8	is	in	the	OFF	position	or	DIP	switch	2
is	enabled.

Note	that	the	“and	USB”	and	“or	DIP	switch	2”	phrases	do
not	 imply	 that	 these	 requirements	 must	 be	 split	 into	 two
separate	requirements	each.	The	clause	“if	the	Netburner	DIP
switch	8	is	set	to	the	ON	position	and	USB	(DIP	switch	2)	is

not	 enabled”	 is	 actually	 a	 logical	 phrase	 that	 is	 part	 of	 the
trigger	 for	 this	 requirement.	 Technically,	 the	 requirement
should	probably	be	reworded.

If	the	Netburner	DIP	switch	8	is	set	to	the	ON	position
and	 USB	 (DIP	 switch	 2)	 is	 not	 enabled,	 then	 the
PPDAQ	 software	 shall	 operate	 in	 a	 special	 debug
mode.

This	 moves	 the	 trigger	 clause	 to	 the	 beginning	 of	 the
requirement,	 as	 suggested	 in	 section	 “A	 Suggested
Requirements	Format”	on	page	186.	Note,	however,	that	this	is
simply	a	 suggested	 format;	 it’s	not	unreasonable	 to	place	 the
trigger	 condition	 after	 the	 actor	 (PPDAQ	 software),	 action
(operate),	and	object	(debug	mode).

The	next	section	provides	a	listing	of	various	requirements
from	 the	DAQ	 software	 system.	 It	 gives	 an	 example	 of	 how
the	DAQ	requirements	were	generated	from	the	use	cases.	You
should	 be	 able	 to	 fill	 in	 the	 details	 for	 the	 remaining
requirements	on	your	own.

10.8	(SELECTED)	DAQ	SOFTWARE
REQUIREMENTS	(FROM	SRS)
The	 actual	 DAQ	 SRS	 (not	 the	 POOL_SRS	 presented	 in	 “A
Sample	 Software	 Requirements	 Specification”	 on	 page	 203)
contains	 hundreds	 of	 requirements;	 to	 keep	 the	 size	 of	 this
chapter	reasonable,	I’ve	selected	the	following	requirements	as
they	 are	 representative	 of	 those	 needed	 to	 support	 the	 DIP
switch	 use	 cases	 shown	 earlier.	 Note	 that	 the	 tags	 for	 these
SRS	 requirements	 take	 the	 form	 [DAQ_SRS_xxx_yyy]

because	the	actual	DAQ	system	requirements	have	an	SyRS	as
well	as	an	SRS.

NOTE

The	DAQ	SRS	document	puts	all	requirements	in	section	3,	as	is	the	case
for	all	SRSes.	That	is	why	the	following	section	numbers	revert	to	3	rather
than	continuing	the	paragraph	numbering	of	this	chapter.

3.1.1.1	PPDAQ	Standard	Software	Platform

3.1.1.15	PPDAQ	Ethernet	IP	Address

[DAQ_SRS_708_000]

The	PPDAQ	software	shall	set	the	Ethernet	IP	address	to	a
value	 in	 the	 range	 192.168.2.70–192.168.2.73	 based	 on
DIP	switch	5–6	settings	on	the	Netburner.

3.1.1.16	PPDAQ	Ethernet	IP	Address	192.168.2.70

[DAQ_SRS_709_000]

The	PPDAQ	software	 shall	 set	 the	Ethernet	 IP	address	 to
192.168.2.70	if	 the	Netburner	DIP	switches	5–6	are	set	 to
(OFF,	OFF).

3.1.1.17	PPDAQ	Ethernet	IP	Address	192.168.2.71

[DAQ_SRS_710_000]

The	PPDAQ	software	 shall	 set	 the	Ethernet	 IP	address	 to
192.168.2.71	if	 the	Netburner	DIP	switches	5–6	are	set	 to
(ON,	OFF).

3.1.1.18	PPDAQ	Ethernet	IP	Address	192.168.2.72

[DAQ_SRS_711_000]

The	PPDAQ	software	 shall	 set	 the	Ethernet	 IP	address	 to
192.168.2.72	if	 the	Netburner	DIP	switches	5–6	are	set	 to
(OFF,	ON).

3.1.1.19	PPDAQ	Ethernet	IP	Address	192.168.2.73

[DAQ_SRS_712_000]

The	PPDAQ	software	 shall	 set	 the	Ethernet	 IP	address	 to
192.168.2.73	if	 the	Netburner	DIP	switches	5–6	are	set	 to
(ON,	ON).

3.1.1.20	PPDAQ	Ethernet	Enabled

[DAQ_SRS_716_000]

The	PPDAQ	software	shall	enable	Ethernet	operation	if	the
Netburner	DIP	switch	3	is	in	the	ON	position.

3.1.1.21	PPDAQ	Ethernet	Disabled

[DAQ_SRS_716.5_000]

The	 PPDAQ	 software	 shall	 disable	 Ethernet	 operation	 if
the	Netburner	DIP	switch	3	is	in	the	OFF	position.

3.1.1.22	PPDAQ	Ethernet	Task

[DAQ_SRS_716_001]

The	 Ethernet	 listening	 task	 shall	 be	 started	 if	 Ethernet
communications	are	enabled.

3.1.1.23	PPDAQ	Ethernet	Task	Priority

[DAQ_SRS_716_002]

The	Ethernet	listening	task	shall	have	a	priority	lower	than
the	USB	task	but	higher	than	the	serial	task.

3.1.1.24	PPDAQ	Ethernet	Port

[DAQ_SRS_717_000]

The	 PPDAQ	 software	 shall	 communicate	 via	 Ethernet
using	 socket	port	 0x5050	 (decimal	20560,	ASCII	PP,	 for
Plantation	Productions).

3.1.1.25	PPDAQ	Ethernet	Multiple	Clients	Enabled

[DAQ_SRS_718_000]

The	 PPDAQ	 software	 shall	 allow	 up	 to	 five	 Ethernet
clients	 if	 the	 Netburner	 DIP	 switch	 4	 is	 set	 to	 the	 ON
position.

3.1.1.26	PPDAQ	Ethernet	Multiple	Clients	Disabled

[DAQ_SRS_718_001]

The	 PPDAQ	 software	 shall	 allow	 only	 a	 single	 Ethernet
client	 if	 the	 Netburner	 DIP	 switch	 4	 is	 set	 to	 the	 OFF
position.

3.1.1.29	PPDAQ	Unit	Test	Mode	I/O

[DAQ_SRS_721_000]

The	PPDAQ	software	 shall	 utilize	 the	UART0	 serial	 port
on	 the	 Netburner	 MOD54415	MOD-70	 evaluation	 board
for	 unit	 test	 communication	 unless	 USB	 commands	 are
enabled	 (USB	 commands	 share	 the	 same	 serial	 port
[UART0]	as	the	test	mode	output).

3.1.1.30	PPDAQ	Debug	Mode	Enabled

[DAQ_SRS_721_001]

The	 PPDAQ	 software	 shall	 operate	 in	 a	 special	 debug
mode	 if	 the	 Netburner	 DIP	 switch	 8	 is	 set	 to	 the	 ON
position	and	USB	(DIP	switch	2)	is	not	enabled.

3.1.1.31	PPDAQ	Debug	Mode	Disabled

[DAQ_SRS_721_002]

The	 PPDAQ	 software	 shall	 operate	 in	 the	 normal
(nondebug)	mode	 if	 the	Netburner	DIP	 switch	 8	 is	 set	 to
the	OFF	position.

3.1.1.38	PPDAQ	Command	Source	#3

[DAQ_SRS_728_000]

The	 PPDAQ	 software	 shall	 accept	 commands	 from	 the
Ethernet	 port	 on	 the	 Netburner	 MOD54415	 MOD-70
evaluation	board	if	Ethernet	communications	are	enabled.

3.1.1.40	PPDAQ	Maximum	Ethernet	Connections	#1

[DAQ_SRS_737_000]

The	 PPDAQ	 software	 shall	 only	 recognize	 a	 single
connection	 on	 the	 Ethernet	 port	 if	 the	 Netburner	 DIP
switch	4	is	in	the	OFF	position.

3.1.1.41	PPDAQ	Maximum	Ethernet	Connections	#2

[DAQ_SRS_738_000]

The	 PPDAQ	 software	 shall	 only	 recognize	 up	 to	 five
connections	 on	 the	 Ethernet	 port	 if	 the	 Netburner	 DIP

switch	4	is	in	the	ON	position.

3.1.1.42	PPDAQ	Ethernet	Command	Processing	Tasks

[DAQ_SRS_738_001]

The	PPDAQ	software	 shall	 start	 a	 new	process	 to	 handle
command	processing	for	each	connection.

3.1.1.43	PPDAQ	Ethernet	Command	Task	Priorities

[DAQ_SRS_738_002]

The	PPDAQ	command	processing	tasks	shall	each	have	a
different	 priority	 that	 is	 higher	 than	 the	 priority	 of	 the
Ethernet	listening	task	and	less	than	the	priority	of	the	USB
command	task.

10.9	UPDATING	THE
TRACEABILITY	MATRIX	WITH
REQUIREMENT	INFORMATION
The	 SyRS	 and	 SRS	 requirements	 typically	 add	 four	 to	 six
columns	 to	 the	RTM:	Description,	SyRS	 tag	 (if	 you	have	 an
SyRS),	Allocations,	 SRS	 tag,	 and	Test/verification	 type.	 The
Description	 column	 provides	 a	 brief	 description	 of	 the
requirement,	 such	 as	 PPDAQ	 Standard	 Software	 Platform
from	requirement	DAQ_SRS_700_000	in	the	previous	section.
(Note	that	this	does	not	refer	to	the	POOL_SRS	tag	presented
in	 “A	Sample	Software	Requirements	Specification”	on	page
203.)

The	SyRS	and	SRS	tag	columns	contain	the	actual	SyRS	(if
present)	and	SRS	tag	identifiers.	Generally,	you	would	sort	the

rows	 in	 the	 RTM	 by	 SyRS	 (primary	 key)	 and	 then	 SRS
(secondary	key)	unless	there	are	no	SyRS	tags,	in	which	case
you’d	simply	sort	the	rows	by	the	SRS	tag.

The	Allocations	column	specifies	whether	the	requirement
is	hardware	(H),	 software	(S),	other	 (O),	or	 a	combination	of
these.	Typically,	only	SyRS	requirements	have	hardware-only
allocations;	 after	 all,	 SRS	 requirements	 are	 software
requirements.	It	is	possible,	however,	for	an	SRS	requirement
to	 have	 an	 HS	 allocation	 if	 it	 covers	 both	 software	 and
hardware	 aspects	 of	 the	 system.	 The	 other	 designation	 is	 a
catch-all	 to	 cover	 requirements	 that	 don’t	 clearly	 fit	 into	 a
hardware	 or	 software	 category	 (this	 could	 describe	 a	manual
process,	for	example).

Note	 that	 if	 you	 don’t	 have	 an	 SyRS,	 or	 all	 of	 your
requirement	 allocations	 are	 software	 allocations,	 you	 can
eliminate	the	Allocations	column;	this	can	help	reduce	the	size
and	complexity	of	the	RTM.

The	 Verification	 type	 column	 in	 the	 RTM	 specifies	 how
you	will	verify	(test)	 this	requirement	 in	 the	system.	Possible
entries	are:	by	test	(T);	by	review	(R);	by	inspection	(I;	the	“by
review”	variant	 for	 hardware	 designs);	by	design	 (D;	 usually
applies	to	hardware,	not	software);	by	analysis	(A);	other	(O);
and	no	test,	or	no	test	possible	(N).

Clearly,	requirements	that	have	a	T	verification	method	will
have	 some	 associated	 test	 to	 run	 to	 verify	 the	 requirement.
This	generally	means	 that	you	will	have	a	corresponding	 test
case	for	this	requirement	and	a	test	procedure	to	execute	it.

It	may	be	difficult,	impractical,	or	dangerous	to	test	certain
requirements. 	 In	 these	 situations	 it	 may	 be	 much	 easier	 to
carefully	review	the	code	to	verify	that	it	will	behave	properly.

5

For	such	requirements,	the	verification	method	would	be	R,	by
review.

The	 by	 analysis	 (A)	 verification	 method	 means	 that
somewhere	 you	 are	 offering	 a	 formal	 (mathematical)	 proof
that	the	software	meets	the	formal	requirement.	This	is	a	much
more	stringent	process	than	by	review	and	a	subject	that	is	well
beyond	 the	 scope	 of	 this	 book.	 Nevertheless,	 this	 type	 of
verification	may	be	necessary	for	certain	requirements	whose
failure	 could	 lead	 to	 catastrophic	 events	 (such	 as	 death).
Consider	 the	 very	 first	 requirement	 from	 “(Selected)	 DAQ
Software	Requirements	(from	SRS)”	on	page	219:

[DAQ_SRS_700_000]

The	PPDAQ	software	shall	run	on	a	Netburner	MOD54415
MOD-70	 evaluation	 board	 connected	 to	 a	 DAQ_IF
interface	board.

It	would	be	somewhat	difficult	 to	come	up	with	an	actual
test	 that	 proves	 this	 requirement	 is	 being	 met	 (other	 than
installing	 the	 software	 on	 a	 Netburner	 MOD54415	 and
verifying	 that	 it	 actually	 runs).	On	 the	other	hand,	 it’s	nearly
trivial	 to	 look	 at	 the	 source	 code	 (and	 the	 build	 files)	 and
verify	 that	 this	 code	 was	 written	 for	 the	 Netburner
MOD54415.	 A	 test	 by	 review	 is	 easily	 the	 most	 appropriate
way	to	handle	this	particular	requirement.

The	other	 verification	method	 is	 a	 catch-all	 category	 that
implies	 you’re	 going	 to	 provide	 the	 documentation	 to	 justify
either	the	lack	of	a	testing	method	or	the	verification	approach
you	plan	to	use.

The	no	test	or	no	 test	possible	verification	requires	you	 to
justify	 why	 a	 test	 is	 not	 needed.	 If	 you	 are	 specifying	N	 to

represent	 no	 test	 possible,	 you	 should	 carefully	 consider
whether	 the	 requirement	 is	 valid	 (is	 an	 actual	 requirement).
Remember,	if	it	can’t	be	tested,	it	isn’t	a	requirement.

These	 are	 the	 four	 column	 entries	 that
[DAQ_SRS_700_000]	would	add	to	the	RTM.

Description SRS	tag Allocati
on

Verification

PPDAQ	Standard
Software	Platform

DAQ_SRS_700_000 HS R

Given	 the	 requirements	 in	 “(Selected)	 DAQ	 Software
Requirements	 (from	 SRS)”	 on	 page	 219,	 we	 can	 divide	 the
requirements	 into	 two	 groups:	 those	 whose	 verification	 type
should	be	by	test	and	those	whose	verification	type	should	be
by	review	(because	an	actual	test	for	them	might	be	difficult	to
perform	or	awkward	to	create).

10.9.1	Requirements	to	Be	Verified	by	Review
Table	10-2	 shows	a	 list	 of	 the	 requirements	 from	“(Selected)
DAQ	Software	Requirements	 (from	 SRS)”	 on	 page	 219	 that
should	be	verified	by	review	and	should	provide	a	justification
for	the	choice	that	has	been	made.

Table	10-2:	DAQ	Software	Requirement	Justifications

Requirement Justification

DAQ_SRS_700_000 Although	you	could	argue	that	running	the	software	on	
a	Netburner	verifies	that	it	runs	on	a	Netburner,	
reviewing	the	make/build	files	is	an	easier	and	more	
practical	way	to	verify	this	requirement.

6

DAQ_SRS_700_000.
01

Although	you	could	argue	that	running	the	software	on	
a	μC/OS	verifies	that	it	runs	under	μC/OS,	reviewing	
the	make/build	files	is	an	easier	and	more	practical	
way	to	verify	this	requirement.

DAQ_SRS_702_001 Writing	a	test	to	show	that	a	separate	process	is	
running	would	be	difficult	without	actually	changing	
the	code	(i.e.,	to	print	some	output	to	show	this).	
However,	reviewing	the	code	to	see	that	it	is	starting	a	
new	task	to	handle	RS-232	communication	isn’t	that	
difficult.

DAQ_SRS_702_002 Writing	a	test	to	show	that	the	RS-232	process	is	
running	at	a	particular	priority	level	would	require	
modifying	the	code;	reviewing	the	code	is	easier.

DAQ_SRS_703_001 Making	this	one	by	review	is	arguable.	You	could	
argue	that	if	the	system	is	accepting	RS-232	
commands,	the	task	is	running.	However,	this	does	not	
prove	that	a	separate	task	is	running	or	not	running	
(the	main	task	could	be	processing	the	commands).	
Hence,	this	should	probably	be	a	by	review	
verification.

DAQ_SRS_705_001 The	same	argument	applies	as	for	DAQ_SRS_702_001	
(just	applied	to	the	USB	input	task).

DAQ_SRS_705_002 Same	justification	as	for	DAQ_SRS_702_002.

DAQ_SRS_706_001 Same	argument	as	for	DAQ_SRS_705_001	(just	the	
complement	of	that	requirement).

DAQ_SRS_716_001 Same	argument	as	for	DAQ_SRS_702_001	(just	
applied	to	the	Ethernet	listen	task).

DAQ_SRS_716_002 Same	argument	as	for	DAQ_SRS_702_002	(just	
applied	to	the	Ethernet	listen	task	priority).

DAQ_SRS_719_000 Currently,	unit	test	mode	is	undefined	on	the	DAQ	

system	so	there	is	no	way	to	test	that	the	system	has	
entered	this	mode.	Reviewing	the	code	verifies	that	the	
internal	variable	is	properly	set	up	(the	only	effect	the	
DIP	switch	will	have).

DAQ_SRS_720_000 See	DAQ_SRS_719_000.

DAQ_SRS_723_000 Another	arguable	case.	The	fact	that	the	system	is	
reading	the	DIP	switches	(to	handle	other	tests)	should	
be	enough	to	show	that	the	software	is	reading	the	
Netburner	switches.	However,	this	requirement	is	
sufficiently	unimportant	that	the	choice	of	review/test	
doesn’t	really	matter.

DAQ_SRS_723_000.
01

See	DAQ_SRS_723_000.

DAQ_SRS_723_000.
02

See	DAQ_SRS_723_000.

DAQ_SRS_725_000 Checking	to	see	that	the	DAQ	responds	to	a	command	
is	no	big	deal	(easily	testable);	however,	this	
requirement	states	that	the	DAQ	does	not	initiate	
communication	on	its	own	(that	is,	it’s	negatively	
stated,	which,	in	general,	is	bad	in	a	requirement).	
Reviewing	code	is	the	only	proper	way	to	handle	
negative	requirements	(which	is	why	you	want	to	
avoid	them).

DAQ_SRS_738_001 Similar	justification	to	DAQ_SRS_702_001.

DAQ_SRS_738_002 Similar	justification	to	DAQ_SRS_702_002.

10.9.2	Requirements	to	Be	Verified	by	Testing
All	 requirements	 in	“(Selected)	DAQ	Software	Requirements
(from	 SRS)”	 on	 page	 219	 that	 are	 not	 also	 listed	 in
“Requirements	to	Be	Verified	by	Review”	on	page	223	will	be

verified	using	test	cases	and	test	procedures.

10.10	FOR	MORE	INFORMATION
IEEE.	 “IEEE	 Standard	 830-1998:	 IEEE	 Recommended

Practice	 for	 Software	 Requirements	 Specifications.”
October	 20,	 1998.
https://doi.org/10.1109/IEEESTD.1998.88286.

Leffingwell,	 Dean,	 and	 Don	 Widrig.	 Managing	 Software
Requirements.	 Boston:	 Addison-Wesley	 Professional,
2003.

Wiegers,	 Karl	 E.	 Software	 Requirements.	 Redmond,	 WA:
Microsoft	Press,	2009.

———.	 “Writing	 Quality	 Requirements.”	 Software
Development	7,	no.	5	(May	1999):	44–48.

https://doi.org/10.1109/IEEESTD.1998.88286

11
SOFTWARE	DESIGN	DESCRIPTION

DOCUMENTATION

The	 Software	 Design	 Description	 (SDD)	 document	 provides
low-level	 implementation	 details	 for	 the	 design	 of	 the
software.	While	 it	 doesn’t	necessarily	dive	down	 to	 the	 level
of	actual	code,	it	does	provide	the	algorithms,	data	structures,
and	low-level	flow	control	for	the	software	implementation.

There	 are	 lots	 of	 different	 ideas	 about	 how	 to	 document
software	design.	This	chapter	follows	the	guidelines	proposed
by	 IEEE	 Standard	 (Std)	 1016-2009 	 and	 uses	 many	 of	 the
concepts	described	in	that	standard.

IEEE	 Std	 1016-2009	 was	 written	 in	 an	 attempt	 to	 be
language-independent.	 However,	 the	 Unified	 Modeling
Language	 covers	 almost	 all	 of	 the	 requirements	 of	 the
standard,	which	 is	why	Chapter	4	 introduced	UML	 and	why
we’ll	 use	 it	 in	 this	 chapter.	 If	 you’re	 interested	 in	 the	 other
software	 design	 modeling	 languages	 available,	 feel	 free	 to
check	 out	 their	 descriptions	 in	 the	 IEEE	 Std	 1016-2009

1

document.

11.1	IEEE	STD	1016-1998	VS.	IEEE
STD	1016-2009
Finalized	 in	 1998,	 the	 original	 IEEE	 SDD	 guidelines	 were
based	 on	 structured	 programming	 software	 engineering
concepts	 prevalent	 in	 the	 1980s	 and	 1990s.	 The
recommendations	 were	 released	 just	 as	 the	 object-oriented
programming	 revolution	 was	 under	 way	 and,	 as	 a	 result,
immediately	became	outdated.	It	 took	10	years	to	update,	but
the	 revision,	Std	1016-2009,	 covered	object-oriented	analysis
and	 design.	 The	 new	 guidelines	 maintained	 features	 of	 the
1016-1998	standard	but	in	a	somewhat	deprecated	form.	Note,
however,	that	some	of	them	are	still	useful	in	modern	design,
so	there’s	no	reason	to	ignore	the	old	standard	if	those	features
are	appropriate	in	your	context.

11.2	IEEE	1016-2009	CONCEPTUAL
MODEL
The	SDD	does	not	live	in	a	vacuum.	The	material	in	an	SDD
flows	naturally	from	the	Software	Requirements	Specification
(SRS),	 and	 the	Reverse	Traceability	Matrix	 (RTM)	binds	 the
two	documents.	Figure	11-1	shows	this	relationship.

Figure	11-1:	SRS	relationship	to	SDD

11.2.1	Design	Concerns	and	Design	Stakeholders
Each	 requirement	 in	 the	 SRS	 ultimately	 relates	 to	 a	 design

concern	 in	 the	 SDD	 (see	 Figure	 11-2).	 A	 design	 concern	 is
anything	that	is	of	interest	to	a	stakeholder	in	the	design	of	the
system.	A	stakeholder	is	anyone	who	has	a	say	in	the	system’s
design.	 A	 requirement	 refers	 to	 any	 individual	 requirement
from	the	SRS,	as	explained	in	Chapter	10.

Figure	11-2:	Mapping	requirements	to	design	concerns

Figure	 11-2	 maps	 requirements	 to	 design	 concerns	 as
follows:

0..*	 Each	 requirement	 has	 zero	 or	more	 associated	 design
concerns.

1..*	 A	 single	 design	 concern	 is	 important	 to	 one	 or	 more
design	stakeholders.

1...*	Each	stakeholder	has	at	 least	one	(and	possibly	more)
design	concerns.

The	 IEEE	conceptual	model	 states	 that	 requirements	 raise
zero	 or	more	 design	 concerns.	 But	 in	 fact,	 requirements	 and
design	 concerns	 should	 have	 a	 one-to-one	 relationship:	 for
each	 design	 concern	 there	 is	 exactly	 one	 associated

requirement.	 If	 a	 requirement	 doesn’t	 raise	 any	 design
concerns—that	 is,	 the	 requirement	 has	 no	 impact	 on	 the
software	 design—then	 perhaps	 that	 requirement	 isn’t
necessary	 (and,	 therefore,	 is	 not	 a	 valid	 requirement).	 If	 a
requirement	maps	 to	multiple	 design	 concerns,	 this	 probably
suggests	that	you	have	a	compound	requirement	that	should	be
broken	 down	 into	 atomic	 requirements	 in	 your	 SRS	 (see
“Atomic”	on	page	190).

Stakeholders	and	design	concerns	should	have	a	many-to-
many	 relationship.	 One	 stakeholder	 can	 (and	 usually	 does)
have	many	design	concerns.	Likewise,	a	single	design	concern
can	be	(and	usually	is)	shared	by	many	different	stakeholders.

11.2.2	Design	Viewpoints	and	Design	Elements
Ultimately,	the	design	concern	(or	just	the	requirement)	is	the
interface	 point	 to	 the	 SDD.	 A	 design	 viewpoint	 logically
groups	a	set	of	one	or	more	design	concerns.	For	example,	a
logical	 viewpoint	 (see	 “Logical	 Viewpoint”	 on	 page	 235)
would	describe	 the	 static	 data	 structures	 in	 the	design,	 so	 all
the	 requirements	 associated	 with	 classes	 and	 data	 objects
would	 be	 associated	 with	 that	 viewpoint.	 An	 algorithmic
viewpoint	 (see	“Algorithmic	Viewpoint”	 on	page	 239)	would
describe	 certain	 algorithms	 that	 the	 design	 uses,	 so	 any
requirements	 that	 specify	 certain	 algorithms	 to	 use	 (which,
admittedly,	 should	 be	 rare)	 would	 be	 associated	 with	 that
viewpoint.

IEEE	 Std	 1016-2009	 calls	 for	 specifying	 each	 design
viewpoint	by:

A	viewpoint	name

Design	concerns	associated	with	the	viewpoint

A	list	of	design	elements	(types	of	design	entities,	attributes,	and	constraints)	that
the	viewpoint	uses

A	discussion	of	the	analysis	someone	would	use	to	construct	a	design	view	based
on	the	viewpoint

Criteria	for	interpreting	and	evaluating	the	design

Author’s	name	or	a	reference	to	the	source	material	used	for	the	viewpoint

Figure	 11-3	 shows	 the	 relationship	 between	 design
concerns	 and	 design	 viewpoints.	 The	 multiplicity	 item	 1..*
indicates	 that	 a	 single	 viewpoint	 frames	 (or	 groups)	 one	 or
more	requirements.

Figure	11-3:	Mapping	design	concerns	to	design	viewpoints

Design	concerns	and	design	viewpoints	have	a	fundamental
one-to-many	 relationship	 that	 provides	 traceability	 between
the	 SDD	 and	 SRS.	 In	 the	 RTM,	 each	 requirement	 (design
concern)	will	link	to	exactly	one	design	viewpoint.	Therefore,
you	would	normally	attach	SDD	tags	to	design	viewpoints	(or,
as	 you’ll	 see	 in	 a	moment,	 you	 could	 also	 attach	 the	 tags	 to
design	 views,	 as	 there	 is	 a	 one-to-one	 relationship	 between
design	views	and	design	viewpoints).

Design	 viewpoints	 define	 a	 set	 of	 design	 elements	 (see
Figure	 11-4),	 examples	 of	 which	 include	 class	 diagrams,
sequence	 diagrams,	 state	 diagrams,	 packages,	 use	 cases,	 and
activity	diagrams.

Figure	11-4:	Mapping	design	viewpoints	to	design	elements

A	 design	 element	 is	 anything	 that	 you	 would	 put	 in	 a

design	view,	including	design	entities,	attributes,	relationships,
and	constraints:

Design	 entities	 are	 objects	 that	 describe	 the	 major	 components	 of	 a	 design.
Examples	 include	 systems,	 subsystems,	 libraries,	 frameworks,	 patterns,
templates,	components,	classes,	structures,	types,	data	stores,	modules,	program
units,	programs,	threads,	and	processes.	IEEE	Std	1016-2009	requires	that	each
design	entity	in	an	SDD	have	a	name	and	a	purpose.

Design	elements	have	associated	attributes:	 a	 name,	 a	 type,	 a	 purpose,	 and	 an
author.	 When	 listing	 the	 design	 elements	 in	 your	 SDD	 viewpoint,	 you	 must
provide	these	attributes.

Design	 relationships	 have	 an	 associated	 name	 and	 type.	 IEEE	 Std	 1016-2009
does	not	predefine	any	relationships;	however,	UML	2.0	defines	several—such
as	 association,	 aggregation,	 dependency,	 and	 generalization—that	 you	 would
typically	use	in	your	SDDs.	As	per	the	IEEE	requirements,	you	must	describe	all
relationships	you	use	in	the	design	viewpoint	specification.

A	design	constraint	is	an	element	(the	source	element)	that	applies	restrictions	or
rules	 to	 some	other	 design	 element	 (the	 target	 element)	 of	 a	design	view.	The
IEEE	 requires	 that	 you	 list	 all	 design	 constraints	 by	 name	 and	 type	 (and
source/target	elements)	in	the	viewpoint	that	defines	them.

You	define	design	elements	using	a	formal	design	language
(see	Figure	11-5).	As	noted	earlier,	 IEEE	Std	1016-2009	tries
to	 be	 language-agnostic,	 but	 the	 truth	 is	 that	 it	was	designed
specifically	around	UML.	Other	(formal)	design	languages	the
IEEE	 suggests	 include	 IDEFO,	 IDEF1X,	 and	 Vienna
Definition	Method.	 However,	 for	 this	 book,	 you’re	 probably
better	off	using	UML.

Figure	11-5:	Relationship	between	design	viewpoints,	elements,	and	language

IEEE	 Std	 1016-2009	 defines	 a	 common	 set	 of	 design
viewpoints.	As	the	standard	is	a	set	of	recommended	practices,
not	 absolute	 requirements,	 the	 list	 of	 viewpoints	 that	 follows
here	 is	neither	exhaustive	nor	 required.	That	 is,	 in	your	SDD
you	can	define	and	add	further	viewpoints	as	you	see	fit,	and
you	don’t	need	 to	 include	all	of	 them	(indeed,	 some	of	 them
are	 deprecated	 and	 included	 only	 for	 compatibility	 with	 the
older	IEEE	Std	1016-1998).

11.2.2.1	Context	Viewpoint

The	design	elements	for	which	the	context	viewpoint	collects
requirements	are	actors	(users,	external	systems,	stakeholders),
services	 the	 system	 provides,	 and	 their	 interactions	 (such	 as
input	and	output).	The	context	viewpoint	also	manages	various
design	 constraints,	 such	 as	 quality	 of	 service,	 reliability,	 and
performance.	In	a	sense,	you	begin	this	work	while	developing
the	requirements	for	the	SRS	(for	example,	while	creating	use
cases	 to	 drive	 the	 requirements)	 and	 finish	 the	 work	 while
developing	the	SDD.

The	 main	 purpose	 of	 the	 context	 viewpoint	 is	 to	 set	 the
system	 boundary	 and	 define	 those	 considerations	 that	 are
internal	 to	 the	 system	and	 those	 that	are	external.	This	 limits
the	 scope	 of	 the	 design	 so	 that	 the	 designer	 and	 author(s)	 of
the	SDD	can	concentrate	on	the	system	design	and	not	waste
time	considering	external	factors.

You	 typically	 represent	 context	 viewpoints	 in	 UML	 use
case	 diagrams	 (see	 “Use	 Cases”	 on	 page	 214).	 For	 a	 good
example,	 refer	 back	 to	 Figure	 10-1,	 which	 lists	 the
initializations	 the	 user	 can	 set	 via	 DIP	 switches	 on	 the	 data

acquisition	 (DAQ)	 system.	As	 another	 example,	 Figure	 11-6
shows	 an	 abbreviated	 set	 of	 use	 cases	 for	 DAQ	 commands
between	 a	 host	 system	 (typically	 a	 PC)	 and	 the	 DAQ	 CPU
interface	board.

Figure	11-6:	DAQ	commands	use	case

This	 figure	 shows	 the	 command	 interface	 between	 the
external	 system	 (the	 host	 actor)	 and	 the	 DAQ	 system.	 Note
that	 each	 use	 case—in	 this	 example,	 there	 are	 16—
corresponds	to	requirements	in	the	DAQ	SRS.

11.2.2.2	Composition	Viewpoint

The	 composition	 viewpoint	 lists	 the	 major
modules/components	 that	 make	 up	 the	 system.	 One	 of	 the
main	 goals	 of	 this	 viewpoint	 is	 to	 foster	 code	 reuse	 by
identifying,	in	the	design,	items	that	could	come	from	existing
libraries,	 or	 proprietary	 designs	 that	 could	 be	 reused	 in	 the
system.

Design	 entities	 included	 in	 the	 composition	viewpoint	 are
—to	name	a	few—composition	(obviously),	include,	use,	and
generalization.	The	composition	viewpoint	states	relationships
between	 design	 entities	 using	 realization,	 dependency,
aggregation,	 composition,	 and	 generalization	 as	 well	 as	 any
other	relationships	between	objects.

Note	that	this	is	an	older	viewpoint	carried	over	from	IEEE
Std	 1016-1998. 	 For	 the	 most	 part	 it	 is	 superseded	 by	 the
structure	 viewpoint	 (see	 “Structure	Viewpoint”	 on	 page	 237)
and,	 to	 a	 lesser	 extent,	 the	 logical	 viewpoint	 (see	 the	 next
section).	The	composition	viewpoint	hails	from	the	days	when
programs	were	composed	largely	of	procedures	and	functions
organized	 into	 libraries,	 long	 before	 the	 days	 of	 object-
oriented	analysis	and	design.

Modern	designs,	if	they	contain	a	composition	viewpoint	at
all,	 largely	 relegate	 it	 to	 describing	 major	 components	 of	 a
system,	as	recommended	by	IEEE	Std	1016-2009.	Figure	11-7

2

3

provides	an	example	of	such	a	composition	viewpoint	for	the
DAQ	 system,	 using	 watered-down	 component	 diagrams.	 In
my	 opinion,	 component	 diagrams	 are	 not	 a	 good	 fit	 for
composition	 viewpoint	 diagrams—they	 are	 too	 low-level	 for
the	 task.	 Component	 diagrams	 typically	 include	 interfaces
(required	 and	 provided)	 that	 don’t	 make	 sense	 at	 the
composition	viewpoint	 level.	However,	 apparently	due	 to	 the
similarity	of	 the	words	composition	 and	component,	 it’s	 very
common	 to	 use	watered-down	UML	 component	 diagrams	 to
denote	the	composition	viewpoint.

Figure	11-7:	Composition	viewpoint	diagram

Some	 engineers	 use	 a	 combination	 of	 component	 and

deployment	 diagrams	 (see	 “Deployment	 Diagrams”	 on	 page
159)	to	illustrate	a	composition	viewpoint,	as	shown	in	Figure
11-8.

Figure	11-8:	Deployment/component	diagram

Note	 that	 the	 nodes	 in	 this	 diagram	 still	 include	 the
component	 symbol	 to	 indicate	 that	 they	 are	 components
forming	a	larger	system,	rather	than	hardware	items.	This	is	a
nonstandard	diagramming	method	for	UML,	but	I’ve	seen	it	in
several	example	SDDs	so	I’ve	included	it	here.

11.2.2.3	Logical	Viewpoint

The	 logical	 viewpoint	 describes	 preexisting	 and	 new	 types

used	 in	 the	 design,	 along	with	 their	 class,	 interface/protocol,
and	structural	definitions.	The	logical	viewpoint	also	describes
the	objects	(instances	of	the	types)	the	design	uses.

The	 logical	 viewpoint	 deals	 with	 classes,	 interfaces,	 data
types,	 objects,	 attributes,	 methods,	 functions,	 procedures
(subroutines),	 templates,	 macros,	 and	 namespaces.	 It	 also
assigns	 attributes—such	 as	 names,	 visibility	 type,	 and	 values
—and	attaches	appropriate	constraints	to	these	design	entities.

Typically,	 you	 use	 UML	 class	 diagrams	 to	 implement	 a
logical	 viewpoint.	 Figure	 11-9	 shows	 a	 class	 diagram	 for	 an
adcClass_t	 class	 that	might	 be	 appropriate	 for	 the	 analog	 input
module	in	Figure	11-8.	In	addition	to	this	basic	class	diagram,
you’d	 probably	 want	 to	 include	 a	 data	 dictionary,	 or	 text
describing	the	purpose	of	all	the	attributes	for	this	class.

Figure	11-9:	adc	class	diagram

In	addition	 to	 the	bare	class	diagrams,	a	 logical	viewpoint
should	 also	 include	 relationships	 between	 classes	 (such	 as
dependency,	 association,	 aggregation,	 composition,	 and
inheritance).	See	“UML	Class	Relationships”	on	page	114	for
more	 details	 on	 these	 class	 relationships	 and	 how	 you	 can
diagram	them.

11.2.2.4	Dependency	Viewpoint

Like	the	composition	viewpoint,	the	dependency	viewpoint	is
a	 deprecated	 viewpoint	 maintained	 for	 compatibility	 with
IEEE	 Std	 1016-1998;	 you	 generally	 wouldn’t	 use	 this
viewpoint	 in	 modern	 designs,	 as	 other	 options	 (such	 as	 the
logical	 and	 resource	 viewpoints)	 can	map	 dependencies	 in	 a
more	 logical	manner.	However,	 there’s	 nothing	 stopping	 you
from	using	dependency	viewpoints	where	appropriate,	and	it’s
also	likely	that	you’ll	encounter	them	in	SDDs,	so	you	should
know	about	them.

In	 an	 SDD,	 the	 dependency	 viewpoint	 illustrates	 design
entity	 relationships	 and	 interconnections,	 including	 shared
information,	interface	parameterization,	and	order	of	execution
using	terms	such	as	uses,	provides,	and	requires.	Dependency
viewpoints	 apply	 to	 subsystems,	 components,	 modules,	 and
resources.	 IEEE	 Std	 1016-2009	 recommends	 using	 UML
component	 diagrams	 and	 package	 diagrams	 to	 depict	 this
viewpoint.	Using	a	combined	deployment/component	diagram
(as	in	Figure	11-8)	is	probably	a	good	solution	if	you	want	to
go	 the	 component	 diagram	 route	 (say,	 for	 dependencies
between	components	or	subsystems).	Using	package	diagrams
is	 a	 good	 idea	 if	 you	 are	 describing	 the	 dependency
relationship	between	packages,	as	shown	in	Figure	11-10.

Figure	11-10:	Package	dependencies

11.2.2.5	Information/Database	Viewpoint

The	 information/database	 viewpoint	 describes	 persistent	 data
usage	 in	your	design.	 It	 is	 similar	 to	 the	 logical	viewpoint	 in
that	 you	 use	 class	 diagrams	 to	 show	 data	 structure,	 content,
and	 metadata	 definitions.	 The	 information	 viewpoint	 would
also	 describe	 data	 access	 schemes,	 data	 management
strategies,	and	data	storage	mechanisms.

This	 is	 also	 a	 deprecated	 item	 included	 to	 maintain
compatibility	 with	 IEEE	 Std	 1016-1998.	 In	modern	 designs,
you	 would	 likely	 use	 the	 logical	 viewpoint	 or	 possibly	 the
resource	viewpoint	instead.

11.2.2.6	Patterns	Use	Viewpoint

The	patterns	use	viewpoint	maps	out	the	design	patterns—and
the	 reusable	 components	 implemented	 from	 them—that	 are
used	 in	 the	 project.	 For	 more	 information	 about	 design
patterns,	see	“For	More	Information”	on	page	260.

Patterns	 use	 viewpoint	 diagrams	 use	 a	 combination	 of

UML	 composite	 structures,	 class	 diagrams,	 and	 package
diagrams	 along	 with	 association,	 collaboration	 use,	 and
connectors	 to	 indicate	 objects	 generated	 from	 the	 patterns.
This	 viewpoint	 is	 loosely	 designed,	 so	 you	 have	 a	 lot	 of
latitude	 in	 its	 creation	 should	 you	 choose	 to	 use	 it	 in	 your
SDD.

11.2.2.7	Interface	Viewpoint

The	 interface	 viewpoint	 describes	 the	 services	 (for	 example,
APIs)	 provided	 by	 the	 design.	 Specifically,	 it	 includes	 a
description	of	interfaces	for	which	there	are	no	requirements	in
the	 SRS,	 including	 interfaces	 to	 third-party	 libraries,	 other
parts	 of	 the	 project,	 or	 other	 projects	 within	 the	 same
organization.	It	is	a	road	map	that	other	programmers	can	use
when	interacting	with	the	portion	of	the	design	covered	by	the
interface	viewpoint.

IEEE	Std	1016-2009	 recommends	using	UML	component
diagrams	for	the	interface	viewpoint.	Figure	11-11	shows	two
components	(possibly	in	the	DAQ	system)	dealing	with	digital
I/O	and	relay	output	(a	specific	form	of	digital	output).

Figure	11-11:	Interface	viewpoint	example

In	 addition	 to	 the	 component	 diagram,	 the	 interface

viewpoint	 should	 include	 a	 description	 of	 how	 the	 system
interacts	with	 these	 interfaces,	 including	 data	 types,	 function
calls,	latencies,	constraints	on	inputs,	the	range	of	outputs,	and
other	 important	 issues.	 For	 example,	 when	 discussing	 the
Direction	interface,	you	might	include	information	such	as:

Direction
Direction(ddir:int,	port:int)

A	call	to	Direction	sets	the	specified	digital	I/O	port	(port	=
0..95)	to	either	an	input	port	(if	ddir	=	0)	or	an	output	port	(if
ddir	=	1).

For	Read,	you	might	use	a	description	such	as:

Read
Read(port:int):int

A	call	to	Read	returns	the	current	value	(0	or	1)	of	the
specified	digital	input	port	(port	=	0..95).

Again,	 the	 interface	 viewpoint	 is	 included	 in	 IEEE	 Std
1016-2009	 only	 for	 compatibility	 with	 the	 older	 IEEE	 Std
1016-1998.	In	modern	SDDs,	consider	placing	interface	items
in	the	context	and	structure	viewpoints	instead.

11.2.2.8	Structure	Viewpoint

The	structure	viewpoint	describes	the	internal	organization	and
construction	of	the	objects	in	the	design.	It	is	the	more	modern
version	 of	 the	 composition	 viewpoint,	 which	 describes	 how
the	design	is	(recursively)	broken	down	into	parts.	You	would
use	 the	 structure	viewpoint	 to	break	down	 larger	objects	 into
their	 smaller	 pieces	 for	 the	 purpose	 of	 determining	 how	 to

reuse	those	smaller	components	throughout	the	design.

The	diagramming	methods	 typically	used	for	 the	structure
viewpoint	 are	 UML	 composite	 structure	 diagrams,	 UML
package	diagrams,	and	UML	class	diagrams.	These	diagrams
are	 illustrated	 for	 the	 swimming	 pool	 monitor	 (SPM)	 in
Figures	11-12,	11-13,	and	11-14,	respectively.

Figure	11-12:	SPM	composite	structure	diagram

Figure	11-13:	SPM	package	diagram

Figure	11-14:	SPM	class	diagram

These	 examples	 illustrate	 that	 you’ll	 typically	 have	 more
than	one	diagram	in	a	given	viewpoint.	Also	note	that	a	typical
structure	 viewpoint	 will	 have	 multiple	 composite	 structure
diagrams,	 (possibly)	 multiple	 package	 diagrams,	 and
(certainly)	multiple	class	diagrams.

11.2.2.9	Interaction	Viewpoint

The	interaction	viewpoint	is	the	main	place	where	you	define
the	 activities	 that	 take	 place	 in	 the	 software.	 This	 is	 where
you’ll	 place	 most	 of	 your	 interaction	 diagrams—activity
diagrams,	sequence	diagrams,	collaboration	diagrams,	and	the
like—with	 the	 possible	 exception	 of	 state	 diagrams,	 because
they	normally	appear	in	the	state	dynamics	viewpoint	(covered
in	 the	 next	 section).	 In	 addition	 to	 interaction	 diagrams,	 you
might	 also	 use	 composite	 structure	 and	 package	 diagrams	 in
the	interaction	viewpoint.

A	full	example	of	 the	 interaction	viewpoint	appears	 in	“A
Sample	SDD”	on	page	247.

11.2.2.10	State	Dynamics	Viewpoint

The	state	dynamics	viewpoint	describes	the	internal	operating
state	 of	 a	 software	 system.	 For	 this	 viewpoint,	 you	 would
typically	 use	 UML	 statechart	 diagrams	 (see	 “Statechart
Diagrams”	on	page	163).

11.2.2.11	Algorithmic	Viewpoint

The	algorithmic	viewpoint	 is	 another	older	viewpoint	 carried
over	 from	 IEEE	 1016-1998.	 Its	 purpose	 was	 to	 describe	 the
algorithms	 (typically	 through	 flowcharts,	 Warnier/Orr
diagrams,	pseudocode,	and	 the	 like)	used	 in	 the	system.	This
viewpoint	 largely	 has	 been	 replaced	 by	 the	 interaction
viewpoint	in	the	Std	1016-2009	document.

11.2.2.12	Resource	Viewpoint

The	resource	viewpoint	describes	how	the	design	uses	various
system	 resources.	 This	 includes	 CPU	 usage	 (including
multicore	 usage),	 memory	 usage,	 storage,	 peripheral	 usage,
shared	 libraries,	 and	 other	 security,	 performance,	 and	 cost
issues	 associated	 with	 the	 design.	 Typically,	 resources	 are
entities	that	are	external	to	the	design.

This	 is	 another	 Std	 1016-1998	 item	 included	 for
compatibility	 reasons	 in	Std	1016-2009.	 In	new	designs,	you
would	typically	use	the	context	viewpoint	to	describe	resource
usage.

11.2.3	Design	Views,	Overlays,	and	Rationales
IEEE	Std	1016-2009	states	that	an	SDD	is	organized	into	one
or	 more	 design	 views.	 Therefore,	 the	 design	 view	 is	 the
fundamental	 unit	 of	 organization	 in	 an	 SDD.	 Design	 views
provide	(possibly)	multiple	perspectives	on	the	system	design

to	 help	 clarify	 to	 stakeholders,	 designers,	 and	 programmers
how	 the	 design	 fulfills	 the	 requirements	 as	 specified	 by	 an
associated	design	viewpoint.

An	 SDD	 is	 complete	 when	 it	 covers	 every	 requirement
(design	 concern)	 in	 at	 least	 one	 design	 view,	 covers	 all	 the
entities	 and	 relationships	 in	 the	 associated	 design	 viewpoint,
and	 lives	 within	 all	 the	 constraints	 applied	 to	 the	 design.	 In
plain	 terms,	 this	 means	 that	 you’ve	 matched	 all	 the
requirements	 to	 appropriate	 diagrams	 and	 textual	 discussions
as	 outlined	 in	 “Design	Viewpoints	 and	Design	Elements”	 on
page	229.

An	SDD	is	consistent	if	there	is	no	conflict	between	any	of
the	 elements	 in	 the	 design	 views.	 For	 example,	 if	 a	 class
diagram	 states	 that	 an	 attribute	 (field)	 named	 hasValue	 is	 a
boolean,	 but	 an	 activity	 diagram	 treats	 that	 field	 as	 a	 string,
you	have	an	inconsistency.

11.2.3.1	Design	Views	vs.	Design	Viewpoints

There	 is	 a	 one-to-one	 relationship	 between	 design	 view	 and
design	viewpoints,	as	shown	in	Figure	11-15.	The	association
link	states	 that	a	design	view	conforms	to	exactly	one	design
viewpoint	and	a	design	viewpoint	is	governed	by	exactly	one
design	view.

Figure	11-15:	Design	views	and	design	viewpoints

So,	 what’s	 the	 difference	 between	 a	 design	 view	 and	 a
design	 viewpoint?	 A	 design	 view	 is	 the	 actual	 information
(graphic	and	 textual)	 that	you	would	normally	consider	 to	be

the	 “design.”	 A	 design	 viewpoint	 is	 the	 point	 of	 view	 from
which	 you	 create	 the	 design.	 In	 the	 IEEE	 recommendations,
the	 design	 viewpoints	 would	 be	 something	 like	 the	 context
viewpoint	 or	 interaction	 viewpoint.	 These	 are	 not	 the	 actual
design	views,	but	rather	the	format	used	to	present	the	views.
In	terms	of	the	organization	of	your	SDD,	the	view/viewpoint
section	of	the	table	of	contents	might	look	something	like	the
following:

1	Viewpoint	#1

1.1	 Viewpoint	 #1	 Specification	 (see	 “Design	 Viewpoints
and	Design	Elements”	on	page	229)

1.2	View	#1

2	Viewpoint	#2

2.1	Viewpoint	#2	Specification

2.2	View	#2

3	Viewpoint	#3

3.1	Viewpoint	#3	Specification

3.2	View	#3

4	Etc.

The	 reason	 for	 organizing	 the	 views	 by	 viewpoints	 is
simple:	 viewpoints	 represent	 the	 perspectives	 of	 different
stakeholders,	 so	 this	 organization	 allows	 stakeholders	 to
quickly	 locate	 the	 sections	 of	 the	 SDD	 of	 interest	 to	 them
instead	of	having	to	read	the	whole	document.

Note	 that	 each	 view	 in	 this	 outline	 does	 not	 necessarily
correspond	to	a	single	diagram	or	textual	description.	A	single
view	 could	 consist	 of	 many	 separate	 UML	 diagrams	 and

4

intervening	 textual	 descriptions.	 For	 example,	 in	 a	 logical
viewpoint	you’ll	probably	have	many	different	class	diagrams
(not	 just	 one)	 if	 for	 no	 other	 reason	 than	 that	 it’s	 difficult	 to
combine	multiple	 classes	 into	 a	 single	 diagram.	 Even	 if	 you
could,	 you	 might	 want	 to	 logically	 organize	 your	 class
diagrams	to	make	them	easier	to	read.	Furthermore,	in	addition
to	the	class	diagrams	themselves,	you’ll	need	to	provide	some
text	 describing	 the	 members	 (attributes)	 of	 those	 classes.
Rather	than	having	a	huge	class	diagram	(perhaps	consuming
dozens	of	pages)	 followed	by	a	very	 long	 textual	description
(spanning	 additional	 dozens	of	 pages),	 it’s	 probably	better	 to
put	 a	 few	 class	 diagrams	 in	 one	 figure,	 immediately	 follow
them	 with	 the	 textual	 information	 about	 the	 attributes,	 and
then	 repeat	 this	 for	 the	 remaining	 classes	 you	 need	 to
document.

11.2.3.2	Design	Overlays

A	 design	 overlay	 is	 an	 “escape	 clause”	 for	 a	 view.	 Design
views	 conform	 to	 design	 overlays	 or,	 conversely,	 design
overlays	govern	design	views,	as	shown	in	Figure	11-16.	So,	if
you’ve	created	a	logical	viewpoint,	for	example,	and	you	want
to	incorporate	some	interaction	diagrams	in	that	viewpoint	for
clarification,	you	would	use	a	design	overlay.

A	design	overlay	modifies	the	view/viewpoint	organization
like	so:

1	Viewpoint	#1

1.1	Viewpoint	#1	Specification

1.2	View	#1

1.3	Overlay	#1

1.4	Overlay	#2

1.5	Etc.

2	Etc.

Figure	11-16:	Design	view/overlay/rationale	relationship

Design	 overlays	 must	 be	 identified	 as	 such	 (to	 avoid
confusion	with	the	associated	viewpoint),	uniquely	named,	and
associated	with	only	a	single	viewpoint.

One	benefit	of	a	design	overlay	is	that	it	 lets	you	mix	and
match	design	languages	or	extend	an	existing	design	language
when	it	 isn’t	expressive	enough	to	satisfy	your	needs.	Design
overlays	 also	 allow	 you	 to	 extend	 an	 existing	 view	 without
having	to	create	a	whole	new	viewpoint	(which	can	be	a	lot	of
extra	work).

11.2.3.3	Design	Rationale

The	 design	 rationale	 explains	 the	 purpose	 behind	 the	 design
and	 justifies	 the	 design	 to	 other	 viewers.	Generally,	 a	 design
rationale	consists	of	comments	and	annotations	throughout	the
design.	It	may	address	(but	certainly	isn’t	limited	to)	potential
concerns	 about	 the	 design,	 different	 options	 and	 tradeoffs
considered	during	the	design,	arguments	and	justifications	for
why	 certain	 decisions	 were	 made,	 and	 even	 changes	 made

during	 the	 prototyping	 or	 development	 phases	 (because	 the
original	 design	 did	 not	 pan	 out).	 Figure	 11-16	 shows	 the
relationship	 of	 design	 rationales	 to	 design	 views	 (the
aggregation	 symbol	 implies	 that	 the	 design	 rationale
comments	are	included,	or	are	a	part	of,	the	design	view).

11.2.4	The	IEEE	Std	1016-2009	Conceptual	Model
Figures	11-17	 and	11-18	 provide	 conceptual	model	 diagrams
for	 the	 SDD	 and	 design	 elements,	 according	 to	 IEEE	 Std
1016-2009.

Figure	11-17:	SDD	conceptual	model

5

Figure	11-18:	SDD	design	element	conceptual	model

11.3	SDD	REQUIRED	CONTENTS
An	SDD	must	have	the	following	contents	(according	to	IEEE
Std	1016-2009):

An	SDD	identification

A	list	of	the	design	stakeholders

Design	concerns	(developed	from	the	product	requirements)

A	 set	 of	 one	 or	more	 design	 viewpoints	 (note	 that	 there’s	 exactly	 one	 design
viewpoint	for	each	design	view	in	an	SDD)

A	set	of	one	or	more	design	views	(roughly	corresponding	to	the	different	types
of	 UML	 diagrams,	 though	 a	 design	 viewpoint	 is	 not	 necessarily	 tied	 to	 a
particular	UML	diagram	type)

Any	needed	design	overlays

Any	necessary	design	rationales	(IEEE	requires	at	least	a	purpose)

11.3.1	SDD	Identification

At	 the	 very	 least,	 an	 SDD	 should	 include	 the	 following
identification	information	(not	necessarily	in	this	order):

Creation	date/date	of	issue

Current	status

Purpose/scope

Issuing	organization

Authors	(including	copyright	information)

References

Context

A	description	of	the	design	languages	used	for	design	viewpoints

Body

Summary

Glossary

Change	history

Most	 of	 this	 information	 is	 boilerplate	 (except	 for	 dates,
you	 typically	 copy	 this	 information	 from	 an	 organization’s
generic	 SDD	 template).	Obviously,	 some	 of	 this	 information
changes	 from	 one	 SDD	 to	 another	 (like	 dates,	 authors,	 and
change	 history),	 but	 for	 the	 most	 part	 very	 little	 intellectual
activity	 is	 involved	 in	 the	 SDD	 identification.	 It	 exists
primarily	 so	 that	 the	 SDD	 can	 stand	 as	 an	 independent
document.

11.3.2	Design	Stakeholders	and	Their	Design
Concerns
The	 SDD	 must	 list	 all	 the	 individuals	 who	 contributed
requirements/design	 concerns	 to	 the	 project.	 This	 content	 is
critical:	 if	 there	 is	 ever	 a	 question	 about	 the	 design	 rationale
that	 is	 not	 addressed	 in	 the	SDD,	 a	 reader	 should	 be	 able	 to
determine	which	 stakeholder	 to	 contact	with	 questions	 about
the	design	concerns.

11.3.3	Design	Views,	Viewpoints,	Overlays,	and
Rationales
The	 design	 views,	 viewpoints,	 overlays,	 and	 rationales	 form
the	main	body	of	the	SDD.

11.4	SDD	TRACEABILITY	AND
TAGS
We	haven’t	yet	discussed	how	 to	 trace	design	elements	 in	an
SDD	 back	 to	 the	 SRS	 and	 other	 system	 documents	 via	 the
RTM	(see	“Traceability”	on	page	171).	As	noted	in	Chapter	9,
you	 use	 tags	 to	 trace	 elements	 of	 the	 design	 throughout	 the
documentation.	 For	 SDDs,	 you	 use	 tags	 of	 the	 form
proj_SDD_xxx	 where	 proj	 is	 some	 project-specific	 name	 or
mnemonic	and	xxx	is	a	numeric	(possibly	decimal)	value	(see
“SDD	Tags”	on	page	176).	All	you	have	to	do,	then,	is	ensure
you	have	unique	SDD	tags	(generally	by	verifying	that	xxx	 is
unique	among	all	 the	SDD	tags)	and	define	where	exactly	 to
attach	the	SDD	tags.

Technically,	the	requirements	from	the	SRS	map	directly	to
the	 design	 concerns	 (one-to-one	 usually),	which	might	 tempt
you	 to	 think	 that	 you	 should	 attach	 SDD	 tags	 to	 the	 design
concerns.	However,	as	the	design	views	form	the	main	body	of
the	SDD	and	design	concerns	map	 to	 them	in	a	many-to-one
fashion	(through	the	design	viewpoints,	which	have	a	one-to-
one	relationship	to	design	views),	it’s	best	to	attach	SDD	tags
to	 the	 design	 views	 or	 viewpoints.	 It	 will	 make	 your	 life	 a
whole	lot	easier	when	you’re	creating	the	RTM	if	the	mapping
from	the	requirements	to	the	design	elements	is	either	one-to-
many	or	many-to-one	(in	particular,	you	want	to	avoid	many-

to-many).

In	practice,	a	given	design	view	can	be	broken	down	 into
multiple	images	or	descriptions.	If	you	are	careful	to	only	ever
connect	 a	 design	 concern	 to	 one	 of	 these	 images	 or
descriptions,	 you	 can	 assign	 SDD	 tags	 to	 the	 individual
components	 of	 a	 design	 view.	 However,	 you	 must	 exercise
caution	 when	 doing	 this,	 because	 if	 a	 single	 design	 concern
maps	 to	 a	 couple	 of	 different	 components	 in	 a	 single	 design
view,	you	can	wind	up	with	a	many-to-many	relationship.

11.5	A	SUGGESTED	SDD	OUTLINE
IEEE	 Std	 1016-2009,	 Annex	 C,	 provides	 one	 suggested
outline	 to	 organize	 and	 format	 an	 SDD	 that	 conforms	 to	 the
required	 contents	 (see	 “SDD	 Required	 Contents”	 on	 page
244).	Note	that	this	outline	is	by	no	means	a	requirement;	you
can	organize	 your	SDD	however	 you	 like	 and	 it	will	 still	 be
valid	 as	 long	 as	 it	 contains	 those	 required	 contents.	 The
following	 is	 a	 slightly	 modified	 variant	 of	 the	 IEEE’s
suggestion:

1	Frontispiece

1.1	Table	of	Contents

1.2	Date	of	Issue	and	Status

1.3	Issuing	Organization

1.4	Authorship

1.5	Change	History

2	Introduction

2.1	Purpose

2.2	Scope

6

7

2.3	Intended	Audience

2.4	Context

2.5	Overview/Summary

3	Definitions,	Acronyms,	and	Abbreviations

4	References

5	Glossary

6	Body

6.1	Identified	Stakeholders	and	Design	Concerns

6.2	Design	Viewpoint	1

6.2.1	Design	View	1

6.2.2	(Optional)	Design	Overlays	1

6.2.3	(Optional)	Design	Rationales	1

6.3	Design	Viewpoint	2

6.3.1	Design	View	2

6.3.2	(Optional)	Design	Overlays	2

6.3.3	(Optional)	Design	Rationales	2

6.4	Design	Viewpoint	n

6.4.1	Design	View	n

6.4.2	(Optional)	Design	Overlays	n

6.4.3	(Optional)	Design	Rationales	n

7	(Optional)	Index

11.6	A	SAMPLE	SDD
This	section	presents	a	complete	(though	highly	simplified,	for
editorial	 reasons)	 SDD	 example.	 This	 SDD	 describes	 the
design	 for	 the	 sample	 use	 case	 and	 requirements

documentation	 appearing	 in	 the	 previous	 chapter	 (see	 “Use
Cases”	on	page	214).	Specifically,	this	SDD	covers	the	design
of	 the	 Plantation	 Productions	 digital	 data	 acquisition	 and
control	 (DAQ)	 system	 components	 that	 process	 the	 DIP
switches	upon	system	initialization.

1	Plantation	Productions	DAQ	DIP	Switch	Control

1.1	Table	of	Contents

[Omitted	for	editorial	reasons]

1.2	Date	of	Issue	and	Status

First	created	on	Mar	18,	2018

Current	status:	complete

1.3	Issuing	Organization

Plantation	Productions,	Inc.

1.4	Authorship

Randall	L.	Hyde

Copyright	2019,	Plantation	Productions,	Inc.

1.5	Change	History

Mar	18,	2019:	Initial	SDD	created.

2	Introduction

2.1	Purpose

The	DAQ	system	from	Plantation	Productions,	Inc.,	is	a
digital	 data	 acquisition	 and	 control	 system	 intended	 to
provide	 analog	 and	 digital	 I/O	 for	 industrial	 and
scientific	systems.

This	Software	Design	Description	 (SDD)	describes	 the
DIP	switch	initialization	component	of	the	DAQ	system.
The	intent	is	that	a	developer	wishing	to	implement	the
functionality	 for	 the	 DIP	 switch	 control	 from	 the
Software	Requirement	Specifications	(SRS)	can	use	this
document	to	achieve	that	purpose.

2.2	Scope

This	document	describes	only	the	DIP	switch	design	in
the	 DAQ	 system	 (for	 space/editorial	 reasons).	 For	 the
full	 SDD,	 please	 see	 http://www.plantation-
productions.com/Electronics/DAQ/DAQ.html.

2.3	Intended	Audience

The	intended	audience	expected	for	an	SDD:

This	 document	 is	 intended	 for	 use	 by	 software
developers	 who	 will	 implement	 this	 design,	 by	 design
stakeholders	who	wish	 to	 review	the	design	prior	 to	 its
implementation,	and	by	the	authors	of	the	Software	Test
Cases	 (STC)	 and	 Software	 Test	 Procedures	 (STD)
documents.

The	true	intended	audience	for	this	SDD:

This	 document	 is	 intended	 for	 readers	 of	Write	 Great
Code,	 Volume	 3,	 as	 a	 means	 for	 providing	 a	 sample
SDD.

2.4	Context

The	Plantation	Productions	DAQ	system	fulfilled	a	need
for	 a	 well-documented	 digital	 data	 acquisition	 and

http://www.plantation-productions.com/Electronics/DAQ/DAQ.html

control	 system	 that	 engineers	 could	 design	 into	 safety-
critical	 systems	 such	 as	 nuclear	 research	 reactors.
Although	 there	 are	 many	 commercial	 off-the-shelf
(COTS)	systems	 that	could	be	used,	 they	suffer	 from	a
couple	 of	major	 drawbacks	 including:	 they	 are	 usually
proprietary	(difficult	to	modify	or	repair	after	purchase),
they	are	often	obsolete	within	5	to	10	years	with	no	way
to	 repair	 or	 replace	 them,	 and	 they	 rarely	 have	 full
support	 documentation	 (for	 example,	 SRS,	 SDD,	STC,
and	STP)	that	an	engineer	can	use	to	validate	and	verify
the	system.

The	DAQ	system	overcomes	this	problem	by	providing
an	open	hardware	 and	open	 source	 set	 of	 designs	with
full	design	documentation	that	 is	validated	and	verified
for	safety	systems.

Although	 originally	 designed	 for	 a	 nuclear	 research
reactor,	 the	 DAQ	 system	 is	 useful	 in	 any	 place	 where
you	 need	 an	 Ethernet-based	 control	 system	 supporting
digital	(TTL-level)	I/O,	optically	isolated	digital	inputs,
mechanical	 or	 solid-state	 relay	 digital	 outputs	 (isolated
and	conditioned),	analog	inputs	(for	example,	±10v	and
4–20mA),	and	(conditioned)	analog	outputs	(±10v).

2.5	Overview/Summary

The	 remainder	 of	 this	 documentation	 is	 organized	 as
follows.

Section	3	covers	the	software	design,	including:

Section	3.1	Stakeholders	and	Design	Concerns

Section	 3.2	 Context	 Viewpoint	 and	 Overall
Architecture

Section	3.3	Logical	Viewpoint	and	Data	Dictionary

Section	3.4	Interaction	Viewpoint	and	Control	Flow

Section	4	provides	an	index.

3	Definitions,	Acronyms,	and	Abbreviations

Term Definition

DAQ Data	acquisition	system

SBC Single-board	computer

Software	Design	
Description	(SDD)

Documentation	of	the	design	of	the	software	system	
(IEEE	Std	1016-2009)—that	is,	this	document.

Software	
Requirements	
Specification	(SRS)

Documentation	of	the	essential	requirements	
(functions,	performance,	design	constraints,	and	
attributes)	of	the	software	and	its	external	interfaces	
(IEEE	Std	610.12-1990).

System	
Requirements	
Specification	(SyRS)

A	structured	collection	of	information	that	embodies	
the	requirements	of	the	system	(IEEE	Std	1233-1998).	
A	specification	that	documents	the	requirements	to	
establish	a	design	basis	and	the	conceptual	design	for	a	
system	or	subsystem.

4	References

Reference Discussion

IEEE	Std	830-1998 SRS	documentation	standard

IEEE	Std	829-2008 STP	documentation	standard

8

IEEE	Std	1012-1998 Software	verification	and	validation	standard

IEEE	Std	1016-2009 SDD	documentation	standard

IEEE	Std	1233-1998 SyRS	documentation	standard

5	Glossary

DIP:	Dual	inline	package

6	Software	Design

6.1	Stakeholders	and	Design	Concerns

The	 stakeholders	 for	 the	 DAQ	 DIP	 switch	 design	 are
Plantation	 Productions,	 Inc.,	 and	 Randall	 Hyde.	 One
main	design	concern	 is	 to	create	a	simplified	SDD	that
fits	within	the	editorial	constraints	of	Write	Great	Code,
Volume	3,	while	still	providing	a	reasonable	example	of
an	 SDD.	 The	 remaining	 design	 concerns	 are	 all	 the
requirements	 for	 the	 DAQ	 DIP	 switch	 system	 as
described	 in	 the	 SRS	 (see	 “(Selected)	 DAQ	 Software
Requirements	(from	SRS)”	on	page	219).

6.2	Context	Viewpoint	and	Overall	Architecture

The	DAQ	context	viewpoint	shows	the	functionality	that
exists	between	the	user	and	the	system.

Name/tag:	DAQ_SDD_001

Author:	Randall	Hyde

Design	 elements	 used:	 This	 viewpoint	 employs	 use
cases,	 actors	 (host	 PC	 and	 end	 user),	 nodes,
components,	 and	 packages	 to	 describe	 the	 system

interface.

Requirements/design	concerns:

DAQ_SRS_700_000

DAQ_SRS_701_000

DAQ_SRS_704_000

DAQ_SRS_707_000

DAQ_SRS_723_000.1

6.2.1	Contextual	View

The	 DAQ	 system	 firmware	 runs	 on	 a	 Netburner
MOD54415	SBC	 connected	 to	 a	DAQ_IF	 (DAQ
interface)	board.	An	end	user	 can	 set	DIP	 switch
settings	to	initialize	the	way	the	DAQ	interfaces	to
a	host	PC.	The	host	PC	can	communicate	with	the
DAQ	 system	 using	 RS-232	 Serial,	 USB,	 or
Ethernet	 connections	 (see	 Figure	 11-19).	 This
design	 expects	 existing	 library	 routines	 for
maintPrintf,	 serialTaskInit,	 usbTaskInit,	 ethernetTaskInit,	 and
readDIPSwitches.

9

10

Figure	11-19:	Sample	contextual	view

6.2.2	Component/Deployment	Overlay

The	following	design	overlay	provides	a	different
look	 at	 the	 contextual	 view	 using	 a	 combination
deployment/component	 diagram.	 Figure	 11-20
shows	 the	 physical	 components	 of	 the	 system
and	their	interconnections.

11

Figure	11-20:	Sample	design	overlay	diagram

6.2.3	(Optional)	Design	Rationales

The	purpose	of	this	viewpoint	is	to	show	how	the
user	 controls	 the	 way	 in	 which	 the	 host	 PC
communicates	with	the	DAQ	system.

6.3	Logical	Viewpoint	and	Data	Dictionary

Name/tag:	DAQ_SDD_002

Author:	Randall	Hyde

Design	elements	used:	This	viewpoint	employs	a	single
class	 diagram	 to	 describe	 the	 data	 storage	 for	 this

application.

NOTE

In	the	real	application,	it	would	probably	be	better	to	use	global	variables	to
hold	the	DIP	switch	settings	rather	than	an	actual	class.

Requirements/Design	Concerns:

DAQ_SRS_723_000.2

6.3.1	DIP	Switch	Variables

The	 data	 storage	 requirement	 for	 the	 DAQ	 (DIP
switch)	 application	 is	 very	 simple.	 A	 set	 of	 12
global	variables	in	Figure	11-21	(which	this	SDD
groups	together	under	globals)	is	all	that	is	really
needed.

Name Description

dipsw_g Eight-bit	array	(in	a	byte)	containing	DIP	switch	
values

serialEnable_g true	if	RS-232	communication	is	enabled

USBEnabled_g true	if	USB	communications	is	enabled

ethEnabled_g true	if	Ethernet	communications	is	enabled

ethMultClients_g Allow	only	a	single	Ethernet	client	if	false;	allow	five	
clients	if	true

ethernetDipSw_g Hold	dipsw_g[5]	in	bit	0	and	dipsw_g[6]	in	bit	1	(0..3)

unitTestMode_g true	if	operating	in	unit	test	mode

debugMode_g true	if	maintPrintf()	function	sends	output	to	COM1:,	
false	if	maintPrintf()is	disabled

ethernetAdrs_g Holds	IP	address	(192.168.2.70–192.168.2.73)

maxSockets_g Either	0,	1,	or	5	based	on	ethEnabled_g	and	
ethMultClients_g	values

slots_g Holds	file	descriptors	for	up	to	five	active	Ethernet	
sockets

slot_g Used	to	index	into	slots_g

maintPrintfTask() External	function	that	starts	the	maintPrintf()	task	(to	
handle	debug	output)

serialTaskInit() External	function	that	starts	the	RS-232	command	
receipt	task

usbTaskInit() External	function	that	starts	the	USB	command	receipt	
task

ethTaskInit() External	function	that	starts	an	Ethernet	command	
receipt	task	(up	to	five	of	these	threads	can	be	running	
concurrently)

Figure	11-21:	DAQ	global	entities

6.3.2	Design	Overlays

[None]

6.3.3	Design	Rationales

This	logical	view	used	a	class	diagram	rather	than
a	set	of	global	variables	simply	because	a	 typical
read	dipswitches	function	for	the	Netburner	returns	all
eight	 readings	 in	 a	 single	8-bit	 byte	 (that	 is,	 as	 a
bit	array).	For	that	reason,	 it	makes	sense	to	treat
all	 eight	 values	 as	 fields	 of	 a	 class,	 as	 these
attributes	 would	 normally	 be	 derived	 anyway—
that	is,	computed	by	masking	out	the	specific	bit.

6.4	Interaction	Viewpoint	and	Control	Flow

Name/tag:	DAQ_SDD_003

Author:	Randall	Hyde

Design	elements	used:	This	viewpoint	employs	a	couple
of	 activity	 diagrams	 to	 show	 the	 control	 flow	 (and	 the
value	calculations)	through	the	program.

Requirements/design	concerns:

DAQ_SRS_702_000

DAQ_SRS_702_001

DAQ_SRS_702_002

DAQ_SRS_703_000

DAQ_SRS_703_001

DAQ_SRS_705_000

DAQ_SRS_705_001

DAQ_SRS_705_002

DAQ_SRS_706_000

DAQ_SRS_706_001

DAQ_SRS_708_000

DAQ_SRS_709_000

DAQ_SRS_710_000

DAQ_SRS_711_000

DAQ_SRS_712_000

DAQ_SRS_716_000

DAQ_SRS_716_001

DAQ_SRS_716_002

DAQ_SRS_716.5_000

DAQ_SRS_717_000

DAQ_SRS_718_000

DAQ_SRS_718_001

DAQ_SRS_719_000

DAQ_SRS_720_000

DAQ_SRS_721_001

DAQ_SRS_721_002

DAQ_SRS_723_000

DAQ_SRS_723_000

DAQ_SRS_723_000

DAQ_SRS_723_000.2

DAQ_SRS_726_000

DAQ_SRS_727_000

DAQ_SRS_728_000

DAQ_SRS_737_000

DAQ_SRS_738_000

DAQ_SRS_738_001

DAQ_SRS_738_002

6.4.1	Design	View

The	design	view	for	the	interaction	viewpoint	uses
UML	 activity	 diagrams	 (flowcharts)	 to	 show	 the
control	 flow	 through	 the	application.	See	Figures
11-22,	11-23,	and	11-24.

Figure	11-22:	Activity	diagram:	reading	DIP	switches

Figure	11-23:	Activity	diagram	continuation	#1

Figure	11-24:	Activity	diagram	continuation	#2

The	 serialTaskInit()	 and	 usbTaskInit()	 functions	 are
library	code	 that	 is	 external	 to	 this	design.	These
functions	 start	 a	 task,	 ethernetListenTask,	 to	 handle
RS-232	 and	 USB	 communications	 as	 shown	 in
Figure	11-25.

The	 ethTaskInit()	 function	 (provided	 in	 a	 library
external	 to	 this	 design)	 runs	 until	 the	 connecting
host	 terminates	 the	 Ethernet	 connection.	 At	 that

time,	 the	 ethernetListenTask	 task	will	 set	 the	 entry	of
the	corresponding	slots	to	0	and	terminate	the	task
(thread).	 Should	 the	 listen	 connection	 become
broken,	ethernetListenTask	terminates.

Figure	11-25:	Activity	diagram:	ethernetListenTask

6.4.2	Sequence	Diagram	Overlay

The	 sequence	 diagram	 in	 Figure	 11-26	 shows
another	way	of	 looking	at	 the	 initialization	of	 the
threads	in	the	DAQ	application.

6.4.3	Design	Rationale

The	 DAQ	 DIP	 switches	 project	 is	 relatively
simple	 (purposely,	 so	 that	 the	 SDD	 example
wouldn’t	 be	 too	 large	 to	 fit	 into	 this	 book).
Accordingly,	 the	 design	 is	 an	 old-fashioned
procedural/imperative	 programming	 model	 (as
opposed	to	an	object-oriented	design).

7	Index

[Omitted	for	editorial	reasons]

Figure	11-26:	Sequence	diagram:	initializing	tasks

11.7	UPDATING	THE
TRACEABILITY	MATRIX	WITH
DESIGN	INFORMATION

The	 SDD	 adds	 a	 single	 column	 to	 the	 RTM:	 the	 SDD	 tag
column.	However,	 the	SDD	 tag	does	 not	 directly	 embed	 any
traceability	 information,	 so	 you’ll	 have	 to	 extract	 that
information	 from	 the	SDD	 to	 determine	where	 to	 place	 your
SDD	tags	in	the	RTM.

As	 noted	 in	 “Design	 Views	 vs.	 Design	 Viewpoints”	 on
page	 240,	 each	 viewpoint	 in	 an	 SDD	 must	 include	 design
concerns	and	requirements	information.	In	this	chapter	(see	“A
Sample	SDD”	on	page	247),	I’ve	strongly	suggested	supplying
all	 the	SRS	requirement	 tags	as	 the	list	of	design	concerns	in
the	 viewpoint	 documentation.	 If	 you’ve	 done	 that,	 you’ve
already	 created	 the	 reverse	 traceability	 back	 to	 the
requirements.	As	a	result,	filling	in	the	SDD	tags	in	the	RTM
is	easy:	 just	 locate	each	requirement	 tag	(listed	 in	 the	current
viewpoint)	 and	 copy	 the	 viewpoint’s	 SDD	 tag	 into	 the	 SDD
tag	column	 in	 the	RTM.	Of	 course,	 considering	 that	 you	can
have	multiple	requirements	associated	with	a	single	viewpoint,
you’ll	 also	 have	 several	 copies	 of	 the	 same	 SDD	 tag	 spread
throughout	the	RTM	(one	per	associated	requirement).

Should	you	 ever	want	 to	 trace	your	SDD	 tags	back	 to	 all
the	requirements	in	the	RTM	(without	looking	up	the	list	in	the
SDD),	simply	sort	the	RTM	by	the	SDD	tag	column.	This	will
collect	all	the	requirements	(and	everything	else	linked	to	that
SDD	 tag)	 into	 a	 contiguous	 group	 in	 the	matrix	 and	make	 it
easy	to	identify	everything	associated	with	that	tag.

If	 you	 choose	 some	 other	 method	 of	 specifying	 design
concerns	 in	 the	 viewpoint	 that	 doesn’t	 involve	 incorporating
the	SRS	tags	within	 them,	 then	determining	the	placement	of
the	SDD	tags	in	the	RTM	becomes	a	manual	(even	laborious)
process.	 That’s	 why	 I	 strongly	 recommend	 using	 SRS	 tags

when	generating	your	viewpoints.	Since	you	have	to	consider
all	the	requirements	when	generating	the	viewpoint	anyway,	it
makes	 sense	 to	 collect	 that	 information	 into	 the	 SDD	 at	 the
same	time.

11.8	CREATING	A	SOFTWARE
DESIGN
This	 chapter	 has	 spent	 considerable	 time	 discussing	 how	 to
create	a	Software	Design	Description.	In	the	examples	you’ve
seen,	it	might	seem	that	the	actual	designs	were	plucked	out	of
thin	 air.	 Where	 did	 these	 designs	 originate	 from?	 If	 you’re
creating	a	new	system	design,	how	do	you	come	up	with	that
design	 in	 the	 first	 place?	Well,	 that’s	 the	 subject	 of	 the	 next
volume	in	this	series,	Write	Great	Code,	Volume	4:	Designing
Great	 Code.	 This	 chapter	 has	 laid	 the	 groundwork	 for	 that
book.

11.9	FOR	MORE	INFORMATION
Freeman,	 Eric,	 and	 Elizabeth	 Robson.	 Head	 First	 Design
Patterns:	 A	 Brain-Friendly	 Guide.	 Sebastopol,	 CA:
O’Reilly	Media,	2004.

Gamma,	Erich,	et	al.	Design	Patterns:	Elements	of	Reusable
Object-Oriented	 Software.	 Upper	 Saddle	 River,	 NJ:
Addison-Wesley	Professional,	1994.

IEEE.	“IEEE	Std	1016-2009:	IEEE	Standard	for	Information
Technology—Systems	 Design—Software	 Design
Descriptions.”	 July	 20,	 2009.

https://ieeexplore.ieee.org/document/5167255/.	 (It’s	 not
cheap—about	$100—and	it’s	worded	in	a	way	that	only	a
lawyer	 can	 appreciate,	 but	 this	 is	 the	 gold	 standard	 for
SDDs.)

https://ieeexplore.ieee.org/document/5167255/

12
SOFTWARE	TEST	DOCUMENTATION

This	 chapter	 covers	 software	 test	 documentation,	 focusing
primarily	on	the	Software	Test	Case	(STC)	and	Software	Test
Procedure	 (STP)	 documents.	 As	 has	 been	 the	 case	 for	 the
previous	chapters,	this	discussion	is	based	on	IEEE	Standards,
specifically	 the	 IEEE	Standard	 for	Software	and	System	Test
Documentation	(IEEE	Std	829-2008,	hereafter	Std	829).

12.1	The	Software	Test	Documents	in	Std	829
Std	829	actually	describes	many	additional	documents	above
and	beyond	the	STC	and	STP,	including:

Master	Test	Plan	(MTP)

Level	Test	Plan	(LTP)

Level	Test	Design	(LTD)

Level	Test	Case	(LTC)

Level	Test	Procedure	(LTPr)

Level	Test	Log	(LTL)

Anomaly	Report	(AR)

Level	Interim	Test	Status	Report	(LITSR)

Level	Test	Report	(LTR)

1

Master	Test	Report	(MTR)

Note	that	 these	are	not	actual	document	names—the	word
level	 is	 a	 placeholder	 for	 the	 scope	 or	 extent	 of	 software
testing	being	documented.	The	scope	could	be	at	 the	 level	of
components	 or	 component	 integration,	 apply	 to	 the	 entire
system,	or	focus	on	acceptance.	For	example,	Level	Test	Plan
could	 refer	 to	 a	 Component	 (or	Unit)	 Test	 Plan,	 Component
Integration	 (or	 simply	 Integration)	 Test	 Plan,	 System	 (or
System	Integration)	Test	Plan,	or	an	Acceptance	Test	Plan.

NOTE

Test	levels	are	explained	further	in	“Software	Development	Testing	Levels”
on	page	265.

In	 all,	 Std	 829	 defines	 31	 different	 document	 types,	 but
these	are	the	main	ones.	The	majority	of	these	documents	exist
to	 support	 software	management	 activities.	 Because	 this	 is	 a
book	 on	 personal	 software	 engineering	 rather	 than	 software
project	management,	this	chapter	won’t	go	into	detail	on	most
of	 them.	 Instead,	 we’ll	 concentrate	 on	 those	 level	 test
documents	that	pertain	to	actual	software	testing—specifically,
the	Level	Test	Case,	Level	Test	Procedure,	Level	Test	Log,	and
Anomaly	Report	document	types.	We	will	cover	all	four	level
classifications—component,	 component	 integration,	 system,
and	 acceptance—though	 the	 latter	 two	 are	 the	 main	 test
documents	 used	 in	 this	 chapter.	 The	 differences	 between	 the
level	 test	 documents	 are	 relatively	 minor,	 so	 this	 chapter
applies	 the	 umbrella	 names	mentioned	 earlier:	 Software	 Test
Cases	and	Software	Test	Procedures.	Keep	in	mind,	however,
that	while	 these	are	common	software	engineering	terms,	Std

829	refers	only	to	the	level	test	documents.

12.1.1	Process	Support
Although	 this	 chapter	 focuses	 on	 software	 testing,	 Std	 829
describes	 the	 testing	 process	 in	 far	 more	 general	 terms.	 In
particular,	the	testing	process	also	handles	the	verification	and
validation	of	each	document	step	in	the	development	process.
Specifically,	 this	 means	 that	 the	 testing	 process	 tests	 the
documentation	as	well	as	the	actual	software.

For	 the	 SyRS	 and	 SRS,	 the	 verification	 step	 ensures	 that
the	 requirements	 actually	 satisfy	 customer	 needs	 (and	 only
satisfy	 customer	 needs,	 without	 gold	 plating).	 For	 the	 SDD,
the	 verification	 step	 ensures	 that	 the	 SDD	 covers	 all	 the
requirements.	 For	 the	 STC,	 the	 verification	 step	 ensures	 that
each	 requirement	 has	 one	 or	 more	 test	 cases	 that	 test	 the
requirement.	For	the	STP,	the	verification	ensures	that	the	set
of	test	procedures	fully	covers	all	the	test	cases.

In	 addition	 to	 documentation,	 Std	 829	 discusses	 test
procedures	 for	 verifying	 acquisitions	 (such	 as	 purchases	 of
third-party	 libraries	 and	 computing	 hardware),	 administering
RFPs	 (Requests	 for	 Proposals),	 and	 many	 other	 activities.
These	 testing	 activities	 are	 very	 important.	 As	 noted
previously,	 though,	 these	 are	 largely	 management	 activities
rather	 than	 software	 development	 activities,	 so	 they’re
mentioned	only	briefly	here.

Std	829	states	that	testing	needs	to	support	the	processes	of
management,	acquisition,	supply,	development,	operation,	and
maintenance.	 This	 chapter	 will	 concentrate	 on	 the
development	and	operation	processes	(and,	to	a	limited	extent,
the	 maintenance	 processes,	 which	 are	 largely	 an	 iteration	 of

the	development	and	operation	processes).	For	more	details	on
the	other	processes,	see	Std	829,	IEEE/EIA	Std	12207.0-1996
[B21],	and	ISO-IEC-IEEE-29148-2011.

Note	that	Std	829	allows	you	to	combine	and	omit	some	of
the	testing	documents.	This	means	that	you	could	have	only	a
single	 document	 and	 still	 conform	 to	 Std	 829.	 In	 reality,	 the
final	number	of	documents	you	create	depends	on	the	size	of
the	 project	 (large	 projects	 will	 require	 more	 documentation)
and	 the	 turnaround	you	 expect	 (fast	 projects	will	 have	 fewer
documents).

12.1.2	Integrity	Levels	and	Risk	Assessment
Std	 829	 defines	 four	 integrity	 levels	 that	 describe	 the
importance	or	sensitivity	to	risk	for	a	piece	of	software:

Catastrophic	(level	4)	This	 level	means	 that	 the	 software
must	execute	properly,	or	something	disastrous	could	occur
(such	 as	 death,	 irreparable	 harm	 to	 the	 system,
environmental	damage,	or	a	huge	financial	loss).	There	are
no	 workarounds	 for	 catastrophic	 system	 failures.	 An
example	 is	 a	braking	 failure	 in	 a	 software-controlled	 self-
driving	vehicle.

Critical	 (level	 3)	 This	 level	 means	 that	 software	 must
execute	 properly,	 or	 there	 could	 be	 serious	 problems
including	 permanent	 injury,	 major	 performance
degradation,	 environmental	 damage,	 or	 financial	 loss.	 A
partial	 workaround	 may	 be	 possible	 for	 a	 critical	 system
failure.	 An	 example	 is	 the	 transmission-controlling
software	 in	 the	 self-driving	 vehicle	 being	 unable	 to	 shift
out	of	second	gear.

Marginal	(level	2)	This	level	means	that	the	software	must
execute	properly,	or	there	may	be	(minor)	incorrect	results
produced	 and	 some	 functionality	 lost.	 Workarounds	 to
solve	 the	 problem	 are	 possible.	 Continuing	with	 the	 self-
driving-vehicle	 example,	 a	 software	 failure	 that	 prevents
the	 infotainment	 center	 from	 operating	 is	 a	 marginal
problem.

Negligible	 (level	 1)	 This	 level	 means	 that	 the	 software
must	 execute	 properly,	 or	 else	 some	 minor	 functionality
might	not	exist	in	the	system	(or	the	software	might	not	be
as	“polished”	as	 it	 should	be).	Negligible	 issues	generally
don’t	require	a	workaround	and	can	be	safely	ignored	until
an	update	 comes	along.	An	example	 is	 a	 spelling	mistake
on	 the	 touchscreen	 of	 the	 infotainment	 center	 in	 the	 self-
driving	vehicle.

The	 higher	 the	 level,	 the	 greater	 the	 importance	 of	 the
testing	 process;	 that	 is,	 level	 4	 (catastrophic)	 items	 demand
higher-quality	 and	 more	 intensive	 testing	 than	 level	 1
(negligible)	items.	Integrity	levels,	then,	become	the	basis	for
determining	 the	 number,	 quality,	 and	 depth	 of	 test	 cases	 you
create.	 For	 a	 feature	 in	 the	 program	 that	 could	 have
catastrophic	 results	 in	 the	 event	 of	 a	 failure,	 you	want	 a	 fair
number	 of	 test	 cases	 that	 exercise	 that	 feature	 with
considerable	depth.	For	features	that	have	negligible	potential
consequences,	you	might	not	have	any	test	cases	or	only	very
shallow	tests	(such	as	a	cursory	review).

Risk	assessment	 is	 an	 attempt	 to	 determine	where	 in	 your
system	 failures	 are	 likely	 to	 occur,	 their	 expected	 frequency,
and	 the	 associated	 costs.	While	 risk	 assessment	 is	 predictive

2

by	its	very	nature	(which	means	it	won’t	be	perfect),	you	can
often	identify	those	parts	of	the	program	that	are	more	likely	to
exhibit	 problems	 (such	 as	 complex	 sections	 of	 code,	 code
produced	 by	 less	 experienced	 engineers,	 code	 from
questionable	 sources	 like	 open	 source	 libraries	 found	 on	 the
internet,	and	code	using	poorly	understood	algorithms).	If	you
can	categorize	the	likelihood	of	a	problem	as	likely,	probable,
occasional,	 or	 unlikely,	 you	 can	 help	 identify	 the	 code	 that
warrants	 more	 stringent	 testing	 (and,	 conversely,	 code	 that
requires	minimal	testing).

You	 can	 combine	 the	 integrity	 level	 and	 risk	 assessment
levels	 in	 a	 matrix	 to	 produce	 a	 risk	 assessment	 scheme,	 as
shown	 in	 Table	 12-1.	 In	 this	 example,	 a	 value	 of	 4	 denotes
extreme	 importance,	 and	 a	 value	 of	 1	 indicates	 little
importance.

Table	12-1:	Risk	Assessment	Scheme

Consequence Likelihood 	 	 	

Likely Probable Occasional Unlikely

Catastrophic 4 4 3.5 3

Critical 4 3.5 3 2.5

Marginal 3 2.5 1.5 1

Negligible 2 1.5 1 1

Std	 829	 does	 not	mandate	 using	 an	 integrity	 level	 or	 risk
assessment	scheme	in	your	test	documentation,	though	it	does
consider	 this	 to	 be	 best	 practice.	 If	 you	 do	 use	 an	 integrity
level,	 Std	 829	 does	 not	 require	 that	 you	 use	 the	 IEEE-

recommended	 scheme	 (you	 could,	 for	 example,	 use	 a	 finer-
grained	integrity	level	with	values	from	1	to	10).	However,	if
you	“roll	your	own”	integrity	level,	the	IEEE	recommends	that
you	 document	 a	mapping	 from	your	 integrity	 levels	 to	 those
suggested	 by	 the	 IEEE	 so	 that	 readers	 can	 easily	 compare
them.

12.1.3	Software	Development	Testing	Levels
In	 addition—and	 in	 contrast—to	 the	 integrity	 levels	 just
described,	the	IEEE	defines	four	testing	levels,	each	of	which
generally	 describes	 the	 scope	 or	 extent	 of	 software	 testing
being	documented:

Component	 (also	 known	 as	unit) 	 This	 level	 deals	 with
subroutines,	 functions,	 modules,	 and	 subprograms	 at	 the
lowest	 code	 level.	 Unit	 testing,	 for	 example,	 consists	 of
testing	 individual	 functions	and	other	 small	program	units
independent	of	the	rest	of	the	program.

Component	 integration	 (also	 known	 as	 simply
integration)	 This	 level	 is	 the	 point	 at	 which	 you	 begin
combining	individual	units	together	to	form	a	larger	portion
of	 the	 system,	 though	 not	 necessarily	 the	 whole	 system.
Integration	testing,	for	example,	occurs	when	you	combine
(pretested)	 units	 to	 see	 if	 they	 play	well	 together	 (that	 is,
pass	 appropriate	 parameters,	 return	 appropriate	 function
results,	and	so	on).

System	 (also	known	as	system	integration)	 This	 level	 of
testing	 is	 the	ultimate	 form	of	 integration	 testing—you’ve
integrated	 all	 the	 program	 units	 together	 and	 formed	 the
complete	 system.	 Unit	 testing,	 integration	 testing,	 and

3

system	integration	testing	are	typically	tests	the	developers
perform	 before	 releasing	 a	 complete	 system	 outside	 the
development	group.

Acceptance	(variants	include	factory	acceptance	and	site
acceptance)	Acceptance	 testing	 (AT)	 is	 post-development.
As	 its	 name	 implies,	 it	 refers	 to	 how	 the	 customer
determines	whether	the	system	is	acceptable.	Depending	on
the	 system,	 there	 may	 be	 a	 couple	 of	 acceptance	 testing
variants.	 Factory	 acceptance	 testing	 (FAT)	 occurs	 on
systems	prior	to	leaving	the	manufacturer	(typically	on	the
factory	 floor,	 hence	 the	 name).	 Even	 if	 a	 product	 is	 pure
software,	 it	 can	 have	 a	 factory	 acceptance	 test	 where	 the
customer’s	representatives	come	to	test	the	software	under
the	watchful	 eye	 of	 the	 software	 development	 team.	 This
allows	the	team	to	make	quick	changes	to	the	system	if	the
customer	discovers	minor	errors	during	the	FAT.

A	 site	 acceptance	 test	 (SAT)	 is	 performed	 at	 the
customer’s	 site	after	 the	 system	 is	 installed.	For	hardware-
based	 systems,	 this	 ensures	 that	 the	 hardware	 is	 installed
properly	 and	 the	 software	 is	 functioning	 as	 intended.	 For
pure	software	systems,	the	SAT	provides	a	final	check	(after
a	 possible	 AT	 or	 FAT)	 that	 the	 software	 is	 usable	 by	 the
system’s	end	users.

12.2	TEST	PLANS
A	 software	 test	 plan	 is	 a	 document	 that	 describes	 the	 scope,
organization,	and	activities	associated	with	the	testing	process.
This	 is	 largely	a	managerial	overview	of	how	the	 testing	will
take	 place,	 the	 resources	 testing	 will	 require,	 schedules,

necessary	 tools,	 and	 objectives.	 This	 chapter	 won’t	 consider
test	plans	in	detail,	as	they	are	beyond	the	scope	of	this	book;
however,	the	following	sections	will	present	outlines	provided
in	IEEE	Std	829-2008	as	a	reference.	For	more	details	on	these
test	plans,	consult	Std	829.

12.2.1	Master	Test	Plan
The	Master	Test	Plan	(MTP)	is	an	organization-wide	top-level
management	document	that	tracks	the	testing	process	across	a
whole	 project	 (or	 set	 of	 projects).	 Software	 engineers	 are
rarely	 involved	 directly	 with	 the	 MTP,	 which	 is	 largely	 an
umbrella	 document	 that	 the	 QA	 (Quality	 Assurance)
department	uses	to	track	quality	aspects	of	a	project.	A	project
manager	 or	 project	 lead	 might	 be	 aware	 of	 the	 MTP—and
might	 contribute	 to	 it	 during	 schedule	 and	 resource
development—but	the	development	team	rarely	sees	the	MTP
except	in	passing.

The	 following	outline	 comes	 from	Section	 8	 of	 IEEE	Std
829-2008	(and	uses	the	IEEE	section	numbers):

1	Introduction

1.1	Document	Identifier

1.2	Scope

1.3	References

1.4	System	Overview	and	Key	Features

1.5	Test	Overview

1.5.1	Organization

1.5.2	Master	Test	Schedule

1.5.3	Integrity	Level	Schema

1.5.4	Resources	Summary

1.5.5	Responsibilities

1.5.6	Tools,	Techniques,	Methods,	and	Metrics

2	Details	of	the	Master	Test	Plan

2.1	Test	Processes	Including	Definition	of	Test	Levels

2.1.1	Process:	Management

2.1.1.1	Activity:	Management	of	Test	Effort

2.1.2	Process:	Acquisition

2.1.2.1	Activity:	Acquisition	Support	Test

2.1.3	Process:	Supply

2.1.3.1	Activity:	Planning	Test

2.1.4	Process:	Development

2.1.4.1	Activity:	Concept

2.1.4.2	Activity:	Requirements

2.1.4.3	Activity:	Design

2.1.4.4	Activity:	Implementation

2.1.4.5	Activity:	Test

2.1.4.6	Activity:	Install/Checkout

2.1.5	Process:	Operation

2.1.5.1	Activity:	Operational	Test

2.1.6	Process:	Maintenance

2.1.6.1	Activity:	Maintenance	Test

2.2	Test	Documentation	Requirements

2.3	Test	Administration	Requirements

2.4	Test	Reporting	Requirements

3	General

3.1	Glossary

3.2	Document	Change	Procedures	and	History

Many	 of	 these	 sections	 contain	 information	 common	 to
IEEE	documents	(for	example,	see	the	SRS	and	SDD	samples
in	previous	chapters).	As	the	MTP	is	beyond	the	scope	of	this
chapter,	 please	 consult	 Std	 829	 for	 specific	 descriptions	 of
each	section	in	this	outline.

12.2.2	Level	Test	Plan
A	Level	Test	Plan	(LTP)	refers	to	a	set	of	test	plans	based	on
the	 development	 state.	 As	 this	 chapter	 noted	 earlier,	 each
document	in	the	set	generally	describes	the	scope	or	extent	of
software	 test	 being	 documented:	 Component	 Test	 Plan	 (aka
Unit	Test	Plan,	or	UTP),	Component	Integration	Test	Plan	(aka
Integration	Test	Plan,	or	 ITP),	System	Test	Plan	 (aka	System
Integration	 Test	 Plan,	 or	 SITP),	 and	 Acceptance	 Test	 Plan
(ATP;	may	include	a	Factory	Acceptance	Test	Plan	[FATP]	or
Site	Acceptance	Test	Plan	[SATP]).

LTPs	 are	 also	 managerial/QA	 documents,	 but	 the
development	 team	 (even	 to	 the	 level	 of	 individual	 software
engineers)	 often	 has	 input	 on	 their	 creation	 and	use,	 because
these	 documents	 reference	 detailed	 features	 of	 the	 software
design.	These	test	plans	are	not	guiding	documents—that	is,	a
software	 engineer	 wouldn’t	 necessarily	 reference	 these
documents	while	actually	testing	the	software—but	they	can’t
be	created	without	development	team	feedback.	Like	the	MTP,
LTPs	provide	a	road	map	for	the	creation	of	the	test	case	and
test	 procedure	 documents	 (of	 primary	 interest	 to	 the
development	 and	 testing	 teams)	 and	 outline	 how	 to	 perform
the	 tests.	LTPs	provide	 a	good	high-level	view	of	 the	 testing
process,	 especially	 for	 external	 organizations	 interested	 in	 its
quality.

4

5

Here	is	the	LTP	outline	from	Std	829:

1	Introduction

1.1	Document	Identifier

1.2	Scope

1.3	References

1.4	Level	in	the	Overall	Sequence

1.5	Test	Classes	and	Overall	Test	Conditions

2	Details	for	This	Level	of	Test	Plan

2.1	Test	Items	and	Their	Identifiers

2.2	Test	Traceability	Matrix

2.3	Features	to	Be	Tested

2.4	Features	Not	to	Be	Tested

2.5	Approach

2.6	Item	Pass/Fail	Criteria

2.7	Suspension	Criteria	and	Resumption	Requirements

2.8	Test	Deliverables

3	Test	Management

3.1	Planned	Activities	and	Tasks;	Test	Progression

3.2	Environmental/Infrastructure

3.3	Responsibilities	and	Authority

3.4	Interfaces	Among	the	Parties	Involved

3.5	Resources	and	Their	Allocation

3.6	Training

3.7	Schedules,	Estimates,	and	Costs

3.8	Risk(s)	and	Contingency(s)

4	General

4.1	Quality	Assurance	Procedures

4.2	Metrics

4.3	Test	Coverage

4.4	Glossary

4.5	Document	Change	Procedures	and	History

You	might	notice	that	there	is	considerable	overlap	between
the	 LTPs	 and	 the	 MTP.	 Std	 829	 states	 that	 if	 you	 are
replicating	information	in	a	test	plan	that	exists	elsewhere,	you
can	 simply	 provide	 a	 reference	 to	 the	 containing	 document
rather	than	duplicating	the	information	in	your	LTP	(or	MTP).
For	 example,	 you’re	 likely	 to	 have	 an	 overall	 Reverse
Traceability	Matrix	(RTM)	that	includes	traceability	for	all	the
tests.	 Rather	 than	 replicating	 that	 traceability	 information	 in
section	 2.2	 of	 an	LTP,	 you	would	 simply	 reference	 the	RTM
document	that	contains	this	information.

12.2.3	Level	Test	Design	Documentation
The	 Level	 Test	 Design	 (LTD)	 documentation,	 as	 its	 name
suggests,	 describes	 the	 design	 of	 the	 tests.	Once	 again,	 there
are	 four	 types	 of	 LTD	 documents,	 each	 generally	 describing
the	 scope	 or	 extent	 of	 software	 testing	 being	 documented:
Component	 Test	 Design	 (aka	 Unit	 Test	 Design,	 or	 UTD),
Component	 Integration	 Test	 Design	 (aka	 Integration	 Test
Design,	or	ITD),	System	Test	Design	(aka	System	Integration
Test	Design,	or	SITD),	and	Acceptance	Test	Design	(ATD;	this
may	 include	 a	 Factory	Acceptance	 Test	Design	 [FATD]	 or	 a
Site	Acceptance	Test	Design	[SATD]).

The	 main	 purpose	 of	 the	 LTD	 is	 to	 collect	 common
information	 in	one	place	 that	would	be	 replicated	 throughout

the	test	procedures.	That	means	that	this	document	could	very
easily	be	merged	with	your	 test	 procedures	document	 (at	 the
cost	of	some	repetition	in	that	document).	This	book	will	take
that	 approach,	 merging	 pertinent	 items	 from	 the	 test	 design
directly	into	the	test	cases	and	test	procedures	documents. 	For
that	 reason	 this	 section	 will	 present	 the	 IEEE	 recommended
outline	without	additional	commentary	and	save	the	details	for
the	STC	and	STP	documents.

1	Introduction

1.1	Document	Identifier

1.2	Scope

1.3	References

2	Details	of	the	Level	Test	Design

2.1	Features	to	Be	Tested

2.2	Approach	Refinements

2.3	Test	Identification

2.4	Feature	Pass/Fail	Criteria

2.5	Test	Deliverables

3	General

3.1	Glossary

3.2	Document	Change	Procedures	and	History

12.3	SOFTWARE	REVIEW	LIST
DOCUMENTATION
When	you	build	the	RTM	starting	with	your	requirements,	one
of	 the	columns	you	usually	create	 is	 the	 test/verification	 type
column.	 Typically,	 a	 software	 requirement	 will	 have	 one	 of

6

two	 associated	 verification	 types:	 T	 (for	 test)	 and	 R	 (for
review). 	 Requirements	 marked	 T	 will	 have	 associated	 test
cases	 and	 test	 procedures	 (see	 “Updating	 the	 Traceability
Matrix	with	Requirement	Information”	on	page	222	for	details
on	 creating	 test	 cases).	 Items	 marked	 R	 will	 need	 to	 be
reviewed.	 This	 section	 describes	 how	 to	 create	 a	 Software
Review	List	(SRL)	document	to	track	the	review	of	the	system
(usually	the	source	code)	to	verify	those	requirements.

The	 SRL	 is	 relatively	 straightforward.	 The	 core	 of	 the
document	 is	 simply	a	 list	 of	 items,	 each	of	which	you	check
off	 after	 you	 review	 it	 and	 are	 confident	 that	 the	 software
properly	supports	the	associated	requirement.

In	theory,	you	could	create	level	review	list	documentation
at	 four	 separate	 levels:	 component,	 component	 integration,
system,	and	acceptance	(as	is	the	case	for	other	Std	829	level
documents).	 In	 reality,	however,	a	 single	SRL	 that	 is	 suitable
for	both	system	(integration)	and	acceptance	use	will	suffice.

NOTE

The	SRL	document	is	not	a	part	of	Std	829	(or	any	other	IEEE	standards
document,	 for	 that	 matter).	 Std	 829	 certainly	 allows	 you	 to	 use	 this
document	as	part	of	your	verification	package,	but	the	format	presented	in
this	section	is	not	from	the	IEEE.

12.3.1	Sample	SRL	Outline
Although	 the	 SRL	 is	 not	 a	 standard	 IEEE	 document,	 the
following	outline	for	it	is	somewhat	similar	to	the	SRS,	STC,
and	STP	recommended	formats	from	the	IEEE:

1	Introduction	(once	per	document)

1.1	Document	Identifier

7

1.2	Document	Change	Procedures	and	History

1.3	Scope

1.4	Intended	Audience

1.5	Definitions,	Acronyms,	and	Abbreviations

1.6	References

1.7	Notation	for	Description

2	General	System	Description

3	Checklist	(one	per	review	item)

3.1	Review	Identifier	(Tag)

3.2	Discussion	of	Item	to	Review

12.3.2	Sample	SRL
This	sample	SRL	continues	to	use	the	DAQ	DIP	switch	project
from	the	previous	chapters.	Specifically,	this	SRL	is	based	on
the	 requirements	 from	 “(Selected)	 DAQ	 Software
Requirements	 (from	 SRS)”	 on	 page	 219	 and	 the	 verification
types	detailed	in	“Requirements	to	Be	Verified	by	Review”	on
page	223.

1	Introduction

This	 Software	Review	List	 provides	 a	 software	 review
checklist	for	those	DAQ	system	requirements	that	are	to
be	verified	by	review.

1.1	Document	Identifier

DAQ_SRL	v1.0

1.2	Document	Change	Procedures	and	History

All	revisions	should	be	noted	here,	by	date	and	version
number.

Mar	23,	2018—Version	1.0

1.3	Scope

This	SRL	deals	with	those	requirements	in	the	DAQ	DIP
switch	initialization	project	for	which	creating	a	formal
test	 procedure	 would	 be	 difficult	 (or	 otherwise
economically	 unviable)	 but	 whose	 correctness	 can	 be
easily	 verified	 by	 reviewing	 the	 source	 code	 and	 the
build	system	for	the	source	code.

1.4	Intended	Audience

The	normal	audience	for	an	SRL:

This	 document	 is	 intended	 primarily	 for	 those
individuals	who	will	be	testing/reviewing	the	DAQ	DIP
switch	 project.	 Project	 management	 and	 the
development	 team	 may	 also	 wish	 to	 review	 this
document.

The	real	audience	for	this	SRL:

This	SRL	 is	 intended	 for	 readers	of	Write	Great	Code,
Volume	3.	It	provides	an	example	SRL	that	can	serve	as
a	template	for	SRLs	they	may	need	to	create.

1.5	Definitions,	Acronyms,	and	Abbreviations

DAQ:	Data	acquisition	system

DIP:	Dual	inline	package

SDD:	Software	Design	Document

SRL:	Software	Review	List

SRS:	Software	Requirements	Specification

1.6	References

SDD:	IEEE	Std	1016-2009

SRS:	IEEE	Std	830-1998

STC/STP:	IEEE	Std	829-2008

1.7	Notation	for	Description

Review	identifiers	(tags)	in	this	document	shall	take	the
form:

DAQ_SR_xxx_yyy_zzz

where	xxx_yyy	is	a	string	of	(possibly	decimal)	numbers
taken	from	the	corresponding	requirement	(for	example,
DAQ_SRS_xxx_yyy)	 and	 zzz	 is	 a	 (possibly	 decimal)
numeric	sequence	that	creates	a	unique	identifier	out	of
the	whole	sequence.	Note	that	zzz	values	in	SRL	tags	are
usually	 numbered	 from	 000	 or	 001	 and	 usually
increment	by	1	for	each	additional	 review	item	sharing
the	same	xxx_yyy	string.

2	General	System	Description

The	 purpose	 behind	 the	 DAQ	 DIP	 switch	 system	 is	 to
initialize	 the	DAQ	system	upon	power-up.	The	DAQ	DIP
switch	 system	 is	 a	 small	 subset	 of	 the	 larger	 Plantation
Productions	 DAQ	 system	 that	 is	 useful	 as	 an	 example
within	this	book.

3	Checklist

Check	 off	 each	 of	 the	 following	 items	 as	 it	 is	 verified
during	the	review	process.

3.1	DAQ_SR_700_000_000

Verify	 code	 is	 written	 for	 a	 Netburner	 MOD54415
evaluation	board.

3.2	DAQ_SR_700_000.01_000.1

Verify	code	is	written	for	μC/OS.

3.3	DAQ_SR_702_001_000

Verify	 that	 software	 creates	 a	 separate	 task	 to	 handle
serial	port	command	processing.

3.4	DAQ_SR_702_002_000

Verify	 that	 serial	 task	 priority	 is	 lower	 than	 USB	 and
Ethernet	task	priorities	(note	that	the	higher	the	priority
number,	the	lower	the	priority).

3.5	DAQ_SR_703_001_000

Same	as	DAQ_SRS_702_001,	but	doesn’t	 start	 an	RS-
232	task	if	DIP	switch	1	is	in	the	OFF	position.

3.6	DAQ_SR_705_001_000

Verify	 that	 software	 creates	 a	 separate	 task	 to	 handle
USB	port	command	processing.

3.7	DAQ_SR_705_002_000

Verify	 that	 a	 USB	 task	 has	 a	 higher	 priority	 than	 the
Ethernet	and	serial	protocol	tasks.

3.8	DAQ_SR_706_001_000

Verify	 that	software	does	not	start	 the	USB	task	 if	DIP
switch	2	is	in	the	OFF	position.

3.9	DAQ_SR_716_001_000

Verify	 that	 the	Ethernet	 listening	 task	 is	 started	only	 if
Ethernet	communications	are	enabled.

3.10	DAQ_SR_716_002_000

Verify	 that	 the	 Ethernet	 listening	 task	 has	 a	 priority
lower	than	the	USB	task	but	higher	than	the	serial
task.

3.11	DAQ_SR_719_000_000

Verify	 that	 software	 sets	 the	 unit	 test	 mode	 value	 to
ON	based	on	the	DIP	switch	7	setting.

3.12	DAQ_SR_720_000_000

Verify	 that	 software	 sets	 the	 unit	 test	 mode	 value	 to
OFF	based	on	the	DIP	switch	7	setting.

3.13	DAQ_SR_723_000_000

Verify	that	the	software	provides	a	function	to	read	the
DIP	switches.

3.14	DAQ_SR_723_000.01_000

Verify	 that	 the	 system	uses	 the	DIP	switch	 reading	 to
initialize	RS-232	(serial),	USB,	Ethernet,	unit	 test
mode,	and	debug	mode	on	startup.

3.15	DAQ_SR_723_000.02_000

Verify	 that	 the	 startup	 code	 stores	 the	 DIP	 switch
reading	for	later	use	by	the	software.

3.16	DAQ_SR_725_000_000

Verify	 that	 the	 command	 processor	 responds	 to	 a
command	when	a	complete	line	of	text	is	received
from	the	USB,	RS-232,	and	Ethernet	ports.

3.17	DAQ_SR_738_001_000

Verify	 that	 the	 system	 starts	 a	 new	 process	 (task)	 to
handle	command	processing	for	each	new	Ethernet
connection.

3.18	DAQ_SR_738_002_000

Verify	 that	 the	 Ethernet	 command	 processing	 tasks
have	a	priority	between	the	Ethernet	listening	task
and	the	USB	command	task.

12.3.3	Adding	SRL	Items	to	the	Traceability	Matrix
Once	 you’ve	 created	 an	 SRL,	 you’ll	 want	 to	 add	 all	 the	 SR
tags	 to	 the	RTM	so	you	can	trace	the	reviewed	items	back	to
the	requirements,	as	well	as	to	everything	else	in	the	RTM.	To
do	so,	just	locate	the	requirement	associated	with	each	review
item	tag	(this	 is	 trivial	 if	you’re	using	 the	 tag	numbering	 this
chapter	recommends;	the	SRS	tag	number	is	incorporated	into
the	SRL	 tag	number)	and	add	 the	SRL	 tag	 to	 the	appropriate
column	 in	 the	 same	 row	 of	 the	 RTM	 containing	 the
requirement.

When	 you’ve	 got	 both	 SRL	 and	 STC	 documents,	 there’s
really	no	need	to	create	separate	columns	in	the	RTM	for	both
types,	 as	 they	 are	 mutually	 exclusive	 and	 the	 tag	 will
differentiate	 them.	 (See	 “A	 Sample	 Software	 Requirements
Specification”	 on	 page	 203	 for	 some	 additional	 commentary
on	this.)

12.4	SOFTWARE	TEST	CASE
DOCUMENTATION
For	each	item	in	the	RTM	whose	requirement	verification	type
is	T,	 you’ll	need	 to	create	 a	 software	 test	 case.	The	Software
Test	Case	(STC)	document	 is	where	you’ll	put	 the	actual	 test
cases.

As	 with	 all	 the	 829	 Std	 level	 documents,	 there	 are	 four
levels	 in	 the	 Level	 Test	 Case	 documentation.	 The	 term
Software	Test	Case	generically	 refers	 to	any	one	of	 these.	As
this	 chapter	 noted	 earlier,	 this	 is	 actually	 a	 set	 of	 test	 cases,
where	 each	 document	 in	 the	 set	 type	 generally	 describes	 the
scope	 or	 extent	 of	 software	 testing	 being	 documented:
Component	 Test	 Cases	 (aka	 Unit	 Test	 Cases,	 or	 UTC),
Component	Integration	Test	Cases	(aka	Integration	Test	Cases,
or	 ITC),	 System	 Test	 Cases	 (aka	 System	 Integration	 Test
Cases,	 or	 SITC),	 and	 Acceptance	 Test	 Cases	 (ATC;	 may
include	 Factory	 Acceptance	 Test	 Cases	 [FATC]	 and	 Site
Acceptance	Test	Cases	[SATC]).

The	STC	document	lists	all	the	individual	test	cases	(tests)
for	 a	 project.	 Here	 is	 the	 Std	 829	 outline	 for	 the	Level	 Test
Case	documentation:

1	Introduction	(once	per	document)

1.1	Document	Identifier

1.2	Scope

1.3	References

1.4	Context

1.5	Notation	for	Description

2	Details	(once	per	test	case)

8

2.1	Test	Case	Identifier

2.2	Objective

2.3	Inputs

2.4	Outcome(s)

2.5	Environmental	Needs

2.6	Special	Procedural	Requirements

2.7	Intercase	Dependencies

3	Global	(once	per	document)

3.1	Glossary

3.2	Document	Change	Procedures	and	History

In	 common	 practice,	 the	 Unit	 Test	 Cases	 and	 the
Integration	 Test	 Cases	 are	 often	 combined	 into	 the	 same
document	 (the	differentiation	between	 the	 two	usually	occurs
at	 the	 level	 of	 test	 procedures).	 You	 will	 typically	 develop
UTCs	and	ITCs	from	your	source	code	and	from	the	SDD	(see
Figure	12-1,	which	is	an	extension	of	Figure	9-1).

Figure	12-1:	Unit	and	Integration	Test	Case	sources

Often,	 the	 UTC	 and	 ITC	 (and	 test	 procedure)	 documents
exist	 as	 software	 rather	 than	 as	 natural-language	 documents.
Using	 an	automated	 test	 procedure,	 a	 piece	 of	 software	 that
runs	all	the	unit	and	integration	tests,	is	a	software	engineering

best	 practice.	 By	 doing	 so,	 you	 can	 dramatically	 reduce	 the
time	 it	 takes	 to	 run	 tests	 as	 well	 as	 the	 errors	 introduced	 in
manually	performed	test	procedures.

Unfortunately,	it	isn’t	possible	to	create	automated	tests	for
every	 test	 case,	 so	you’ll	usually	have	a	UTC/ITC	document
covering	(at	least)	the	test	cases	you	must	perform	manually.

Many	organizations—particularly	those	that	embrace	Agile
development	 models	 and	 test-driven	 development	 (TDD)—
forgo	 formal	 UTC	 and	 ITC	 documents.	 Informally	 written
procedures	 and	 automated	 test	 procedures	 are	 far	 more
common	 in	 these	 situations	 because	 the	 cost	 of	 creating	 and
(especially)	maintaining	the	documentation	quickly	gets	out	of
hand.	 As	 long	 as	 the	 development	 team	 can	 provide	 some
documentation	 that	 they	 are	 performing	 a	 fixed	 set	 of
unit/integration	tests	(that	is,	they’re	not	doing	ad	hoc,	“by	the
seat	 of	 the	 pants”	 tests	 that	 could	 differ	 on	 every	 test	 run),
larger	organizations	tend	to	leave	them	be.

Regardless	of	whether	 it’s	formal,	 informal,	or	automated,
having	 a	 repeatable	 test	 procedure	 is	 key.	 Regression	 tests,
which	check	to	see	if	anything	has	broken,	or	regressed,	since
you’ve	made	changes	to	the	code,	require	a	repeatable	testing
process.	Therefore,	you	need	some	kind	of	test	case	to	ensure
repeatability.

For	unit/integration	testing,	 the	 test	data	you	generate	will
be	a	combination	of	black-box-generated	test	data	and	white-
box-generated	 test	 data.	Black-box	 test	 data	 generally	 comes
from	the	system	requirements	(SyRS	and	SRS);	you	consider
only	 the	 functionality	 of	 the	 system	 (which	 the	 requirements
provide)	 when	 you	 create	 its	 input	 test	 data.	 When	 you
generate	white-box	 test	 data,	 on	 the	 other	 hand,	 you	 analyze

9

the	 software’s	 source	 code.	 For	 example,	 ensuring	 that	 you
execute	 every	 statement	 in	 the	 program	 at	 least	 once	 during
testing—that	 is,	 achieving	 complete	 code	 coverage—requires
careful	analysis	of	 the	source	code	and,	 therefore,	 is	a	white-
box	test-data-generation	technique.

NOTE

Write	Great	Code,	Volume	6:	Testing,	Debugging,	and	Quality	Assurance
will	 consider	 the	 techniques	 for	 generating	white-box	 and	 black-box	 test
data	in	greater	detail.

Once	 you	 get	 to	 the	 level	 of	 a	 system	 integration	 test	 or
(even	 more	 importantly)	 an	 acceptance	 test,	 formal
documentation	 for	 your	 test	 cases	 becomes	 mandatory.	 If
you’re	 creating	 a	 custom	 system	 for	 a	 customer,	 or	 your
software	 is	 subject	 to	 regulatory	or	 legal	 restrictions	 (such	as
life-threatening	 environments	 in	 an	 autonomous	 vehicle),
you’ll	likely	have	to	convince	some	overseer	organization	that
you’ve	put	in	your	best	effort	during	testing	and	prove	that	the
system	meets	 its	 requirements.	This	 is	where	 it’s	 essential	 to
have	 formal	 documentation	 like	 that	 recommended	 by	 Std
829. 	 For	 this	 reason,	most	 SITC	 and	 (most	 certainly)	ATC
documents	 derive	 their	 cases	 directly	 from	 the	 requirements
(see	Figure	12-2).	So,	with	this	motivation	in	hand,	let’s	return
to	 the	 discussion	 of	 the	 Level	 Test	 Case	 document	 (see	 the
outline	at	the	beginning	of	this	section).

10

Figure	12-2:	SITC	and	ATC	derivation

More	 often	 than	 not,	 the	 (F)ATC	 document	 is	 simply	 a
subset	 of	 the	 SITC	 document.	 (If	 you	 have	 FATC
documentation	 and	 SATC	 documentation,	 the	 site	 variant	 is
often	 a	 subset	 of	 the	 FATC	 document.)	 The	 SITC	 document
will	 contain	 test	 cases	 for	 every	 requirement.	 In	 the	 ATC
documents,	 system	 architects	 may	 merge	 or	 eliminate	 test
cases	 that	 are	 nearly	 or	 entirely	 redundant,	 or	 are	 of	 little
interest	to	customers	and	end	users.

12.4.1	Introduction	in	the	STC	Document
The	 introductory	section	of	an	STC	(or	any	Level	Test	Case)
document	should	include	the	following	information.

12.4.1.1	Document	Identifier

The	document	identifier	should	be	some	unique	name/number
and	 should	 include	 the	 issuing	 date,	 author	 identification,
status	 (for	 example,	 draft	 or	 final),	 approval	 signatures,	 and
possibly	 a	 version	 number.	 A	 single	 ID	 name/number	 is
imperative	so	you	can	reference	the	test	case	documentation	in
other	documents	(such	as	the	STP	and	RTM).

12.4.1.2	Scope

This	 section	 summarizes	 the	 software	 system	and	 features	 to
test.

12.4.1.3	References

This	section	should	provide	a	 list	of	all	 reference	documents,
internal	 and	 external,	 associated	 with	 the	 STC.	 Internal
references	 would	 normally	 include	 documents	 such	 as	 the
SyRS,	SRS,	SDD,	RTM,	and	 (if	 it	 exists)	 the	MTP.	External
references	 would	 include	 standards	 like	 IEEE	 Std	 829-2008
and	any	regulatory	or	legal	documents	that	might	apply.

12.4.1.4	Context

In	 this	section	you	provide	any	context	for	 the	 test	cases	 that
doesn’t	 appear	 in	 any	 other	 documentation.	 Examples	might
include	naming	automated	test-generation	software	or	internet-
based	tools	used	to	generate	or	evaluate	test	cases.

12.4.1.5	Notation	for	Description

This	section	should	describe	the	tags	(identifiers)	you’ll	apply
to	 the	 test	 cases.	 For	 example,	 this	 chapter	 uses	 tags	 of	 the
form	proj_STC_xxx_yyy_zzz,	so	this	section	of	the	STC	would
explain	what	this	means	and	how	to	generate	STC	tags.

12.4.2	Details
You	repeat	the	subsections	contained	herein	for	each	test	case
in	the	STC.

12.4.2.1	Test	Case	Identifier

The	test	case	identifier	is	the	tag	associated	with	this	particular
test	 case.	 For	 example,	 this	 book	 uses	 tags	 of	 the	 form
DAQ_STC_002_000_001	where	DAQ	is	the	project	ID	(for	the
DAQ	 DIP	 switch	 project),	 002_000	 is	 from	 the	 SRS
requirement	tag,	and	001	is	a	test-case-specific	value	to	make
this	 tag	 unique	 among	 all	 the	 others.	 The	 Swimming	 Pool

Monitor	(SPM)	project	from	previous	chapters	might	use	tags
like	 POOL_STC_002_001	 within	 the	 STC.	 Std	 829	 doesn’t
require	the	use	of	this	tag	format,	only	that	all	test	case	tags	be
unique.

12.4.2.2	Objective

This	is	a	brief	description	of	the	focus	or	goal	of	this	particular
test	 case.	 (Note	 that	 a	 set	 of	 test	 cases	 can	 have	 the	 same
objective,	 in	which	case	 this	 field	could	simply	 reference	 the
objectives	in	a	different	test	case.)	This	field	is	a	good	place	to
put	risk	assessment	and	integrity	level	information,	if	relevant.

12.4.2.3	Input(s)

This	section	lists	all	inputs	and	their	relationships	(in	terms	of
timing,	 ordering,	 and	 the	 like)	 that	 a	 tester	 needs	 in	 order	 to
perform	this	test	case.	Some	inputs	might	be	exact,	and	some
may	 be	 approximate,	 in	 which	 case	 you	 must	 provide
tolerances	 for	 the	 input	 data.	 If	 the	 input	 set	 is	 large,	 this
section	might	simply	reference	an	input	file,	database,	or	some
other	input	stream	that	will	provide	the	test	data.

12.4.2.4	Outcome(s)

This	section	lists	all	expected	output	data	values	and	behaviors
such	 as	 response	 time,	 timing	 relationships,	 and	 order	 of
output	 data.	 The	 test	 case	 should	 provide	 exact	 output	 data
values	 if	 possible;	 if	 you	 can	 provide	 only	 approximate	 data
values,	 the	test	case	must	also	supply	tolerances.	If	an	output
stream	 is	 large,	 then	 this	 section	 can	 reference	 externally
supplied	files	or	databases.

If	 the	 test	 is	 successful	 by	 virtue	 of	 the	 fact	 that	 it	 runs
without	crashing—that	is,	self-validating—then	this	section	is

11

unnecessary	in	the	test	case.

12.4.2.5	Environmental	Needs

This	section	describes	any	preexisting	software	or	data	such	as
a	 known	 database	 that	 is	 needed	 for	 the	 test.	 It	 could	 also
describe	any	internet	sites	referenced	by	their	URLs	that	must
be	 active	 in	 order	 to	 execute	 the	 test	 case.	 This	 could	 also
include	 any	 special	 power	 requirements,	 such	 as	 requiring	 a
UPS	 to	 be	 fully	 charged	 before	 testing	 power	 failures,	 or	 it
could	 include	 other	 conditions	 such	 as	 the	 swimming	 pool
being	 filled	 with	 water	 before	 running	 tests	 on	 the	 SPM
system.

12.4.2.5.1	Hardware	Environmental	Needs

This	section	 lists	any	hardware	needed	 to	 run	 the	 test	and
specifies	its	configuration	settings.	It	could	also	specify	any
special	 hardware	 such	 as	 a	 test	 fixture	 for	 the	 test
operation.	For	example,	a	test	fixture	for	the	SPM	might	be
a	five-gallon	bucket	filled	with	water	and	a	hose	connected
to	the	water	feed	valve	that	is	part	of	the	SPM.

12.4.2.5.2	Software	Environmental	Needs

This	 section	 lists	 all	 software	 (and	 its
versions/configurations)	 that	 would	 be	 needed	 to	 run	 the
test.	 This	 could	 include	 operating	 systems/device	 drivers,
dynamically	 linked	 libraries,	 simulators,	 code	 scaffolding
(as	in	code	drivers), 	and	test	tools.

12.4.2.5.3	Other	Environmental	Needs

This	 is	 a	 catch-all	 section	 that	 lets	 you	 add	 information
such	as	configuration	specifics	or	anything	else	you	feel	the
need	to	document.	For	example,	for	tests	at	a	specific	date

12

or	 time,	 you’d	 need	 to	 consider	 Daylight	 Saving	 Time
changes	where	a	daily	 report	may	have	23	or	25	hours	 to
report	on,	and	so	on.

12.4.2.6	Special	Procedural	Requirements

This	section	lists	any	exceptional	conditions	or	constraints	on
the	test	case.	This	could	also	include	any	special	preconditions
or	postconditions.	For	example,	one	precondition	on	the	SPM
when	testing	to	see	if	the	software	properly	responds	to	a	low
pool	 condition	 is	 that	 the	water	 level	 is	 below	 all	 three	 low-
pool	sensors.	This	should	also	list	any	postconditions,	such	as
the	 bucket	 must	 not	 have	 overfilled.	 If	 you’re	 using	 an
automated	 test	 procedure,	 this	 is	 a	 good	 place	 to	 specify	 the
particular	tool	to	use	and	how	to	employ	it	for	the	test.

Note	that	this	section	should	not	duplicate	steps	that	appear
in	 the	 test	 procedure.	 Instead,	 it	 should	 provide	 guidance	 for
properly	 writing	 the	 steps	 in	 the	 test	 procedure	 that	 will
perform	this	test	case.

12.4.2.7	Intercase	Dependencies

This	 section	 should	 list	 (by	 tag	 identifier)	 any	 test	 cases	 that
must	be	executed	immediately	prior	to	the	current	one,	so	that
appropriate	 system	 state	 conditions	 are	 in	 place	 before	 the
current	 test	 is	 executed.	Std	829	 suggests	 that	by	 sequencing
the	test	cases	in	the	order	in	which	they	must	execute,	you	can
reduce	 the	 need	 to	 state	 intercase	 dependencies.	 (Obviously,
such	dependencies	should	be	clearly	documented.)	In	general,
however,	 you	 shouldn’t	 rely	 on	 such	 implicit	 dependency
organization	 and	 should	 explicitly	 document	 any
dependencies.	In	the	STP,	though,	you	can	rely	on	the	ordering
of	 test	 steps.	Having	already	clearly	delineated	 the	 execution

order	 in	 the	STC	will	help	reduce	errors	when	you	create	 the
STP.

12.4.2.8	Pass/Fail	Criteria

In	Std	829,	the	IEEE	recommends	putting	the	pass/fail	criteria
in	 the	Level	Test	Design	documentation;	 they	 are	 not	 part	 of
the	Std	 829	STC.	However,	 it’s	 not	 a	 bad	 idea,	 especially	 in
cases	where	you	don’t	have	an	LTD	in	your	documentation	set,
to	include	pass/fail	criteria	for	each	test	case.

Note	 that	 if	 the	 pass/fail	 criterion	 is	 simply	 “All	 system
outputs	must	match	that	specified	by	the	Outcome(s)	section,”
then	 you	 can	 probably	 dispense	 with	 this	 section,	 but	 it
wouldn’t	 hurt	 to	 explicitly	 state	 this	 default	 condition	 in	 the
introduction	section.

12.4.3	General
This	section	provides	a	brief	introduction	and	discussion	of	the
Glossary	 and	 Document	 Change	 Procedures	 and	 History
sections.

12.4.3.1	Glossary

The	Glossary	section	provides	an	alphabetical	list	of	all	terms
used	 in	 the	 STC.	 It	 should	 include	 all	 acronyms	 along	 with
their	definitions.	Although	Std	829	lists	the	glossary	at	the	end
of	 the	 outline,	 it	 usually	 appears	 near	 the	 beginning	 of	 the
document,	close	to	the	References	section.

12.4.3.2	Document	Change	Procedures	and	History

This	section	describes	the	process	for	creating,	implementing,
and	 approving	 changes	 to	 the	 STC.	 This	 could	 be	 nothing
more	 than	 a	 reference	 to	 a	 Configuration	Management	 Plan

document	 that	describes	 the	document	change	procedures	 for
all	 project	 documents	 or	 for	 all	 documents	 within	 an
organization.	 The	 change	 history	 should	 contain	 a
chronological	list	of	the	following	information:

Document	 ID	 (each	 revision	 should	 have	 a	 unique	 ID,	which	 can	 simply	 be	 a
date	affixed	to	the	document	ID)

Version	number	 (which	you	 should	number	 sequentially,	 starting	with	 the	 first
approved	version	of	the	STC)

A	description	of	the	changes	made	to	the	STC	for	the	current	version

Authorship	and	role

Often,	 the	 change	 history	 appears	 in	 the	 STC	 near	 the
beginning	 of	 the	 document,	 or	 just	 after	 the	 cover	 page	 and
near	the	document	identifier.

12.4.4	A	Sample	Software	Test	Case	Document
Continuing	with	the	theme	of	the	past	couple	of	chapters,	this
chapter	 will	 provide	 a	 sample	 STC	 for	 the	 Plantation
Productions	 DAQ	 system	 DIP	 switch	 initialization	 design.
This	STC	will	serve	as	an	acceptance	test	(pure	functional	test
cases)	built	exclusively	from	the	project	SRS	(see	“(Selected)
DAQ	Software	Requirements	(from	SRS)”	on	page	219).	The
test	 cases	 appearing	 in	 this	 sample	 STC	 are	 all	 the
requirements	 from	 this	 project	 SRS	 that	 have	 not	 been
included	in	“Requirements	to	Be	Verified	by	Review”	on	page
223	 where	 the	 “verify	 by	 review”	 requirements	 are	 listed.
Note,	 however,	 that	 for	 editorial/space	 reasons,	 this	 example
will	 not	 provide	 test	 cases	 for	 every	 “verify	 by	 review”	 test
requirement	in	that	project	SRS.

Term Definition

DAQ Data	acquisition	system

13

SBC Single-board	computer

Software	Design	
Description	(SDD)

Documentation	of	the	design	of	the	software	system	
(IEEE	Std	1016-2009)—that	is,	this	document.

Software	
Requirements	
Specification	(SRS)

Documentation	of	the	essential	requirements	
(functions,	performance,	design	constraints,	and	
attributes)	of	the	software	and	its	external	interfaces	
(IEEE	Std	610.12-1990).

System	
Requirements	
Specification	(SyRS)

A	structured	collection	of	information	that	embodies	
the	requirements	of	the	system	(IEEE	Std	1233-1998).	
A	specification	that	documents	the	requirements	to	
establish	a	design	basis	and	the	conceptual	design	for	a	
system	or	subsystem.

Software	Test	Cases	
(STC)

Documentation	that	describes	test	cases	(inputs	and	
outcomes)	to	verify	correct	operation	of	the	software	
based	on	various	design	concerns/requirements	(IEEE	
Std	829-2009).

Software	Test	
Procedures	(STP)

Documentation	that	describes	the	step-by-step	
procedure	to	execute	a	set	of	test	cases	to	verify	
correct	operation	of	the	software	based	on	various	
design	concerns/requirements	(IEEE	Std	829-2009).

1	Introduction

Software	Test	Cases	for	DAQ	DIP	Switch	Project

1.1	Document	Identifier	(and	Change	History)

Mar	22,	2018:	DAQ_STC	v1.0;	Author:	Randall	Hyde

1.2	Scope

This	document	describes	only	the	DIP	switch	test	cases
in	the	DAQ	system	(for	space/editorial	reasons).	For	the
full	 software	 design	 description,	 please	 see

http://www.plantation-
productions.com/Electronics/DAQ/DAQ.html.

1.3	Glossary,	Acronyms,	and	Abbreviations

NOTE

This	 is	 a	 very	 simple	 and	 short	 example	 to	 keep	 the	 book’s	 page	 count
down.	Please	don’t	 use	 this	 as	boilerplate;	 you	should	diligently	 pick	out
terms	 and	 abbreviations	 that	 your	 document	 uses	 and	 list	 them	 in	 this
section.

1.4	References

Reference Discussion

DAQ	STC An	example	of	a	full	STC	for	the	Plantation	
Productions	DAQ	system	can	be	found	at	
http://www.plantation-
productions.com/Electronics/DAQ/DAQ.html.

IEEE	Std	830-1998 SRS	documentation	standard

IEEE	Std	829-2008 STP	documentation	standard

IEEE	Std	1012-1998 Software	verification	and	validation	standard

IEEE	Std	1016-2009 SDD	documentation	standard

IEEE	Std	1233-1998 SyRS	documentation	standard

1.5	Context

The	 DAQ	 system	 of	 Plantation	 Productions,	 Inc.,
fulfilled	 a	 need	 for	 a	 well-documented	 digital	 data
acquisition	 and	 control	 system	 that	 engineers	 could
design	 into	 safety-critical	 systems	 such	 as	 nuclear

http://www.plantation-productions.com/Electronics/DAQ/DAQ.html
http://www.plantation-productions.com/Electronics/DAQ/DAQ.html

research	 reactors.	 Although	 there	 are	 many	 COTS
systems 	that	could	be	used,	they	suffer	from	a	couple
of	 major	 drawbacks,	 including:	 they	 are	 usually
proprietary,	thus	being	difficult	to	modify	or	repair	after
purchase;	 they	 are	 often	 obsolete	within	 5	 to	 10	 years
without	a	way	to	repair	or	replace	them;	and	they	rarely
have	 full	 support	 documentation	 (for	 example,	 SRS,
SDD,	 STC,	 and	 STP)	 that	 an	 engineer	 can	 use	 to
validate	and	verify	the	system.

The	DAQ	system	overcomes	this	problem	by	providing
an	open	hardware	 and	open	 source	 set	 of	 designs	with
full	design	documentation	that	 is	validated	and	verified
for	safety	systems.

Although	 originally	 designed	 for	 a	 nuclear	 research
reactor,	the	DAQ	system	is	useful	anywhere	you	need	an
Ethernet-based	control	 system	supporting	digital	 (TTL-
level)	 I/O,	 optically	 isolated	 digital	 inputs,	mechanical
or	 solid-state	 relay	 digital	 outputs,	 (isolated	 and
conditioned)	 analog	 inputs	 (for	 example,	 ±10v	 and	 4-
20mA),	and	(conditioned)	analog	outputs	(±10v).

1.6	Notation	for	Description

Test	 case	 identifiers	 (tags)	 in	 this	 document	 shall	 take
the	form:

DAQ_STC_xxx_yyy_zzz

where	xxx_yyy	is	a	string	of	(possibly	decimal)	numbers
taken	from	the	corresponding	requirement	(for	example,
DAQ_SRS_xxx_yyy)	 and	 zzz	 is	 a	 (possibly	 decimal)

14

numeric	sequence	that	creates	a	unique	identifier	out	of
the	whole	sequence.	Note	that	zzz	values	in	STC	tags	are
usually	 numbered	 from	 000	 or	 001	 and	 usually
increment	by	1	for	each	additional	test	case	item	sharing
the	same	xxx_yyy	string.

2	Details	(Test	Cases)

2.1	DAQ_STC_701_000_000

Objective:	Test	command	acceptance	across	RS-232.

Inputs:

1.	DIP	switch	1	set	to	ON	position.

2.	Type	help	command	on	serial	terminal.

Outcome:

1.	Screen	displays	help	message.

Environmental	Needs:

Hardware	 Functioning	 (booted)	 DAQ	 system,	 PC
with	RS-232	port	connected	to	DAQ

Software	Latest	version	of	DAQ	firmware	installed

External	Serial	 terminal	emulator	program	running
on	PC

Special	Procedural	Requirements:

[None]

Intercase	Dependencies:

[None]

2.2	DAQ_STC_702_000_000

Objective:	Test	command	acceptance	with	DIP	switch	1
ON.

Inputs:

1.	DIP	switch	1	set	to	ON	position.

2.	Type	help	command	on	serial	terminal.

Outcome:

1.	Screen	displays	help	message.

Environmental	Needs:

Hardware	 Functioning	 (booted)	 DAQ	 system,	 PC
with	RS-232	port	connected	to	DAQ

Software	Latest	version	of	DAQ	firmware	installed

External	Serial	 terminal	emulator	program	running
on	PC

Special	Procedural	Requirements:

[None]

Intercase	Dependencies:

Same	test	as	DAQ_STC_701_000_000

2.3	DAQ_STC_703_000_000

Objective:	 Test	 command	 rejection	 with	 DIP	 switch	 1
OFF.

Inputs:

1.	DIP	switch	1	set	to	OFF	position.

2.	Type	help	command	on	serial	terminal.

Outcome:

1.	 System	 ignores	 command,	 no	 response	 on	 terminal
program.

Environmental	Needs:

Hardware	 Functioning	 (booted)	 DAQ	 system,	 PC
with	RS-232	port	connected	to	DAQ

Software	Latest	version	of	DAQ	firmware	installed

External	Serial	 terminal	emulator	program	running
on	PC

Special	Procedural	Requirements:

[None]

Intercase	Dependencies:

[None]

NOTE

For	space/editorial	reasons,	this	sample	has	deleted	several	test	cases	at
this	 point	 because	 they	 are	 very	 similar	 in	 content	 to	 the	 previous	 test
cases.

2.4	DAQ_STC_709_000_000

Objective:	Test	Ethernet	address	with	both	DIP	switches

5	and	6	OFF.

Inputs:

1.	DIP	switch	3	set	to	ON	position	(4	=	don’t	care).

2.	DIP	switch	5	set	to	OFF	position.

3.	DIP	switch	6	set	to	OFF	position

4.	 Using	 an	 Ethernet	 terminal	 program,	 attempt
connection	 to	 IP	 address	 192.168.2.70,	 port	 20560
(0x5050).

5.	Issue	help	command.

Outcome:

1.	Ethernet	terminal	connects	to	DAQ	system.

2.	Terminal	program	display	DAQ	help	message.

Environmental	Needs:

Hardware	 Functioning	 (booted)	 DAQ	 system,	 PC
with	Ethernet	port	connected	to	DAQ

Software	Latest	version	of	DAQ	firmware	installed

External	 Ethernet	 terminal	 emulator	 program
running	on	PC

Special	Procedural	Requirements:

[None]

Intercase	Dependencies:

Cases	 DAQ_STC_708_000_000	 to
DAQ_STC_718_001_000	 are	 closely	 related	 and
should	be	performed	together.

NOTE

For	space/editorial	reasons,	this	sample	has	deleted	several	test	cases	at
this	 point	 because	 they	 are	 very	 similar	 in	 content	 to	 the	 previous	 test
cases.

2.6	DAQ_STC_710_000_000

Objective:	 Test	 Ethernet	 address	 with	 DIP	 switches	 5
ON	and	6	OFF.

Inputs:

1.	DIP	switch	3	set	to	ON	position	(4	=	don’t	care).

2.	DIP	switch	5	set	to	ON	position.

3.	DIP	switch	6	set	to	OFF	position.

4.	 Using	 an	 Ethernet	 terminal	 program,	 attempt
connection	 to	 IP	 address	 192.168.2.71,	 port	 20560
(0x5050).

5.	Issue	help	command.

Outcome:

1.	Ethernet	terminal	connects	to	DAQ	system.

2.	Terminal	program	displays	DAQ	help	message.

Environmental	Needs:

Hardware	 Functioning	 (booted)	 DAQ	 system,	 PC
with	Ethernet	port	connected	to	DAQ

Software	Latest	version	of	DAQ	firmware	installed

External	 Ethernet	 terminal	 emulator	 program
running	on	PC

Special	Procedural	Requirements:

[None]

Intercase	Dependencies:

Cases	 DAQ_STC_708_000_000	 to
DAQ_STC_718_001_000	 are	 closely	 related	 and
should	be	performed	together.

2.7	DAQ_STC_711_000_000

Objective:	Test	Ethernet	address	with	DIP	switch	5	OFF
and	6	ON.

Inputs:

1.	DIP	switch	3	set	to	ON	position	(4	=	don’t	care).

2.	DIP	switch	5	set	to	OFF	position.

3.	DIP	switch	6	set	to	ON	position.

4.	 Using	 an	 Ethernet	 terminal	 program,	 attempt
connection	 to	 IP	 address	 192.168.2.72,	 port	 20560
(0x5050).

5.	Issue	help	command.

Outcome:

1.	Ethernet	terminal	connects	to	DAQ	system.

2.	Terminal	program	displays	DAQ	help	message.

Environmental	Needs:

Hardware	 Functioning	 (booted)	 DAQ	 system,	 PC
with	Ethernet	port	connected	to	DAQ

Software	Latest	version	of	DAQ	firmware	installed

External	 Ethernet	 terminal	 emulator	 program
running	on	PC

Special	Procedural	Requirements:

[None]

Intercase	Dependencies:

Cases	 DAQ_STC_708_000_000	 to
DAQ_STC_718_001_000	 are	 closely	 related	 and
should	be	performed	together.

2.8	DAQ_STC_712_000_000

Objective:	Test	Ethernet	address	with	both	DIP	switches
5	and	6	ON.

Inputs:

1.	DIP	switch	3	set	to	ON	position	(4	=	don’t	care).

2.	DIP	switch	5	set	to	ON	position.

3.	DIP	switch	6	set	to	ON	position.

4.	 Using	 an	 Ethernet	 terminal	 program,	 attempt
connection	 to	 IP	 address	 192.168.2.73,	 port	 20560
(0x5050).

5.	Issue	help	command.

Outcome:

1.	Ethernet	terminal	connects	to	DAQ	system.

2.	Terminal	program	displays	DAQ	help	message.

Environmental	Needs:

Hardware	 Functioning	 (booted)	 DAQ	 system,	 PC
with	Ethernet	port	connected	to	DAQ

Software	Latest	version	of	DAQ	firmware	installed

External	 Ethernet	 terminal	 emulator	 program
running	on	PC

Special	Procedural	Requirements:

[None]

Intercase	Dependencies:

Cases	 DAQ_STC_708_000_000	 to
DAQ_STC_718_001_000	 are	 closely	 related	 and
should	be	performed	together.

NOTE

For	space/editorial	reasons,	this	sample	has	deleted	several	test	cases	at

this	 point	 because	 they	 are	 very	 similar	 in	 content	 to	 the	 previous	 test
cases.

2.9	DAQ_STC_726_000_000

Objective:	Test	command	acceptance	from	RS-232	port.

Inputs:

1.	DIP	switch	1	set	to	ON	position.

2.	Type	help	command	on	serial	terminal.

Outcome:

1.	Screen	displays	help	message.

Environmental	Needs:

Hardware	 Functioning	 (booted)	 DAQ	 system,	 PC
with	RS-232	port	connected	to	DAQ

Software	Latest	version	of	DAQ	firmware	installed

External	Serial	 terminal	emulator	program	running
on	PC

Special	Procedural	Requirements:

[None]

Intercase	Dependencies:

Same	test	as	DAQ_STC_701_000_000

3	Test	Case	Document	Change	Procedure

When	making	any	modifications	to	this	STC,	the	author	of
the	 change	must	make	 a	 new	 entry	 in	 section	 1.1	 of	 this

STC	document,	listing	(at	a	minimum)	the	date,	document
ID	(DAQ_STC),	version	number,	and	authorship.

12.4.5	Updating	the	RTM	with	STC	Information
Due	 to	 software	 review	 and	 software	 test	 case	 (and
analysis/other)	verification	methods	being	mutually	exclusive,
you	 need	 only	 a	 single	 column	 in	 the	 RTM	 to	 associate	 the
tags	for	these	objects	with	other	items	in	the	RTM.	In	the	RTM
of	 the	 official	 DAQ	 system	 (which	 has	 only	 test	 cases	 and
software	 review	 items),	 the	 label	 for	 this	 column	 is	 simply
Software	 Test/Review	 Cases.	 When	 you	 add	 both
DAQ_SR_xxx_yyy_zzz	 and	 DAQ_STC_xxx_yyy_zzz	 items	 to
this	 column,	 there	 is	 never	 any	 ambiguity	 as	 the	 tag	 clearly
identifies	which	verification	type	you’re	using.	Of	course,	this
assumes	 that	 you’re	 using	 the	 tag	 identifier	 format	 that	 this
chapter	suggests.	You	could	use	your	own	tag	format	that	also
differentiates	review	and	test	case	items	in	the	tag	name.

If	you’re	using	this	chapter’s	STC	tag	format,	locating	the
row	in	 the	RTM	where	you	want	 to	place	 the	 test	case	 tag	 is
very	 easy.	 Just	 locate	 the	 requirement	 with	 the	 tag
DAQ_SRS_xxx_yyy	 and	 add	 the	 STC	 tag	 to	 the	 appropriate
column	in	the	same	row.	If	you’re	using	a	different	tag	format
that	doesn’t	include	requirement	traceability	directly	in	the	tag
name,	 you’ll	 have	 to	 determine	 the	 association	 manually
(hopefully	it’s	contained	within	the	test	case).

12.5	SOFTWARE	TEST	PROCEDURE
DOCUMENTATION
The	 Software	 Test	 Procedure	 (STP)	 specifies	 the	 steps	 for

executing	a	collection	of	test	cases,	which,	in	turn,	evaluate	the
quality	of	 the	 software	 system.	 In	one	 respect,	 the	STP	 is	 an
optional	 document;	 after	 all,	 if	 you	 execute	 all	 the	 test	 cases
(in	an	appropriate	order),	you	will	fully	test	all	the	test	cases.
The	 purpose	 behind	 an	 STP	 is	 to	 streamline	 the	 testing
process.	More	often	than	not,	test	cases	overlap.	Although	they
test	different	requirements,	 it	may	turn	out	 that	 the	 inputs	for
multiple	 test	 cases	 are	 identical.	 In	 some	 cases,	 even	 the
outcomes	 are	 identical.	 By	 merging	 such	 test	 cases	 into	 a
single	 procedure,	 you	 can	 run	 a	 single	 test	 sequence	 that
handles	all	test	cases.

Another	reason	for	merging	test	cases	into	a	single	STP	is
the	convenience	of	a	common	setup.	Many	 test	cases	 require
(possibly	 elaborate)	 setup	 to	 ensure	 certain	 environmental
conditions	 prior	 to	 execution.	More	 often	 than	 not,	 multiple
test	 cases	 require	 the	 same	setup	prior	 to	 their	 execution.	By
merging	 those	 test	 cases	 into	 a	 single	 procedure,	 you	 can
perform	the	setup	once	for	the	entire	set	rather	than	repeating
it	for	each	and	every	test	case.

Finally,	some	test	cases	may	have	dependencies	that	require
other	test	cases	to	execute	prior	to	their	execution.	By	putting
these	test	cases	in	a	test	procedure,	you	can	ensure	that	the	test
operation	satisfies	the	dependencies.

Std	829	defines	a	set	of	Level	Test	Procedures	(LTPr).	As
with	all	of	 the	 level	 test	documents	 in	Std	829	 there	are	 four
variants	of	the	LTPr,	each	variant	being	a	document	generally
describing	 the	 scope	 or	 extent	 of	 software	 testing	 being
documented:	 Component	 Test	 Procedures	 (aka	 Unit	 Test
Procedures,	or	UTP),	Component	 Integration	Test	Procedures
(aka	 Integration	 Test	 Procedures,	 or	 ITP),	 System	 Test

Procedures	(aka	System	Integration	Test	Procedures,	or	SITP),
and	 Acceptance	 Test	 Procedures	 (ATP;	may	 include	 Factory
Acceptance	 Test	 Procedures	 [FATP]	 or	 Site	 Acceptance	 Test
Procedures	[SATP]).

UTPs	and	ITPs	are	often	automated	test	procedures	or	less
formal	 documents,	 similar	 to	 their	 test	 case	 document
counterparts;	 see	 “Software	 Test	 Case	 Documentation”	 on
page	274	for	an	in-depth	discussion.

If	you	look	back	at	Figures	12-1	and	12-2,	you	can	see	that
the	 STP	 (and	 all	 LTPrs)	 are	 derived	 directly	 from	 the	 STC
(LTC)	documentation.	Figure	12-1	applies	 to	UTPs	and	ITPs.
Figure	 12-2	 applies	 to	 SITPs	 and	 ATPs	 (noting	 that	 ATPs
derive	 from	 test	 cases	 that	 come	 strictly	 from	 SyRS/SRS
requirements,	not	from	SDD	elements).

As	is	 true	for	 test	case	documentation,	ATPs	are	usually	a
subset	of	 the	SITPs	 to	 the	customer	or	end	user.	Likewise,	 if
there	 are	 FATP	 and	 SATP	 documents,	 the	 SATP	 is	 often	 a
subset	 of	 the	 FATP,	 with	 further	 refinement	 to	 end-user
requirements.

12.5.1	The	IEEE	Std	829-2009	Software	Test
Procedure
The	outline	for	the	Std	829	STP	is	as	follows:

1	Introduction

1.1	Document	Identifier

1.2	Scope

1.3	References

1.4	Relationship	to	Other	Documents

2	Details

15

16

2.1	Inputs,	Outputs,	and	Special	Requirements

2.2	 Ordered	 Description	 of	 the	 Steps	 to	 Be	 Taken	 to
Execute	the	Test	Cases

3	General

3.1	Glossary

3.2	Document	Change	Procedures	and	History

12.5.2	Extended	Outline	for	Software	Test	Procedure
As	 is	 typical	 for	 IEEE	 standards,	 you’re	 allowed	 to	 augment
this	outline	(adding,	deleting,	moving,	and	editing	items,	with
appropriate	 justification).	 This	 flexibility	 is	 important	 in	 this
particular	 case	 because	 there	 are	 a	 couple	 of	 things	 missing
from	this	outline.

First	 of	 all,	 the	 introduction	 is	 missing	 Notation	 for
Descriptions,	 which	 appears	 in	 the	 STC	 outline	 (“Software
Test	Case	Documentation”	on	page	274). 	Perhaps	the	authors
of	Std	829	were	expecting	very	few	test	procedures	to	appear
in	Section	2	(“Details”)	of	the	document.	In	practice,	however,
it’s	common	to	have	a	large	number	of	test	procedures.	There
are	 some	 very	 good	 reasons	 for	 breaking	 a	 single	 large	 test
procedure	into	a	series	of	smaller	ones:

Testing	can	take	place	in	parallel.	By	assigning	(independent)	test	procedures	to
multiple	test	teams,	you	can	complete	the	testing	faster.

Certain	 tests	 may	 tie	 up	 resources	 (for	 example,	 test	 equipment	 such	 as
oscilloscopes,	logic	analyzers,	test	fixtures,	and	signal	generators).	By	breaking
up	a	large	test	procedure	into	smaller	test	procedures,	you	may	be	able	to	limit
the	time	a	testing	team	needs	access	to	certain	resources.

It’s	nice	to	be	able	to	complete	a	test	procedure	within	a	single	working	day	(or
even	 between	 breaks	 in	 the	 day)	 so	 testers	 don’t	 lose	 focus	 when	 performing
tests.

Organizing	test	procedures	by	their	related	activities	(and	by	required	setup	prior
to	 those	 activities)	 can	 streamline	 test	 procedures,	 reducing	 steps	 and	making

17

them	more	efficient	to	run.

Many	 organizations	 require	 a	 testing	 team	 to	 rerun	 a	 test	 procedure	 from	 the
beginning	 (a	 regression	 test)	 if	 any	 part	 of	 that	 test	 fails.	 Breaking	 a	 test
procedure	into	smaller	pieces	makes	rerunning	test	procedures	far	less	expensive.

To	be	able	to	trace	these	test	procedures	back	to	the	STC,	to
the	SRS,	and	to	other	documentation	in	the	RTM,	you’re	going
to	need	test	procedure	identifiers	(tags).	Therefore,	you	should
have	a	section	 to	describe	 the	notation	you’re	using	for	 these
tags.

Of	course,	the	second	thing	missing	from	the	IEEE	outline
is	an	entry	 for	 the	 test	procedure	 identification	 in	 the	Details
section.	To	make	 traceability	 easier,	 it	would	 also	 be	 nice	 to
have	 a	 section	 in	 each	 test	 procedure	 where	 you	 list	 the
associated	test	cases	it	covers.	Finally,	for	my	own	purposes,	I
like	 to	 include	 the	 following	 information	 with	 each	 test
procedure:

Brief	description

Tag/identification

Purpose

Traceability	(test	cases	covered)

Pass/fail	criteria	(as	this	may	change	with	each	procedure)

Any	special	requirements	(for	example,	environmental)	required	to	run	this	test
procedure;	 this	 could	 include	 input/output	 files	 that	 must	 exist,	 among	 other
things

All	setup	required	prior	to	running	the	test	procedure

Software	version	number	when	executing	the	test	procedure

Procedure	steps	to	execute	the	test	procedure

Incorporating	these	items	produces	the	following	extended
outline	 for	 an	 arbitrary	STP	 suitable	 for	 an	SIT,	AT,	FAT,	 or
SAT:

1	Table	of	Contents

2	Introduction

2.1	Document	Identifier	and	Change	History	(moved)

2.2	Scope

2.3	Glossary,	Acronyms,	and	Abbreviations	(moved)

2.4	References

2.5	Notation	for	Descriptions

2.6	Relationship	to	Other	Documents	(removed)

2.7	Instructions	for	Running	the	Tests	(added)

3	Test	Procedures	(name	changed	from	Details)

3.1	Brief	Description	(simple	phrase),	Procedure	#1

3.1.1	Procedure	Identification	(Tag)

3.1.2	Purpose

3.1.3	List	of	Test	Cases	Covered	by	This	Procedure

3.1.4	Special	Requirements

3.1.5	Setup	Required	Prior	to	Running	Procedure

3.1.6	Software	Version	Number	for	This	Execution

3.1.7	Detailed	Steps	to	Run	the	Procedure

3.1.8	Sign-off	on	Test	Procedure

3.2	Brief	Description	(simple	phrase),	Procedure	#2

(Same	subsections	as	previous	section)

.	.	.

3.n	Brief	Description	(simple	phrase),	Procedure	#n

(Same	subsections	as	previous	sections)

4	General

4.1	Document	Change	Procedures

4.2	Attachments	and	Appendixes

5	Index

12.5.3	Introduction	in	the	STP	Document
The	following	subsections	describe	the	components	of	the	STP
introduction.

12.5.3.1	Document	Identifier	and	Change	History

The	 document	 identifier	 should	 be	 some	 (organization-wide)
unique	 name;	 this	 will	 typically	 include	 some	 project
designation	such	as	DAQ_STP,	a	creation/modification	date,	a
version	number,	and	authorship.	A	list	of	these	identifiers	(one
for	 each	 revision	 to	 the	 document)	 would	 form	 the	 change
history.

12.5.3.2	Scope

The	scope	here	has	largely	the	same	definition	as	that	used	for
the	 STC	 (see	 “Software	 Test	 Case	 Documentation”	 on	 page
274).	Std	829	suggests	describing	the	scope	of	the	STP	based
on	 its	 focus	 and	 relationship	 to	 the	 STC	 and	 other	 test
documentation.	More	often	than	not,	you	can	get	away	with	a
simple	reference	to	the	Scope	section	in	the	STC.

12.5.3.3	References

As	 usual,	 provide	 a	 link	 to	 any	 external	 documents	 (such	 as
the	STC)	 that	 are	 relevant	 to	 the	STP.	Std	 829	 also	 suggests
including	 links	 to	 the	 individual	 test	 cases	 covered	 by	 this
procedure.	 That,	 however,	 would	 be	 meaningful	 only	 if	 the
STP	 contained	 just	 a	 few	 test	 procedures.	 In	 this	 revised
format,	the	STP	will	attach	the	test	case	links	to	the	individual
test	procedures	in	Section	3	(“Test	Procedures”).	If	you	have	a
very	 large	 system	 consisting	 of	 multiple,	 independent

applications,	you	will	probably	have	separate	STPs	for	each	of
those	applications.	You	would	want	 to	provide	 links	 to	 those
other	STPs	in	this	section	of	the	STP	document.

12.5.3.4	Notation	for	Descriptions

As	in	the	STC,	you	would	describe	your	STP	tag	format	here.
This	 book	 recommends	 using	 STP	 tags	 of	 the	 form
proj_STP_xxx,	where	proj	is	some	project-specific	ID	(such	as
DAQ	 or	POOL)	 and	 xxx	 is	 some	 unique	 (possibly	 decimal)
numeric	sequence.

Note	that	there	is	a	many-to-one	relationship	from	STC	test
cases	 to	 STP	 test	 procedures.	 Therefore,	 you	 cannot	 easily
embed	 traceability	 information	 into	 the	 STP	 tags	 (there’s	 a
similar	 situation	 with	 SDD	 tags;	 see	 “SDD	 Traceability	 and
Tags”	on	page	245).	This	 is	why	 it’s	 important	 to	 include	 the
related	 STC	 tags	 with	 each	 test	 procedure,	 to	 facilitate
traceability	back	to	the	corresponding	test	cases.

12.5.3.5	Relationship	to	Other	Documents

In	the	modified	variant	of	the	STP,	I’ve	removed	this	section.
Std	 829	 suggests	 using	 it	 to	 describe	 the	 relationship	 of	 this
STP	 to	 other	 test	 procedure	 documents—specifically,	 which
test	 procedures	 must	 be	 performed	 before	 or	 after	 other	 test
procedures.	However,	in	the	modified	form	all	test	procedures
appear	 in	 the	same	document.	Therefore,	a	description	of	 the
relationship	 between	 tests	 should	 accompany	 each	 individual
test	 procedure.	 (This	 information	 appears	 in	 the	 “Special
Requirements”	section.)

This	is	one	reason	for	including	this	section	in	the	modified
form	of	the	STP:	very	large	systems	may	contain	multiple	(and
relatively	 independent)	 software	 applications.	 There	 would

probably	 be	 separate	 STP	 documents	 for	 each	 of	 these
applications.	This	section	of	the	modified	STP	could	describe
the	relationship	of	this	STP	to	those	others,	including	the	order
in	which	tests	must	execute	these	STPs.

12.5.3.6	Instructions	for	Running	Tests

This	section	should	contain	generic	 instructions	 to	whomever
will	be	running	the	tests.	Usually	the	people	running	the	tests
are	 not	 the	 software	 developers. 	 This	 section	 can	 provide
insights	into	the	software	to	be	tested	for	those	who	have	not
lived	with	it	on	a	daily	basis	from	its	inception.

One	important	piece	of	information	that	should	appear	here
is	what	to	do	if	a	test	procedure	fails.	Should	the	tester	attempt
to	continue	that	test	procedure	(if	possible)	in	hopes	of	finding
additional	 problems?	 Should	 the	 tester	 immediately	 suspend
testing	 operations	 until	 the	 development	 team	 resolves	 the
issue?	 If	 a	 test	 has	 been	 suspended,	 what	 is	 the	 process	 for
resuming	the	test?	For	example,	most	QA	teams	require,	at	the
very	least,	rerunning	the	test	procedure	from	the	beginning.
Some	QA	teams	may	also	require	a	meeting	with	development
to	 determine	 a	 set	 of	 regression	 tests	 to	 run	 before	 resuming
the	test	procedure	from	the	point	of	failure.

This	 section	 should	 also	 discuss	 how	 to	 log	 any
problems/anomalies	 that	 occur	 during	 testing	 and	 to	 describe
how	to	bring	the	system	back	into	a	stable	state	or	shut	it	down
should	a	critical	or	catastrophic	event	occur.

This	 is	 also	 where	 you’ll	 describe	 how	 to	 log	 successful
runs	of	a	test	procedure.	A	tester	will	usually	log	the	date	and
time	 they	begin	a	 test,	provide	 the	name	of	 the	 test	engineer,
and	 specify	 which	 test	 procedure	 they	 are	 executing.	 At	 the

18

19

successful	 conclusion	 of	 a	 test,	 most	 test	 procedures	 require
signatures	 by	 the	 test	 engineer,	 a	 possible	 QA	 or	 customer
representative,	 and	 possibly	 other	 managerial	 or	 project-
related	personnel.	This	section	should	describe	the	process	for
obtaining	 these	 signatures	 and	 signing	off	 on	 successful	 runs
of	a	test	procedure.

12.5.4	Test	Procedures
This	 section	of	 the	document	 repeats	 for	 each	 individual	 test
procedure	for	the	system	under	test.	This	is	a	modification	of
the	 Std	 829	STP,	which	 describes	 only	 a	 single	 (or	maybe	 a
few)	test	procedures	in	the	document.	Presumably,	there	would
be	 multiple	 STP	 documents	 if	 your	 system	 requires	 a	 large
number	of	test	procedures.

12.5.4.1	Brief	Description	(for	Test	Procedure	#1)

This	 is	 the	 title	 of	 the	 test	 procedure.	 It	 should	 be	 a	 short
phrase,	such	as	DIP	Switch	#1	Test,	that	provides	a	quick	and
perhaps	informal	procedure	identification.

Procedure	Identification

This	 is	 the	 unique	 identifier	 (tag)	 for	 this	 test	 procedure.
Other	documentation	(such	as	the	RTM)	will	reference	this
test	procedure	using	its	tag.

Purpose

This	is	an	expanded	description	of	this	test	procedure:	why
it	exists,	what	it	tests,	and	where	it	sits	in	the	big	picture.

List	of	Test	Cases	Covered	by	This	Procedure

This	section	provides	 reverse	 traceability	back	 to	 the	STC
document.	 It	 is	 simply	 a	 list	 of	 all	 the	 test	 cases	 that	 this
test	procedure	covers.	Note	that	this	set	of	test	cases	should

be	 mutually	 exclusive	 of	 the	 sets	 found	 in	 other	 test
procedures—no	 test	 case	 tag	 should	 ever	 appear	 in	 more
than	one	test	procedure.	You	want	to	preserve	the	many-to-
one	 relationship	 from	 test	 cases	 to	 test	 procedures.	 This
will	 help	 keep	 the	 RTM	 clean,	 meaning	 that	 you	 won’t
have	to	attach	multiple	test	procedures	to	the	same	row	in
the	RTM.

Now,	 it	 is	 quite	 possible	 that	multiple	 test	 procedures
will	 provide	 inputs	 (and	 verify	 corresponding	 outcomes)
that	 test	 the	 same	 test	case.	This	 isn’t	a	problem;	 just	pick
one	procedure	that	will	take	credit	for	covering	that	test	case
and	assign	the	test	case	to	that	procedure.	When	someone	is
tracing	through	the	requirements	and	verifying	that	 the	test
procedures	 test	 a	 particular	 requirement,	 they’re	 not	 going
to	care	 if	 the	 test	procedures	 test	 that	 requirement	multiple
times;	 they’ll	 be	 interested	 only	 in	 determining	 that	 the
requirement	has	been	tested	at	least	once	somewhere	in	the
test	procedures.

If	you	have	a	choice	of	 test	procedures	with	which	 to
associate	a	given	test	case,	it’s	best	to	include	that	test	case
in	 a	 test	 procedure	 that	 also	 handles	 related	 test	 cases.	Of
course,	in	general,	this	type	of	association,	whereby	related
test	 cases	 are	 put	 into	 the	 same	 test	 procedure,	 happens
automatically.	 That’s	 because	 you	 don’t	 arbitrarily	 create
test	procedures	and	 then	assign	 test	cases	 to	 them.	Instead,
you	 pick	 a	 set	 of	 (related)	 test	 cases	 and	 use	 them	 to
generate	a	test	procedure.

Special	Requirements

This	section	identifies	anything	external	you’ll	need	for	the

test	procedure	in	order	to	successfully	execute	the	test.	This
includes	 databases,	 input	 files,	 existing	 directory	 paths,
online	 resources	 (such	 as	web	 pages),	 dynamically	 linked
libraries	 and	 other	 third-party	 tools,	 and	 automated	 test
procedures.

Setup	Required	Prior	to	Running	Procedure

This	 section	 describes	 any	 processes	 or	 procedures	 to
execute	 before	 you	 can	 run	 the	 test	 procedure.	 For
example,	a	test	procedure	for	autonomous	vehicle	software
might	require	an	operator	to	drive	the	vehicle	to	a	specified
starting	point	on	a	test	track	before	starting	the	test.	Other
examples	 might	 be	 ensuring	 an	 internet	 or	 server
connection	is	available.	With	the	SPM,	an	example	of	setup
could	 include	 ensuring	 that	 the	 test	 fixture	 (five-gallon
bucket	of	water)	is	filled	to	some	specified	level.

Software	Version	Number	for	This	Execution

This	 is	a	“fill	 in	 the	blank”	 field	 for	 the	 test	procedure.	 It
does	 not	mandate	 a	 software	 version	 for	 running	 the	 test;
rather,	the	tester	enters	the	current	software	version	number
prior	 to	 the	 test’s	 execution.	Note	 that	 this	 field	has	 to	be
filled	 in	 for	 each	 test	 procedure.	You	cannot	 simply	write
this	 value	 down	 once	 for	 the	 whole	 STP.	 The	 reason	 is
quite	simple:	during	testing	you	may	encounter	defects	that
require	you	to	suspend	the	test.	Once	the	development	team
corrects	those	defects,	the	testing	can	resume,	usually	from
the	 beginning	 of	 the	 test	 procedure.	 Because	 different
procedures	 in	 an	 STP	 could	 have	 been	 run	 on	 different
versions	 of	 the	 software,	 you	 need	 to	 identify	 which
version	 of	 the	 software	 you’re	 using	 when	 running	 each
procedure.20

Detailed	Steps	Required	to	Run	This	Procedure

This	section	contains	steps	that	are	necessary	to	execute	the
test	 procedure.	 There	 are	 two	 types	 of	 steps	 in	 a	 test
procedure:	 actions	 and	 verifications.	 An	 action	 is	 a
statement	of	work	to	be	done,	such	as	providing	some	input
to	 the	 system.	 A	 verification	 involves	 checking	 some
outcome/output	and	confirming	that	the	system	is	operating
correctly.

You	 must	 number	 all	 procedure	 steps	 sequentially—
typically	starting	from	1,	though	you	could	also	use	section
numbers	like	3.2.1	through	3.2.40	for	a	test	procedure	that
has	 40	 steps.	 At	 the	 very	 least,	 each	 verification	 step
should	 be	 preceded	 by	 three	 or	 so	 underline	 characters
(___)	or	a	box	symbol	(see	Figure	12-3)	so	 that	 the	 tester
can	 physically	 check	 off	 the	 step	 once	 they	 have
successfully	completed	 it.	Some	people	prefer	putting	 the
checkbox	 on	 every	 item	 (that	 is,	 both	 actions	 and
verifications)	in	the	test	procedure	to	ensure	that	the	tester
marks	 off	 each	 step	 as	 they	 complete	 it.	 Perhaps	 there
should	 be	 lines	 on	 the	 actions	 and	 checkboxes	 on	 the
verifications.	However,	this	adds	considerable	menial	work
to	the	process,	so	consider	carefully	whether	it’s	important
enough	to	do.

Figure	12-3:	Using	a	checkbox	on	a	verify	statement

Note	that	the	detailed	steps	should	include	information
(in	appropriate	positions)	such	as	the	following:

Any	actions	needed	to	start	the	procedure	(obviously,	these	should	appear	in
the	first	few	steps	of	the	procedure)

A	 discussion	 of	 how	 to	 make	 measurements	 or	 observe	 outputs	 (don’t
assume	the	tester	is	as	familiar	with	the	software	as	the	developers	are)

How	to	shut	down	the	system	at	the	conclusion	of	the	test	procedure	to	leave
the	system	in	a	stable	state	(if	 this	 is	necessary,	 it	will	obviously	appear	 in
the	last	steps	of	the	procedure)

Sign-off

At	 the	end	of	 the	 test	procedure	 there	should	be	blank
lines	 for	 the	 tester,	 observers,	 customer	 representatives,
and	 possibly	 management	 personnel	 to	 sign	 off	 on	 the
successful	 conclusion	 of	 the	 test	 procedure.	 A	 signature
and	date	are	 the	minimum	information	that	should	appear
here.	Each	organization	may	mandate	which	signatures	are
necessary.	At	the	very	least	(such	as	in	a	one-person	shop),
whoever	executes	the	test	procedure	should	sign	and	date	it
to	affirm	that	it	was	run.

12.5.5	General
The	last	section	of	an	STP	is	a	generic	catch-all	section	where
you	can	place	information	that	doesn’t	fit	anywhere	else.

12.5.5.1	Document	Change	Procedures

Many	 organizations	 have	 set	 policies	 for	 changing	 test
procedure	 documents.	 They	 could,	 for	 example,	 require
customer	approval	before	making	official	changes	 to	an	ATP.
This	 section	 outlines	 the	 rules	 and	 necessary	 approval
procedures	and	processes	for	making	changes	to	the	STP.

12.5.5.2	Attachments	and	Appendixes

It’s	 often	 useful	 to	 attach	 large	 tables,	 images,	 and	 other
documentation	directly	to	the	LTP	so	that	it	is	always	available
to	a	reader,	as	opposed	to	providing	a	link	to	a	document	that
the	reader	cannot	access.

12.5.6	Index
If	desired,	you	can	add	an	index	at	the	end	of	the	STP.

12.5.7	A	Sample	STP
This	section	presents	a	shortened	(for	space/editorial	purposes)
example	of	an	STP	for	the	DAQ	DIP	switch	project.

1	Table	of	Contents

[Omitted	for	space	reasons]

2	Introduction

2.1	Document	Identifier

Mar	22,	2018:	DAQ_LTP,	Version	1.0	Randall	Hyde

2.2	Scope

This	 document	 describes	 some	 of	 the	 DIP	 switch	 test
procedures	 in	 the	 DAQ	 system	 (shortened	 for
space/editorial	reasons).

2.3	Glossary,	Acronyms,	and	Abbreviations

NOTE

This	is	a	very	simple	and	short	example	to	keep	this	book	smaller.	Please
don’t	 use	 this	 as	 boilerplate;	 you	 should	 diligently	 pick	 out	 terms	 and
abbreviations	your	document	uses	and	list	them	in	this	section.

Term Definition

DAQ Data	acquisition	system

SBC Single-board	computer

Software	Design	 Documentation	of	the	design	of	the	software	system	

Description	(SDD) (IEEE	Std	1016-2009)—that	is,	this	document.

Software	
Requirements	
Specification	(SRS)

Documentation	of	the	essential	requirements	
(functions,	performance,	design	constraints,	and	
attributes)	of	the	software	and	its	external	interfaces	
(IEEE	Std	610.12-1990).

System	
Requirements	
Specification	(SyRS)

A	structured	collection	of	information	that	embodies	
the	requirements	of	the	system	(IEEE	Std	1233-1998).	
A	specification	that	documents	the	requirements	to	
establish	a	design	basis	and	the	conceptual	design	for	a	
system	or	subsystem.

Software	Test	Cases	
(STC)

Documentation	that	describes	test	cases	(inputs	and	
outcomes)	to	verify	correct	operation	of	the	software	
based	on	various	design	concerns/requirements	(IEEE	
Std	829-2009).

Software	Test	
Procedures	(STP)

Documentation	that	describes	the	step-by-step	
procedure	to	execute	a	set	of	test	cases	to	verify	
correct	operation	of	the	software	based	on	various	
design	concerns/requirements	(IEEE	Std	829-2009).

2.4	References

Reference Discussion

DAQ	STC See	“A	Sample	Software	Test	Case	Document”	on	
page	281.

DAQ	STP An	example	of	a	full	STP	for	the	Plantation	
Productions	DAQ	system	can	be	found	at	
http://www.plantation-
productions.com/Electronics/DAQ/DAQ.html.

IEEE	Std	830-1998 SRS	documentation	standard

IEEE	Std	829-2008 STP	documentation	standard

http://www.plantation-productions.com/Electronics/DAQ/DAQ.html

IEEE	Std	1012-1998 Software	verification	and	validation	standard

IEEE	Std	1016-2009 SDD	documentation	standard

IEEE	Std	1233-1998 SyRS	documentation	standard

NOTE

An	additional	reference	that	might	make	sense	(not	included	here	because
it	 doesn’t	 exist	 for	 this	 simple	 project)	 is	 a	 link	 to	 any	 associated
documentation	 for	 the	 DAQ	 system,	 such	 as	 programming	 manuals	 or
schematics.

2.5	Notation	for	Descriptions

Test	procedure	 identifiers	 (tags)	 in	 this	 document	 shall
take	the	form:

DAQ_STP_xxx

where	 xxx	 is	 a	 (possibly	 dotted	 decimal)	 numeric
sequence	 that	 creates	 a	 unique	 identifier	 out	 of	 the
whole	 sequence.	Note	 that	xxx	 values	 for	STP	 tags	 are
usually	 numbered	 from	 000	 or	 001	 and	 usually
increment	by	1	for	each	additional	test	case	item	sharing
the	same	xxx	string.

2.6	Instructions	for	Running	the	Tests

Execute	 each	 test	 procedure	 exactly	 as	 stated.	 If	 tester
encounters	an	error	or	omission	in	the	procedure,	tester
should	 redline	 (with	 red	 ink,	 which	 tester	 should	 use
only	 for	 redlines)	 the	 procedure	 with	 the	 correct
information	and	 justify	 the	 redline	 in	 the	 test	 log	 (with
date/timestamp	 and	 signature).	 All	 redlines	 within	 the
test	procedure(s)	must	be	initialized	by	all	signatories	at

the	end	of	the	test	procedure.

If	tester	discovers	a	defect	in	the	software	itself	(that	is,
not	simply	a	defect	in	the	test	procedure),	the	tester	shall
note	 the	 anomaly	 in	 a	 test	 log	 and	 create	 an	Anomaly
Report	 for	 the	 defect.	 If	 the	 defect	 is	 marginal	 or
negligible	in	nature,	the	tester	may	continue	with	the	test
procedure,	 if	 possible,	 and	 attempt	 to	 find	 any	 other
defects	in	the	system	on	the	same	test	procedure	run.	If
the	 defect	 is	 critical	 or	 catastrophic	 in	 nature,	 or	 the
defect	 is	 such	 that	 it	 is	 impossible	 to	 continue	 the	 test
procedure,	 the	tester	shall	 immediately	suspend	 the	 test
and	 shut	 off	 power	 to	 the	 system.	 Once	 the	 defect	 is
corrected,	tester	must	restart	the	test	procedure	from	the
beginning	of	the	procedure.

A	 test	 procedure	 succeeds	 if	 and	 only	 if	 the	 tester
completes	all	steps	without	any	failures.

3	Test	Procedures

3.1	RS-232	(Serial	Port)	Operation

3.1.1	DAQ_STP_001

3.1.2	Purpose

This	 test	 procedure	 tests	 the	 proper	 operation	 of
DAQ	commands	sourced	from	the	RS-232	port.

3.1.3	Test	Cases

DAQ_STC_701_000_000

DAQ_STC_702_000_000

DAQ_STC_703_000_000

DAQ_STC_726_000_000

3.1.4	Special	Requirements

This	 test	 procedure	 requires	 a	 serial	 terminal
emulator	program	running	on	a	PC	(for	example,
the	MTTY.exe	 program	 that	 comes	 as	 part	 of	 the
Netburner	SDK;	you	could	even	use	Hyperterm	if
you	 are	 masochistic).	 There	 should	 be	 a	 NULL
modem	cable	between	the	PC’s	serial	port	and	the
COM1	port	on	the	Netburner.

3.1.5	Setup	Required	Prior	to	Running

Netburner	 powered	 up	 and	 running	 application
software.	 Serial	 terminal	 program	 should	 be
properly	 connected	 to	 the	 serial	 port	 on	 the	 PC
that	is	wired	to	the	Netburner.

3.1.6	Software	Version	Number

Version	number:	____________

Date:	____________

3.1.7	Detailed	Steps

1.	 Set	DIP	switch	1	to	the	ON	position.

2.	 Reset	 the	 Netburner	 and	 wait	 several
seconds	for	 it	 to	 finish	rebooting.	Note:
Rebooting	 Netburner	 may	 produce
information	 on	 the	 serial	 terminal.	You

can	ignore	this.

3.	 Press	ENTER	on	the	line	by	itself	into	the
terminal	emulator.

4.	 ______	 Verify	 that	 the	 DAQ	 system	 responds
with	a	newline	without	any	other	output

5.	 Type	help,	 then	press	ENTER	on	a	 line	by
itself.

6.	______	Verify	 that	 the	DAQ	software	responds
with	 a	 help	 message	 (contents
unimportant	as	 long	as	 it	 is	obviously	a
help	response).

7.	 Set	DIP	switch	1	to	the	OFF	position.

8.	 Reset	 the	 Netburner	 and	 wait	 several
seconds	for	 it	 to	 finish	rebooting.	Note:
Rebooting	 Netburner	 may	 produce
information	 on	 the	 serial	 terminal.	You
can	ignore	this.

9.	 Type	 the	 help	 command	 into	 the	 serial
terminal.

10.	______	Verify	that	the	DAQ	system	ignores	the
help	command.

3.1.8	Sign-off	on	Test	Procedure

Tester:	_________________	Date:	_________

QA:	_________________	Date:	_________

NOTE

In	a	full	STP	document,	there	would	probably	be	additional	test	procedures
here;	the	following	test	procedure	ignores	that	possibility	and	continues	tag
numbering	with	DAQ_STP_002.

3.2	Ethernet	Address	Selection

3.2.1	DAQ_STP_002

3.2.2	Purpose

This	 test	 procedure	 tests	 the	 initialization	 of	 the
Ethernet	 IP	address	based	on	DIP	switches	5	and
6.

3.2.3	Test	Cases

DAQ_STC_709_000_000

DAQ_STC_710_000_000

DAQ_STC_711_000_000

DAQ_STC_712_000_000

3.2.4	Special	Requirements

This	 test	 procedure	 requires	 an	Ethernet	 terminal
emulator	program	running	on	a	PC	(Hercules.exe
has	been	a	good	choice	in	the	past).	There	should
be	an	Ethernet	(crossover	or	through	a	hub)	cable
between	 the	 PC’s	 Ethernet	 port	 and	 the	 Ethernet
port	on	the	Netburner.

3.2.5	Setup	Required	Prior	to	Running

Netburner	 powered	 up	 and	 running	 application
software.	 DIP	 switch	 3	 in	 the	 ON	 position.	 DIP
switch	4	in	the	OFF	position.

3.2.6	Software	Version	Number

Version	number:	_________

Date:	_________

3.2.7	Detailed	Steps

1.	 Set	 DIP	 switches	 5	 and	 6	 to	 the	 OFF
position.

2.	 Reset	 the	 Netburner	 and	 wait	 several
seconds	for	it	to	finish	rebooting.

3.	 From	 the	 Ethernet	 terminal	 program,
attempt	 to	connect	 to	 the	Netburner	at	 IP	address
192.168.2.70,	port	20560	(0x5050).

4.	 Verify	 that	 the	 connection	 was
successful.

5.	 Enter	 a	 help	 command	 and	 press	 the
ENTER	key.

6.	 ______	Verify	 that	 the	DAQ	 system	 responds
with	an	appropriate	help	message.

7.	 Set	DIP	switch	5	to	the	ON	position	and
6	to	the	OFF	position.

8.	 Reset	 the	 Netburner	 and	 wait	 several

seconds	for	it	to	finish	rebooting.

9.	 From	 the	 Ethernet	 terminal	 program,
attempt	 to	connect	 to	 the	Netburner	at	 IP	address
192.168.2.71,	port	20560	(0x5050).

10.	 ______	 Verify	 that	 the	 connection	 was
successful.

11.	 Enter	 a	 help	 command	 and	 press	 the
ENTER	key.

12.	 ______	 Verify	 that	 the	 DAQ	 system	 responds
with	an	appropriate	help	message.

13.	 Set	 DIP	 switch	 5	 to	 the	 OFF	 position
and	6	to	the	ON	position.

14.	 Reset	 the	 Netburner	 and	 wait	 several
seconds	for	it	to	finish	rebooting.

15.	 From	 the	 Ethernet	 terminal	 program,
attempt	to	connect	to	the	Netburner	at	IP	address
192.168.2.72,	port	20560	(0x5050).

16.	 ______	 Verify	 that	 the	 connection	 was
successful.

17.	 Enter	 a	 help	 command	 and	 press	 the
ENTER	key.

18.	 ______	 Verify	 that	 the	 DAQ	 system	 responds
with	an	appropriate	help	message.

19.	 Set	 DIP	 switches	 5	 and	 6	 to	 the	 ON
position.

20.	 Reset	 the	 Netburner	 and	 wait	 several
seconds	for	it	to	finish	rebooting.

21.	 From	 the	 Ethernet	 terminal	 program,
attempt	to	connect	to	the	Netburner	at	IP	address
192.168.2.73,	port	20560	(0x5050).

22.	 ______	 Verify	 that	 the	 connection	 was
successful.

23.	 Enter	 a	 help	 command	 and	 press	 the
ENTER	key.

24.	 ______	 Verify	 that	 the	 DAQ	 system	 responds
with	an	appropriate	help	message.

3.2.8	Sign-off	on	Test	Procedure

Tester:	_________________	Date:	_________

QA:	_________________	Date:	_________

NOTE

In	a	full	STP	document,	there	would	probably	be	additional	test	procedures
here.

4	General

4.1	Document	Change	Procedures

Whenever	making	changes	to	this	document,	add	a	new
line	 to	 Section	 2.1	 listing,	 at	 a	 minimum,	 the	 date,

project	 name	 (DAQ_STP),	 version	 number,	 and
authorship.

4.2	Attachments	and	Appendixes

[In	 the	 interests	 of	 space,	 none	 are	 provided	here;	 in	 a
real	 STP,	 putting	 the	 schematic	 of	 the	 DAQ	 system
would	be	a	good	idea.]

5	Index

[Omitted	for	space	reasons.]

12.5.8	Updating	the	RTM	with	STP	Information
Because	 STP	 tags	 are	 very	 similar	 in	 nature	 to	 SDD	 tags,	 it
should	 come	 as	 no	 surprise	 that	 the	 process	 for	 adding	 STP
tags	 to	 the	RTM	is	quite	 similar	 to	 that	 for	adding	SDD	tags
(see	 “Updating	 the	 Traceability	 Matrix	 with	 Design
Information”	on	page	259).

The	 STP	 adds	 a	 single	 column	 to	 the	 RTM:	 the	 STP	 tag
column.	Unfortunately,	 the	 STP	 tag	 does	 not	 directly	 embed
any	 traceability	 information,	 so	 you’ll	 have	 to	 extract	 that
information	 from	 the	 STP	 to	 determine	 where	 to	 place	 STP
tags	in	the	RTM.

As	 you	 may	 recall	 from	 “List	 of	 Test	 Cases	 Covered	 by
This	Procedure”	on	page	294,	 each	 test	procedure	 in	 an	STP
must	 include	 the	 list	 of	 test	 cases	 it	 covers.	Though	Std	 829
does	not	 require	 this,	 I	 strongly	suggest	 that	you	 include	 this
section.	If	you’ve	done	that,	you’ve	already	created	the	reverse
traceability	back	 to	 the	 requirements,	which	makes	 it	 easy	 to
fill	in	the	STP	tags	in	the	RTM.	To	do	so,	just	locate	each	test
case	tag	(listed	in	the	current	test	procedure)	and	copy	the	test
procedure’s	STP	tag	into	the	STP	tag	column	in	the	RTM	(on

the	 same	 row	 as	 the	 corresponding	 test	 case).	 Of	 course,
because	 there	 are	multiple	 test	 cases	 associated	with	a	 single
test	procedure,	you’ll	also	have	several	copies	of	the	same	STP
tag	spread	throughout	the	RTM	(one	per	associated	test	case).

Should	you	ever	want	to	easily	trace	your	STP	tags	back	to
all	the	requirements	in	the	RTM,	particularly	without	having	to
look	up	 the	 list	 in	 the	STP,	 simply	sort	 the	RTM	by	 the	STP
tag	 column.	 This	 will	 collect	 all	 the	 requirements	 (and
everything	else	linked	to	that	STP	tag)	into	a	contiguous	group
in	 the	 matrix	 and	 make	 it	 easy	 to	 identify	 everything
associated	with	that	tag.

If	you	choose	some	other	method	of	specifying	test	cases	in
the	 test	procedure	 that	doesn’t	 involve	 incorporating	the	STC
tags	 within	 the	 test	 procedures,	 then	 determining	 the
placement	 of	 the	STP	 tags	 in	 the	RTM	becomes	 a	manual—
and	 often	 laborious—process.	 That’s	 why	 I	 strongly
recommend	 including	 STC	 tag	 numbers	 in	 a	 test	 procedure
when	you	first	create	it.

12.6	LEVEL	TEST	LOGS
Although	 each	 test	 procedure	 contains	 a	 signature	 section
where	the	tester	(and	any	other	desired	personnel)	can	sign	off
on	a	successful	test	completion,	a	separate	test	log	is	needed	to
handle	 anomalies	 that	 occur	 during	 testing	 or	 to	 simply	hold
comments	and	concerns	that	the	tester	may	have	while	running
the	test	procedure.

Perhaps	 the	 most	 important	 job	 of	 this	 Level	 Test	 Log
(LTL)	is	to	present	a	chronological	view	of	the	testing	process.
Whenever	a	tester	begins	running	a	test	procedure,	they	should

first	log	an	entry	stating	the	date,	time,	test	procedure	they	are
executing,	and	their	name.	Throughout	the	test’s	execution,	the
tester	can	add	entries	to	the	test	log	(as	necessary)	indicating:

Start	of	a	test	procedure	(date/time)

End	of	a	test	procedure	(date/time)

Anomalies/defects	found	(and	whether	the	test	was	continued	or	suspended)

Redlines/changes	 needed	 to	 the	 test	 procedure	 because	 of	 errors	 found	 in	 the
procedure	itself	(for	example,	the	test	procedure	could	list	an	incorrect	outcome;
if	the	tester	can	show	that	the	program	output	was	correct	even	if	it	differs	from
the	test	procedure,	they	would	redline	the	test	procedure	and	add	an	appropriate
justification	to	the	test	log)

Concerns	about	outcomes	the	program	produces	that	the	tester	finds	questionable
(perhaps	 the	 test	 procedure	 doesn’t	 list	 any	 outcome,	 or	 the	 test	 procedure’s
outcomes	are	questionable)

Personnel	changes	(for	example,	if	a	tester	changes	in	the	middle	of	a	test	due	to
a	break,	shift	change,	or	different	experience	needed)

Any	break	period	during	the	test	procedure	(for	example,	lunch	break	or	end	of
the	workday)

Technically,	 all	 you	 need	 for	 a	 test	 log	 is	 a	 sheet	 of
(preferably	lined)	paper.	More	often	than	not,	STP	creators	add
several	sheets	of	lined	paper	to	the	end	of	the	STP	specifically
for	 this	 test	 log.	Some	organizations	 simply	maintain	 the	 test
log	 electronically	 using	 a	 word	 processor	 or	 text	 editor	 (or
even	 a	 specially	 written	 application).	 Of	 course,	 Std	 829
outlines	a	formal	recommendation	for	test	logs:

1	Introduction

1.1	Document	Identifier

1.2	Scope

1.3	References

2	Details

2.1	Description

2.2	Activity	and	Event	Entries

3	General

3.1	Glossary

12.6.1	Introduction	in	the	Level	Test	Logs	Document
In	 addition	 to	 introducing	 the	 subsections	 that	 follow,	 this
section	 might	 also	 identify	 the	 organization	 that	 created	 the
document	and	the	current	status.

12.6.1.1	Document	Identifier

A	 unique	 identifier	 for	 this	 document;	 as	 with	 all	 Std	 829
documents	this	should	include,	at	the	very	least,	the	date,	some
descriptive	name,	a	version	number,	and	authorship.	A	change
history	 (of	 the	 outline/format,	 not	 the	 specific	 log)	 might
appear	here	as	well.

12.6.1.2	Scope

The	Scope	section	summarizes	the	system	and	features	that	the
associated	 test	 procedure	 tested.	 Generally,	 this	 would	 be	 a
reference	 to	 the	 test	 procedure’s	 Scope	 section	 unless	 there
was	something	special	about	this	particular	test	run.

12.6.1.3	References

At	the	very	least,	 this	section	should	refer	 to	 the	STP	(and	in
particular,	 the	 specific	 test)	 document	 for	which	 this	 test	 log
was	created.

12.6.2	Details
This	section	introduces	the	following	subsections	and	is	what
most	people	would	consider	the	actual	“test	log.”

12.6.2.1	Description

This	section	(only	one	occurrence	per	test	log)	describes	items
that	will	 apply	 to	 all	 test	 log	 entries.	 This	 could	 include	 the
following:

Identification	of	the	test	subject	(for	example,	by	version	number)

Identification	of	any	changes	made	to	the	test	procedure	(for	example,	redlines)
prior	to	this	test

Date	and	time	of	the	start	of	the	test

Date	and	time	of	the	stop	of	the	test

Name	of	the	tester	running	the	test

Explanation	for	why	testing	was	halted	(if	this	should	happen)

12.6.2.2	Activities	and	Event	Entries

This	 section	 of	 the	 test	 log	 records	 each	 event	 during	 the
execution	 of	 the	 test	 procedure.	 This	 section	 (containing
multiple	entries)	typically	documents	the	following:

Description	of	the	test	procedure	execution	(procedure	ID/tag)

All	 personnel	 observing/involved	 in	 the	 test	 run—including	 testers,	 support
personnel,	and	observers—and	the	role	of	each	participant

The	result	of	each	test	procedure	execution	(pass,	fail,	commentary)

A	record	of	any	deviations	from	the	test	procedure	(for	example,	redlines)

A	record	of	any	defects	or	anomalies	discovered	during	the	test	procedure	(along
with	a	reference	to	an	associated	Anomaly	Report	if	one	is	generated)

12.6.3	Glossary
This	 section	 of	 the	 LTL	 documentation	 contains	 the	 usual
glossary	associated	with	all	Std	829	documents.

12.6.4	A	Few	Comments	on	Test	Logs
To	be	honest,	 the	Std	829	outline	 is	way	 too	much	effort	 for
such	 a	 simple	 task.	 There	 are	 a	 few	 tips	 for	 managing	 the
effort	involved	in	this	document.

12.6.4.1	Overhead	Management

Almost	all	of	the	effort	that	would	go	into	creating	an	Std	829
LTL	outline-compliant	document	can	be	eliminated	by	simply
attaching	 the	 test	 log	directly	 to	 the	end	of	 the	STP.	The	 test
log	then	inherits	all	 the	preface	information	from	the	STP,	so
all	you	need	to	document	is	the	information	that	appears	at	the
very	beginning	of	“Level	Test	Logs”	on	page	303.

Note	that	LTLs	have	four	variants,	as	typical	for	all	Std	829
level	documents:	Component	Test	Logs	(aka	Unit	Test	Logs),
Component	Integration	Test	Logs	(aka	Integration	Test	Logs),
System	 Test	 Logs	 (aka	 System	 Integration	 Test	 Logs),	 and
Acceptance	Test	Logs	(possibly	including	Factory	Acceptance
Test	Logs	or	Site	Acceptance	Test	Logs).

In	 reality,	 it’s	 rare	 for	 there	 to	 be	 much	 in	 the	 way	 of
Component	 or	 Component	 Integration	 Test	 Logs.	 Most
frequently,	 the	 corresponding	 test	 procedures	 are	 automated
tests.	 Even	 when	 they’re	 not,	 the	 development	 team	 usually
runs	 these	 tests	 and	 immediately	 corrects	 any	 defects	 they
find.	Because	 these	 tests	 run	 frequently	 (often	multiple	 times
per	 day,	 particularly	 in	 teams	 using	 Agile-based
methodologies),	 the	 overhead	 with	 documenting	 these	 test
runs	is	far	too	much.

System	 Test	 Logs	 and	 Acceptance	 Test	 Logs	 are	 the
variants	 of	 the	 LTL	 that	 testers	 (independent	 of	 the
development	 team)	 run,	 and	 hence	 the	 ones	 that	 require	 the
creation	of	actual	test	logs.

12.6.4.2	Recordkeeping

The	test	logs	are	different	from	the	other	Std	829	documents	in
a	very	fundamental	sense.	Most	Std	829	documents	are	static

21

documents;	 about	 the	 only	 thing	 you	 do	with	 them	 is	 fill	 in
details	 like	 software	 version	 numbers	 and	 check	 off
verification	steps.	The	basic	structure	of	the	document	doesn’t
change	 if	 you	 run	 the	 procedure	 over	 and	 over	 again.
Ultimately,	there	is	no	reason	to	keep	any	old	copies	of	the	test
procedure	around	(like	runs	of	the	test	procedure	that	failed	in
the	 middle	 of	 execution).	 All	 you	 really	 need	 to	 show	 the
customer	 is	 the	 last	 run	 of	 the	 test	 procedure	 where	 you
successfully	 executed	 all	 steps	 and	 passed	 the	 entire
procedure.

The	 test	 logs,	 unlike	 the	 other	 documents	 you’ve	 seen	 in
this	chapter	thus	far,	are	dynamic	documents.	They	will	differ
radically	 from	 test	 run	 to	 test	 run	 (even	 if	 nothing	 else
changes,	 at	 least	 all	 the	 dates	 and	 timestamps	 will	 change).
Furthermore,	a	test	log	isn’t	a	boilerplate	document	where	you
simply	fill	in	a	few	blanks	and	check	off	some	checkboxes.	It’s
essentially	a	blank	slate	that	you	create	while	actually	running
the	 test.	 If	 there	 are	 failures,	 or	 redlines,	 or	 commentary,	 the
test	 log	maintains	 the	history	of	 these	events.	Therefore,	 it	 is
important	 to	 keep	 all	 your	 test	 logs,	 even	 the	 ones	 that
recorded	 failed	 tests.	 It	 is	highly	 improbable	 that	 any	 system
will	be	perfect;	there	will	be	mistakes	and	defects	you	discover
during	testing.	The	test	logs	provide	proof	that	you’ve	found,
corrected,	and	retested	for	these	defects.

If	you	throw	away	all	the	old	test	logs	that	document	all	the
defects	discovered	along	the	way	and	present	only	perfect	test
logs,	any	reasonable	customer	is	going	to	question	what	you’re
hiding.	Mistakes	and	defects	are	a	normal	part	of	the	process.
If	 you	 don’t	 show	 that	 you’ve	 found	 and	 corrected	 these
mistakes,	your	customers	will	assume	 that	you	haven’t	 tested

the	system	well	enough	to	find	the	defects	or	that	you’ve	faked
the	test	logs.	Keep	the	old	test	logs!	This	proves	you’ve	done
your	QA	due	diligence	for	your	product.

You	could	argue	 that	keeping	old	 test	procedures	 to	 show
redlines	or	 interruptions	 in	 the	 test	process	 is	 also	 important.
However,	 any	 redline	 or	 interruption	 that	 appears	 on	 a	 test
procedure	document	had	better	show	up	in	 the	corresponding
test	 log,	 so	 you	 don’t	 need	 to	 keep	 old	 test	 procedures	 that
you’ve	actually	rerun.

Note	that	this	does	not	imply	that	all	test	procedures	you’ve
run	 should	 be	 perfect.	 If	 you	 have	 properly	 documented	 and
justified	redlines	on	a	test	procedure,	yet	the	test	execution	ran
successfully	 to	 its	 conclusion,	 there	 is	no	need	 to	rewrite	 the
test	procedure	and	refill	all	the	checkboxes	to	include	a	clean
test	 procedure	 in	 your	 final	 documentation.	 If	 it	 was
successful,	even	with	redlines,	leave	it	alone. 	Redlines	don’t
indicate	a	failure	of	the	software	system;	they	are	a	defect,	of
course,	but	in	the	test	procedure	itself	rather	than	the	software.
The	goal	of	 the	 test	procedure	 is	 to	 test	 the	software,	not	 the
test	 procedure.	 If	minor	 changes	 to	 the	 test	 procedure	 are	 all
you	have,	redline	them	and	move	on.

In	 many	 organizations,	 as	 I’ve	 said	 before,	 if	 any
verification	step	in	a	test	procedure	fails,	then	after	any	defects
are	 corrected,	 the	 entire	 procedure	 must	 be	 run	 from	 the
beginning	(a	full	regression	test).	For	some	test	procedures	or
in	 some	 organizations,	 there	 may	 be	 a	 process	 in	 place	 to
temporarily	suspend	a	test	procedure,	update	the	software,	and
then	 resume	 the	 test	 procedure	 upon	 resolving	 the	 defect.	 In
such	cases,	you	can	treat	the	verification	failure	step	as	though
it	were	a	redline:	document	the	original	failure	in	the	test	log,

22

document	 the	 fact	 that	 the	 development	 team	 repaired	 the
defect,	 and	 then	 document	 the	 correct	 operation	 of	 the
software	(at	 the	failed	verification	step)	with	 the	new	version
of	the	software.

12.6.4.3	Paper	vs.	Electronic	Logs

Some	 people	 prefer	 creating	 electronic	 test	 logs;	 some
organizations	 or	 customers	 demand	 paper	 test	 logs	 (filled	 in
with	 pens,	 not	 pencils).	 The	 problem	 with	 electronic	 logs
(especially	 if	 you	 create	 them	 using	 a	word	 processor	 rather
than	 an	 application	 program	 specifically	 designed	 to	 log	 test
procedure	 runs)	 is	 that	 they	 are	 easily	 faked.	 Of	 course,	 no
great	programmer	would	ever	fake	a	 test	 log.	However,	 there
are	less-than-great	programmers	in	this	world	who	have	faked
a	test	log.	Unfortunately,	the	actions	of	those	few	have	sullied
the	reputations	of	all	software	engineers.	Therefore,	it’s	best	to
create	 test	 logs	 that	 are	 not	 easily	 faked,	which	 often	means
using	paper.

Someone	 could	 fake	 paper	 logs;	 however,	 it’s	 a	 lot	more
work	 and	 usually	 more	 obvious.	 Ultimately,	 customers	 are
probably	going	to	want	hard	copies	of	the	test	logs;	when	they
want	 them	 in	 electronic	 form,	 they’ll	 probably	want	 scanned
images	 of	 the	 hardcopy	 logs.	 They	will	 be	 expecting	 you	 to
maintain	those	paper	logs	in	storage	for	legal	reasons.

Perhaps	 the	 best	 solution	 is	 to	 use	 a	 software	 application
specifically	 designed	 for	 creating	 test	 logs,	 one	 that
automatically	 logs	 the	 entries	 to	 a	 database	 (making	 it	 a	 bit
more	difficult	 to	 fake	 the	data).	For	 the	customer,	you	would
print	 a	 report	 from	 the	 database	 to	 provide	 a	 hardcopy	 (or
generate	a	PDF	report	if	they	wanted	an	electronic	copy).

23

Regardless	 of	 how	 testers	 generate	 the	 original	 test	 log,
most	 organizations	 will	 require	 them	 to	 eventually	 create	 a
paper	 test	 log,	 and	 then	 the	 testers,	 observers,	 and	 other
personnel	 associated	 with	 the	 test	 run	 will	 have	 to	 sign	 and
date	 it	 to	 certify	 that	 the	 information	 is	 correct	 and	accurate.
This	is	a	legal	document	at	this	point;	someone	attempting	to
fake	any	data	could	land	in	serious	legal	jeopardy.

12.6.4.4	Inclusion	in	the	RTM

Normally,	 test	 logs	 don’t	 appear	 in	 the	 traceability	 matrix.
However,	 there	 is	no	reason	you	couldn’t	 include	 them	there.
There	 is	 a	 one-to-many	 relationship	 between	 test	 procedures
(and,	 therefore,	 STPs)	 and	 test	 logs.	 Thus,	 if	 you	 assign	 a
unique	 identifier	 (tag)	 to	 each	 test	 report,	 you	 can	 add	 that
identifier	to	an	appropriate	column	in	the	RTM.

Because	 test	 logs	 have	 a	many-to-one	 relationship	 to	 test
procedures,	 it	wouldn’t	be	a	bad	 idea	 to	model	 the	 tag	ID	on
the	others	that	this	book	presents.	For	example,	use	something
such	 as:	 proj_TL_xxx_yyy	 where	 xxx	 comes	 from	 the	 test
procedure	tag	(for	example,	005	from	DAQ_STP_005)	and	yyy
is	a	(possibly	decimal)	numeric	sequence	that	creates	a	unique
tag	for	the	test	log.

12.7	ANOMALY	REPORTS
When	 a	 tester,	 a	 development	 team	member,	 a	 customer,	 or
anyone	else	using	the	system	discovers	a	software	defect,	 the
proper	way	 to	 document	 it	 is	with	 an	Anomaly	 Report	 (AR),
also	known	as	a	Bug	Report	or	Defect	Report.	All	too	often	an
AR	consists	of	someone	telling	a	programmer,	“Hey,	I	found	a
problem	in	your	code.”	The	programmer	then	runs	off	to	their

machine	to	correct	 the	problem	and	there’s	no	documentation
to	 track	 the	 anomaly.	 This	 is	 very	 unfortunate,	 because
tracking	defects	 in	a	 system	 is	very	 important	 to	maintaining
the	quality	of	that	system.

The	AR	is	the	formal	way	to	track	system	defects.	Among
other	things,	it	captures	the	following	information:

Date	and	time	of	defect	occurrence

The	person	who	discovered	the	defect	(or	at	least,	who	recorded	the	defect	report
in	response	to	some	user’s	complaint)

A	description	of	the	defect

A	 procedure	 for	 reproducing	 the	 defect	 in	 the	 system	 (assuming	 the	 issue	 is
deterministic	and	is	easy	enough	to	reproduce)

The	 impact	 the	 defect	 has	 on	 the	 system	 (for	 example,	 catastrophic,	 critical,
marginal,	negligible)

The	 importance	 of	 the	 defect	 to	 end	 users	 (economic	 and	 social	 impact)	 so
management	can	assign	a	priority	to	correcting	it

Any	possible	workarounds	to	the	defect	(so	users	can	continue	using	the	system
while	the	development	team	works	on	correcting	the	defect)

A	 discussion	 of	 what	 it	 might	 take	 to	 correct	 the	 defect	 (including
recommendations	and	conclusions	concerning	the	defect)

Current	status	of	the	anomaly	(for	example,	“new	anomaly,”	“development	team
is	working	on	correction,”	“in	testing,”	“corrected	in	software	version	xxx.xxx”)

Naturally,	 Std	 829	 has	 a	 suggested	 outline	 for	 Anomaly
Reports.	 However,	 most	 organizations	 use	 defect-tracking
software	 to	 record	defects	or	anomalies.	 If	you	aren’t	willing
to	spend	the	money	on	a	commercial	product,	there	are	many
open	source	products	freely	available,	such	as	Bugzilla.	Most
of	 these	 products	 use	 a	 database	 organization	 that	 is
reasonably	 compatible	 with	 the	 recommendations	 from	 Std
829:

1	Introduction

1.1	Document	Identifier

1.2	Scope

1.3	References

2	Details

2.1	Summary

2.2	Date	Anomaly	Discovered

2.3	Context

2.4	Description	of	Anomaly

2.5	Impact

2.6	 Originator’s	 Assessment	 of	 Urgency	 (see	 IEEE	 1044-
1993	[B13])

2.7	Description	of	Corrective	Action

2.8	Status	of	the	Anomaly

2.9	Conclusions	and	Recommendations

3	General

3.1	Document	Change	Procedures	and	History

12.7.1	Introduction	in	the	Anomaly	Reports
Document
The	following	subsections	describe	the	components	of	the	AR
introduction.

12.7.1.1	Document	Identifier

This	is	a	unique	name	that	other	reports	can	reference	(such	as
test	logs	and	test	reports).

12.7.1.2	Scope

The	 Scope	 section	 gives	 a	 brief	 description	 of	 anything	 that
doesn’t	appear	elsewhere	in	the	AR.

12.7.1.3	References

References	include	links	to	other	relevant	documents,	such	as
test	logs	and	test	procedures.

12.7.2	Details
This	section	introduces	the	subsections	that	follow.

12.7.2.1	Summary

Here	you	give	a	brief	description	of	the	anomaly.

12.7.2.2	Date	Anomaly	Discovered

List	 the	 date	 (and	 time,	 if	 possible/appropriate)	 when	 the
anomaly	was	discovered.

12.7.2.3	Context

Software	 version	 and	 installation/configuration	 information
goes	 in	 the	Context	 section.	This	 section	should	also	 refer	 to
relevant	 test	 procedures	 and	 test	 logs,	 if	 appropriate,	 which
should	help	to	identify	this	anomaly.	If	no	such	test	procedure
exists	 for	 this	 anomaly,	 consider	 suggesting	 an	 addition	 to
some	test	procedure	that	would	catch	it.

12.7.2.4	Description	of	Anomaly

Provide	 an	 in-depth	 description	 of	 the	 defect	 including	 (if
possible)	 how	 to	 reproduce	 it.	 The	 description	might	 include
the	following	information:

Inputs

Actual	results

Outcome(s)	(particularly,	the	outcomes	that	vary	from	the	test	procedure)

Procedure	step	of	failure

Environment

Was	the	defect	repeatable?

Any	tests	executed	immediately	prior	to	failure	than	might	have	affected	results

Tester(s)

Observer(s)

12.7.2.5	Impact

Describe	 the	 impact	 this	 defect	 will	 have	 on	 system	 users.
Describe	 any	 possible	 workarounds,	 such	 as	 changing	 the
documentation	or	modifying	the	use	of	the	system.	If	possible,
estimate	 cost	 and	 time	 to	 repair	 this	 defect	 and	 the	 risk
associated	with	leaving	it	in	place.	Estimate	the	risk	associated
with	fixing	it,	which	could	impact	other	system	features.

12.7.2.6	Originator’s	Assessment	of	Urgency

State	 the	 level	 of	 urgency	 for	 a	 speedy	 repair.	 The	 integrity
levels	 and	 risk	 assessment	 scale	 from	 “Integrity	 Levels	 and
Risk	Assessment”	on	page	263	are	probably	a	good	minimum
mechanism	for	stating	the	urgency	of	repair.

12.7.2.7	Description	of	Corrective	Action

This	section	describes	the	time	needed	to	determine	the	reason
for	the	defect;	an	estimate	of	the	time,	cost,	and	risk	associated
with	repairing	it;	and	an	estimate	of	the	effort	required	to	retest
the	 system.	 Include	 any	 necessary	 regression	 tests	 to	 ensure
that	nothing	else	is	broken	by	the	fix.

12.7.2.8	Status	of	the	Anomaly

List	 the	 status	 of	 the	 current	 defect.	 Std	 829	 recommends
statuses	such	as	“open,”	“approved	for	 resolution,”	“assigned
for	resolution,”	“fixed,”	and	“tested	with	the	fix	confirmed.”

12.7.2.9	Conclusions	and	Recommendations

This	section	should	provide	commentary	as	to	why	the	defect
occurred	and	recommend	possible	changes	to	the	development
process	 to	 prevent	 similar	 defects	 in	 the	 future.	 This	 section
might	 also	 suggest	 additional	 requirements,	 test	 cases,	 and
(modifications	to)	test	procedures	to	catch	the	anomaly	in	the
future;	 this	 is	 particularly	 important	 if	 testing	 discovered	 the
anomaly	 by	 accident	 rather	 than	 by	 running	 specific	 test
procedure	steps	to	catch	this	particular	defect.

12.7.2.10	General

This	 is	 the	 usual	 end-of-document	 section	 in	 Std	 829
documents	providing	a	change	history	(to	the	AR	format,	not
to	 a	 specific	 AR)	 and	 change	 procedures.	 Std	 829	 does	 not
recommend	a	glossary.

12.7.3	A	Few	Comments	on	Anomaly	Reports
It	 is	 worthwhile	 to	 bear	 the	 following	 points	 in	 mind	 when
dealing	with	Anomaly	Reports.

12.7.3.1	ARs	Don’t	Go	in	the	RTM

The	 purpose	 of	 the	 traceability	 matrix	 is	 to	 be	 able	 to	 trace
requirements	 of	 designs	 and	 tests	 to	 ensure	 that	 the	 system
successfully	 meets	 all	 requirements.	 While	 one	 could	 argue
that	test	logs	belong	in	the	RTM,	most	people	don’t	bother	to
put	them	there	because	they	normally	attach	test	logs	directly
to	the	completed	test	procedures.

Anomalies,	 on	 the	 other	 hand,	 aren’t	 something	 whose
existence	 you’re	 trying	 to	 prove;	 indeed,	 in	 a	 perfect	 world
you’re	 trying	 to	 disprove	 the	 existence	 of	 anomalies.	 This
doesn’t	mean	you	discard	ARs.	Just	as	with	test	logs,	it’s	very
important	 to	 keep	 all	 the	 old	 ARs	 around—they	 provide

valuable	 proof	 that	 you’ve	 done	 your	 due	 diligence	 when
testing	 the	 system.	More	 importantly,	 you	want	 to	 keep	ARs
for	 regression	 purposes.	 Sometimes	 long	 after	 a	 defect	 has
been	discovered	and	corrected,	it	finds	its	way	into	the	system
again.	Having	a	historical	record	of	ARs	makes	it	possible	to
go	back	and	examine	the	original	cause	and	its	solution.

12.7.3.2	Electronic	vs.	Paper	ARs

As	this	chapter	noted	earlier,	most	organizations	use	a	defect-
tracking	 system	 to	 capture	 and	 track	ARs.	Although	Std	 829
doesn’t	 specifically	 suggest	 or	 require	 paper	 documents
(indeed,	Std	829	points	out	that	you	can	use	software	to	track
anomalies),	 the	 outline	 form	 tends	 to	 suggest	 a	 hardcopy
format.	But	given	 that	most	organizations	use	defect-tracking
software,	why	bother	with	hardcopy	ARs?	The	main	reason	is
portability	 in	 the	 “you	 can	 carry	 it	 with	 you”	 sense.	 While
using	 the	 defect-tracking	 system	 makes	 a	 lot	 of	 sense	 for
system	 integration,	 factory	 acceptance	 tests,	 and	 other	 tests
done	at	the	development	site	where	there	is	easy	access	to	the
tracker,	in	some	cases	it	may	not	be	available	or	accessible	at
an	 installation	 during	 a	 site	 acceptance	 test. 	 In	 such
situations,	creating	ARs	on	paper	and	then	entering	them	into
the	defect-tracking	system	when	possible	is	probably	the	best
approach.

12.8	TEST	REPORTS
When	 testing	 is	 completed,	 a	 test	 report	 summarizes	 the
results.	 As	 for	 many	 of	 the	 other	 test	 documents,	 Std	 829
describes	a	wide	variety	of	 test	 reports	you	can	produce.	Std
829	defines	Level	 Interim	Test	Status	Reports	(LITSR),	Level

24

Test	 Reports	 (LTR),	 and	 Master	 Test	 Reports	 (MTR).	 Of
course,	 you	 can	 substitute	 Component,	 Component
Integration,	System,	 and	Acceptance	 in	 place	 of	 Level	 (with
the	usual	common	names	as	well).

A	 very	 large	 organization	 might	 need	 to	 produce	 interim
test	reports	so	management	can	figure	out	what’s	going	on	in
an	 equally	 large	 system.	 For	 more	 information	 on	 LITSRs,
refer	 to	 IEEE	 Std	 829-2008;	 they	 are,	 quite	 frankly,
documentation	for	documentation’s	sake	for	most	projects,	but
large	governmental	contracts	might	explicitly	require	them.

Level	and	Master	Test	Reports	vary	according	to	the	size	of
the	 project.	 Most	 small	 to	 medium-sized	 systems	 with
(typically)	 a	 single	 software	 application	 and,	 therefore,	 a
single	STP,	will	have	a	single	test	report,	if	any	at	all.

Once	 a	 system	 grows	 to	 the	 size	 that	 it	 contains	 several
major	software	applications,	there	will	usually	be	a	test	report
for	each	major	application	and	then	an	MTR	as	a	summary	of
the	 results	 from	 the	 individual	 test	 reports.	 The	MTR,	 then,
provides	an	executive-level	review	of	all	the	tests.

12.8.1	Brief	Mention	of	the	Master	Test	Report
As	 the	 MTR	 is	 generally	 not	 a	 document	 that	 individual
developers	will	deal	with,	this	section	will	simply	present	the
Std	 829-suggested	 outline	without	 further	 comment	 and	 then
concentrate	on	LTRs.

1	Introduction

1.1	Document	Identifier

1.2	Scope

1.3	References

2	Details	of	the	Master	Test	Report

2.1	Overview	of	All	Aggregate	Test	Results

2.2	Rationale	for	Decisions

2.3	Conclusions	and	Recommendations

3	General

3.1	Glossary

3.2	Document	Change	Procedures	and	History

For	more	information	on	the	MTR,	see	IEEE	Std	829-2008.

12.8.2	Level	Test	Reports
Although	 you	 could	 have	 component/unit	 test	 reports	 and
component	 integration	 test	 reports,	 most	 organizations	 leave
unit	and	integration	testing	to	the	development	department,	as
upper	management	generally	doesn’t	care	about	the	low-level
details.	 Thus,	 the	 most	 common	 Level	 Test	 Reports	 (LTRs)
you’ll	 see	 will	 be	 System	 (Integration)	 Test	 Reports	 and
Acceptance	 Test	 Reports,	 typically	 Factory	 Acceptance	 Test
Reports	 and	 Site	 Acceptance	 Test	 Reports.	 Std	 829	 outlines
LTRs	as	follows:

1	Introduction

1.1	Document	Identifier

1.2	Scope

1.3	References

2	Details

2.1	Overview	of	Test	Results

2.2	Detailed	Test	Results

2.3	Rationale	for	Decisions

2.4	Conclusions	and	Recommendations

3	General

3.1	Glossary

3.2	Document	Change	Procedures	and	History

Sections	1	(“Introduction”)	and	3	(“General”)	are	the	same
as	for	most	other	Std	829	test	documents	 in	 this	chapter.	The
core	 of	 the	 test	 report	 is	 in	 Section	 2	 (“Details”).	 The
following	subsections	describe	its	contents.

12.8.2.1	Overview	of	the	Test	Results

This	 section	 is	 a	 summary	 of	 the	 test	 activities.	 It	 would
briefly	 describe	 the	 features	 covered	 by	 the	 tests,	 testing
environment,	 software/hardware	 version	 numbers,	 and	 any
other	general	information	about	the	test.	The	overview	should
also	 mention	 if	 there	 was	 anything	 special	 about	 the	 testing
environment	that	would	yield	different	results	if	the	test	were
conducted	in	a	different	environment,	like	a	factory.

12.8.2.2	Detailed	Test	Result

Summarize	 all	 the	 results	 in	 this	 section.	 List	 all	 anomalies
discovered	and	their	resolution.	If	the	resolution	to	a	defect	has
been	deferred,	be	sure	to	provide	justification	and	discuss	the
impact	that	defect	will	have	on	the	system.

If	 there	 were	 any	 deviations	 from	 the	 test	 procedure,
explain	 and	 justify	 those	 deviations.	 Describe	 any	 changes
(redlines)	to	the	test	procedures.

This	section	should	also	provide	a	confidence	 level	 in	 the
testing	process.	For	example,	if	the	testing	process	focuses	on
code	 coverage,	 this	 section	 should	 describe	 the	 estimated

percentage	 of	 code	 coverage	 that	 the	 testing	 processing
achieved.

12.8.2.3	Rationale	for	Decisions

If	 the	 team	 had	 to	 make	 any	 decisions	 during	 the	 testing
process	 such	 as	 deviations	 from	 test	 procedures	 or	 failure	 to
correct	 known	 anomalies,	 this	 section	 should	 provide	 the
rationale	 for	 those	 decisions.	 This	 section	 might	 also	 justify
any	conclusions	reached	(in	the	next	section).

12.8.2.4	Conclusions	and	Recommendations

This	section	should	state	any	conclusions	emanating	from	the
test	 processing.	 This	 section	 should	 discuss	 the	 product’s
fitness	for	release/production	use,	and	recommend	possibilities
such	as	disabling	certain,	possibly	known,	anomalous	features
to	 allow	 early	 release	 of	 the	 system.	 This	 section	 could	 also
recommend	 stalling	 the	 release	 pending	 further	 development
and	possible	debugging.

12.9	DO	YOU	REALLY	NEED	ALL
OF	THIS?
IEEE	 Std	 829-2008	 describes	 a	 huge	 volume	 of
documentation.	 Do	 you	 really	 need	 to	 create	 all	 this
documentation	for	the	next	“killer	app”	you’re	developing	by
yourself	 in	 your	 home	 office?	Of	 course	 not.	 Except	 for	 the
largest	(government-sponsored)	applications,	the	vast	majority
of	 the	 documentation	 described	 in	 Std	 829	 is	 complete
overkill.	For	normal	projects,	you’ll	probably	want	to	have	the
STC,	SRL,	and	STP	documents. 	Test	logs	will	simply	be	an
appendix	 to	 the	 STP.	 Anomaly	 Reports	 would	 be	 entries	 in

25

your	 defect-tracking	 system	 (from	 which	 you	 can	 produce
hardcopy	reports).

You	 can	 also	 reduce	 the	 size	 of	 your	 STC	 and	 STP
documents	 by	 using	 automated	 testing.	 You	 probably	 can’t
eliminate	 all	 manual	 tests,	 but	 you	 can	 get	 rid	 of	 many	 of
them.

Test	 reports	 are	 easy	 enough	 to	 eliminate	 in	 smaller
projects.	The	test	log	at	the	end	of	the	STP	will	likely	serve	as
a	 reasonable	 alternative	 unless	 you	 have	 multiple	 levels	 of
management	demanding	full	documentation.

Agile	development	methodologies	might	seem	like	a	good
alternative	 for	 reducing	 the	 cost	 of	 all	 this	 documentation.
However,	keep	in	mind	that	developing,	validating,	verifying,
and	maintaining	 all	 those	 automated	 test	 procedures	 also	has
an	associated—and	often	equivalent—cost.

12.10	FOR	MORE	INFORMATION
Dingeldein,	 Tirena.	 “5	 Best	 Free	 and	 Open	 Source	 Bug

Tracking	 Software	 for	 Cutting	 IT	 Costs.”	 September	 6,
2019.	 https://blog.capterra.com/top-free-bug-tracking-
software/.

IEEE.	“IEEE	Std	829-2008:	IEEE	Standard	for	Software	and
System	 Test	 Documentation.”	 July	 18,	 2008.
http://standards.ieee.org/findstds/standard/829-2008.html.
This	is	expensive	($160	US	when	I	last	checked),	but	this
is	 the	 gold	 standard.	 It’s	 more	 readable	 than	 the	 SDD
standard,	but	still	heavy	reading.

Peham,	 Thomas.	 “7	 Excellent	 Open	 Source	 Bug	 Tracking

https://blog.capterra.com/top-free-bug-tracking-software/
http://standards.ieee.org/findstds/standard/829-2008.html

Tools	 Unveiled	 by	 Usersnap.”	 May	 8,	 2016.
https://usersnap.com/blog/open-source-bug-tracking/.

Plantation	 Productions,	 Inc.	 “Open	 Source/Open	 Hardware:
Digital	 Data	 Acquisition	 &	 Control	 System.”	 n.d.
http://www.plantation-
productions.com/Electronics/DAQ/DAQ.html.	 This	 is
where	 you’ll	 find	 the	 DAQ	 Data	 Acquisition	 Software
Review,	Software	Test	Case,	Software	Test	Procedures,	and
Reverse	Traceability	Matrix.

Software	Testing	Help.	“15	Best	Bug	Tracking	Software:	Top
Defect/Issue	Tracking	Tools	of	2019.”	November	14,	2019.
http://www.softwaretestinghelp.com/popular-bug-tracking-
software/.

Wikipedia.	 “Bug	 Tracking	 System.”	 Last	 modified	 April	 4,
2020.	https://en.wikipedia.org/wiki/Bug_tracking_system.

https://usersnap.com/blog/open-source-bug-tracking/
http://www.plantation-productions.com/Electronics/DAQ/DAQ.html
http://www.softwaretestinghelp.com/popular-bug-tracking-software/
https://en.wikipedia.org/wiki/Bug_tracking_system

AFTERWORD:	DESIGNING	GREAT
CODE

In	the	introduction,	I	explained	how	there	wasn’t	space	in	this
book	for	many	of	the	topics	that	Volume	2	promised	would	be
included	here.	Expect	to	see	those	topics	in	Volumes	4,	5,	and
6:

Volume	4:	Designing	Great	Code

Volume	5:	Great	Coding

Volume	6:	Testing,	Debugging,	and	Quality	Assurance

Assuming	I’m	still	alive	to	finish	this	series,	I	might	add	a
book	on	user	documentation	to	the	list.	About	the	only	thing	I
can	 promise	 is	 that	 there	 won’t	 be	 as	 large	 a	 gap	 between
Volumes	3	and	4	as	there	was	between	Volumes	2	and	3!

Volume	4,	Designing	Great	Code,	will	 pick	 up	where	 the
second	half	of	this	book	left	off.	In	this	volume	you’ve	learned
how	 to	 document	 the	 software	 development	 process;	 in
Volume	4	you’ll	learn	more	about	the	design	process	and	how
to	apply	the	knowledge	you’ve	gained	to	design	great	code.

GLOSSARY

A

Accessor	 function	 A	 function	 whose	 sole	 purpose	 is	 to
provide	read	or	write	access	to	an	otherwise	private	member	of
some	object.

ACM	Association	for	Computing	Machinery

Activity	 diagram	 A	 UML	 flowcharting	 scheme	 that
graphically	indicates	the	flow	of	control	through	some	design.

Actor	External	entity	that	interacts	with	or	otherwise	controls
a	system.

Aggregation	A	relationship	where	one	class	(the	whole	class)
controls	 another	 class	 (the	 parts	 class).	The	parts	 class	 could
be	stand-alone	(used	by	itself	or	other	classes),	but	the	whole
class	cannot	exist	without	the	parts	class.

Alternative	 flow	 A	 condition	 section	 in	 a	 Flow	 of	 Events
scenario—typically,	where	error	or	exceptional	conditions	are
handled.

Amateur	programmer	A	novice	or	a	programmer	who	lacks
formal	 training,	who	 engages	 in	 programming	without	 talent
or	 skill,	 or	 who	 prioritizes	 writing	 clever	 code	 to	 impress
others	over	making	code	more	readable	and	maintainable.

Anomaly	 Report	 A	 formal	 document	 (electronic	 or	 hard

copy)	reporting	an	instance	of	a	defect	in	a	software	system.

Apprentice	 A	 person	 learning	 by	 practical	 experience	 under
skilled	workers.

AR	Anomaly	Report

ASD	Adaptive	Software	Development

AT	Acceptance	Test

B

Backdoor	 An	 exploit	 that	 a	 computer	 programmer
preprograms	into	a	system	to	allow	anyone	with	knowledge	of
the	backdoor	to	bypass	system	security.

Best	practices	 A	 set	 of	well-known	 procedures	 or	 processes
that	have	proved	to	produce	successful	and	efficient	results.

Black-box	 test	data	 Input	 data	 for	 tests	 that	 is	 generated	by
considering	only	the	system’s	functionality,	without	looking	at
the	source	code.

BSCS	Bachelor	of	Science	in	Computer	Science

Bug	Report	See	Anomaly	Report.

C

CACM	Communications	of	the	ACM	(journal)

CASE	Computer-Aided	Software	Engineering

Case-neutral	 An	 identifier	 is	 case-neutral	 if	 it	 would	 be
accepted	by	a	compiler	 that	 is	either	case-insensitive	or	case-
sensitive	(that	is,	the	compiler	would	not	permit	two	identifiers
that	differ	only	by	alphabetic	case).

Catastrophic	 integrity	 level	 A	 definition	 for	 software	 such
that	 the	 consequences	 of	 failure	 are	 disastrous	 (including
death,	 system	 destruction,	 environmental	 damage,	 or	 huge
financial	loss).

Change-driven	 process	 A	 development	 process	 that
anticipates	 changes	 in	 requirements,	 resources,	 technology,
and	performance	as	 the	project	progresses,	and	 is	 focused	on
delivering	value	incrementally.

Coarse-grained	Low	level	of	detail.

Code	 coverage	 The	 percentage	 of	 the	 source	 code	 that
executes	based	on	a	set	of	input	(test)	data.	Code	coverage	of
100	 percent	 implies	 that	 every	 statement	 in	 the	 program
executes	at	least	once	given	the	corresponding	set	of	inputs.

Code	 drivers	 Temporary	 testing	 code	 used	 to	 simulate	 a
function	when	the	real	function	doesn’t	yet	exist.

Code	monkey	 Derogatory	 term	 for	 an	 amateur	 programmer.
Also	see	Cowboy	coder.

Code	 refactoring	 Restructuring	 code	 to	 improve	 the	 source
without	changing	the	external	behavior	of	the	software.

Code	 scaffolding	 Temporary	 testing	 code	 used	 to	 call
functions	 that	 are	 part	 of	 a	 system	 (when	 the	 system	doesn’t

yet	 contain	 code	 to	 call	 those	 functions	 or	 the	 system	 code
isn’t	stable	or	able	to	call	the	function	code).

Code	spike	A	brief	coding	activity	by	a	single	person	to	test	a
theory	or	to	prototype	some	code	(usually	throwaway	code).

Coder	An	engineer	responsible	for	writing	computer	code.

Conceptual	complexity	 Complexity	 resulting	 from	 a	 system
whose	components	are	difficult	to	understand.

Constraint	A	restriction	on	the	domain	or	range	of	some	value
or	function.

COTS	Commercial	Off-the-Shelf.	Basically,	 any	 system	you
can	purchase	on	the	open	market	that	is	not	custom-designed.

Cowboy	 coder	 Generally,	 a	 synonym	 for	 an	 amateur
programmer—one	who	writes	 code	without	 formal	 processes
or	consideration	for	others.

Cowboy	 coding	 Software	 development	 where	 programmers
have	 autonomy	 over	 the	 development	 process.	 This	 includes
control	of	the	project’s	schedule,	languages,	algorithms,	tools,
frameworks,	and	coding	style.	(Source:	Wikipedia.)

CPM	Critical	Path	Method

CPU	Central	Processing	Unit

Cracker	A	criminal	who	illegally	accesses	computer	systems
or	 computer	 data	 by	 stealing	 passwords	 or	 employing	 other
system	exploits.

Craftsman	 One	 who	 creates	 or	 performs	 with	 skill	 or
dexterity.

Critical	 integrity	 level	 A	 level	 of	 performance	 where
software	 must	 execute	 properly	 or	 there	 could	 be	 serious
problems	 including	 permanent	 injury,	 major	 performance
degradation,	environmental	damage,	or	financial	loss.

Critical	 section	 A	 section	 of	 code	 that	 cannot	 support
concurrent	execution	by	multiple	threads.

D

DAQ	 Shortened	 name	 for	 the	 Plantation	 Productions	Digital
Data	 Acquisition	 system.	 See	 http://www.plantation-
productions.com/Electronics/DAQ/DAQ.html.

DAQ_IF	 DAQ	 interface	 board.	 A	 circuit	 board	 containing
level	 shifters,	 a	 watchdog	 timer,	 I2C	 multiplexer,	 and	 other
SBC	 support	 circuitry	 for	 the	 Plantation	 Productions	 DAQ
system.

Defect	Report	See	Anomaly	Report.

Delphi	 An	 object-oriented	 programming	 language	 based	 on
(Object)	 Pascal.	 Originally	 created	 by	 Borland	 International,
currently	marketed	by	Embarcadero,	Inc.

Derived	value	An	attribute	(data	field	of	a	class)	is	derived	if
its	value	is	computed	on	each	access	rather	than	retrieved	from
memory.

http://www.plantation-productions.com/Electronics/DAQ/DAQ.html

Design	attribute	Anything	in	a	design	that	 is	a	characteristic
of	a	design	entity,	relationship,	or	constraint.

Design	 constraint	 Any	 restriction	 or	 rule	 that	 applies	 to	 a
design	element,	attribute,	or	relationship.

Design	 element	 Any	 item	 occurring	 in	 a	 design	 that	 is
structurally	 or	 functional	 distinct	 from	 other	 items	 in	 the
design.	 Any	 item	 that	 is	 part	 of	 a	 design	 including	 design
entities,	relationships,	attributes,	or	constraints.

Design	 entity	 A	 major	 component	 of	 a	 design,	 such	 as	 a
library,	component,	or	program	unit.

Design	patterns	Generic	templates	for	common	programming
tasks.

Design	 relationship	 A	 design	 element	 that	 names	 a
connection	or	correspondence	between	design	entities.

Deterministic	 In	 a	 deterministic	 system,	 the	 same	 series	 of
inputs	 produces	 the	 same	 flow	 of	 activity	 with	 the	 same
outcomes.

DRY	Don’t	 repeat	yourself.	Duplicate	code	 is	complex	code.
See	also	OAOO.

Due	 diligence	 (in	 software	 development)	 Research	 and
quality	 assurance	 tasks	 that	 a	 development	 team	 does	 to
prepare	for	the	release	of	a	software	system.

E

Elitism	The	belief	 that	belonging	 to	a	select	group	makes	an
individual	better	than	others	outside	that	group.

Empirical	 Originating	 in	 or	 being	 based	 on	 observation	 or
experience,	as	opposed	to	being	based	on	theory	alone.

Encapsulation	 Hiding	 information	 inside	 an	 object	 so	 that
external	 entities	 cannot	 access	 it.	Also	known	as	 information
hiding.

Ethics	A	system	or	set	of	moral	principles.

Event	 External	 stimulus	 to	 a	 system	 that	 often	 causes	 a
transition	from	one	state	to	another	or	initiates	the	execution	of
some	activity.

F

FAT	Factory	Acceptance	Test

FDD	Feature-Driven	Development

Feature	creep	Constantly	adding	new	features	to	the	system.

Fine-grained	Highly	detailed.

Flow	 of	 Events	 (UML)	 Step-by-step	 description	 of	 how	 an
external	actor	interacts	with	a	system	during	the	execution	of	a
use	case.

Flowchart	A	graphical	representation	of	control	flow	through
a	program.

FPA	See	Function	Point	Analysis.

Framework	 A	 software	 library	 containing	 a	 skeletal
component	of	an	application	into	which	a	programmer	injects
application-specific	code.

Functional	 Requirements	 Specification	 (FRS)	 External
requirements	provided	by	a	customer	for	a	software	system.

Function	Point	Analysis	A	software	metric	that	considers	the
number	of	 inputs,	outputs,	and	basic	computations	a	program
requires.

G

Gantt	charts	Resource	scheduling	charts	that	specify	resource
usage	over	time.

Getter	An	accessor	function	that	returns	the	value	of	a	private
member	of	some	object.

GMP	Grand	Master	Programmer

Gold	 plating	 Padding	 a	 system	 with	 unnecessary	 or
unrequested	features.

Grand	 Master	 Programmer	 A	 programmer	 who	 is
approximately	 10	 times	 (or	 better)	more	 productive	 than	 the
least	productive	programmer.

Guards	 (UML)	 A	 conditional	 expression	 attached	 to	 a
transition	 in	 a	 UML	 activity	 diagram.	 The	 transition	 occurs
only	if	the	expression	evaluates	as	.

H

Hacking	 Writing	 code	 without	 any	 formal	 development
process	in	place.	Also	see	cowboy	coding.

HLL	High-level	language

HRS	Hardware	Requirements	Specification

HTML	 HyperText	 Markup	 Language.	 An	 early	 standard
language	for	creating	web	pages.

I

IDE	Integrated	Development	Environment.	Usually	a	software
tool	 that	 combines	 an	 editor,	 compiler,	 linker,	 debugger,	 and
other	software	tools	into	the	same	package.

IEEE	 The	 Institute	 of	 Electrical	 and	 Electronics	 Engineers.
This	is	an	umbrella	organization	that	also	covers	computer	and
software	engineers.

In	the	zone	Mentally	focused	on	the	current	task.

Incremental	 model	 A	 software	 development	 model	 that	 is
similar	to	the	iterative	model,	but	involves	putting	more	work
into	 the	 initial	 design	 with	 only	 minor	 (incremental)
improvements	after	the	initial	implementation.

Information	hiding	See	encapsulation.

Integration	 testing	 Combining	 (usually	 independently
pretested)	program	units	together	and	testing	them	to	see	if	the

units	communicate	properly	with	each	other.

Integrity	 level	An	ordinality	 assigned	 to	 a	 piece	of	 software
describing	 its	 importance	 and	 risk	 to	 stakeholders.	 IEEE	Std
829-2008	 defines	 four	 integrity	 levels:	Catastrophic,	Critical,
Marginal,	and	Negligible.

IoT	Internet	of	Things

IP	Intellectual	property	(also:	internet	protocol)

Iterative	model	A	software	model	 that	runs	 through	multiple
cycles	 of	 requirements,	 coding,	 testing,	 demonstration,	 and
feedback	 in	 order	 to	 validate	 the	 design	 (that	 is,	 to	 ensure	 it
properly	satisfies	the	end	users	of	the	software).

J

JBGE	Just	barely	good	enough

Journeyman	A	worker	who	has	learned	a	trade	and	works	for
another	person.

K

K&R	Kernighan	and	Ritchie	(authors	of	The	C	Programming
Language).

Killer	 app	 A	 genre-defining,	 massively	 selling,	 popular
application.

KLOC	Thousands	of	lines	of	code

L

Large-scale	 project	 A	 software	 project	 that	 requires	 a	 large
team	(more	than	5	to	10	people)	to	create.

Lead	 programmer	 The	 engineer	 directly	 in	 charge	 of	 a
particular	software	project.

Learning	curve	The	graph	of	the	time	it	takes	a	programmer
to	learn	a	concept	versus	their	productivity	with	respect	to	that
concept.	Specifically,	this	term	describes	the	amount	of	time	it
takes	to	learn	and	become	proficient	in	some	subject.

Lightweight	 process	 A	 process	 that	 requires	 little	 overhead.
In	 software	 development,	 reducing	 documentation	 and
managing	overhead	is	the	hallmark	of	a	lightweight	process.

LITSR	Level	Interim	Status	Report	(document)

LOC	Lines	of	code

LTC	Level	Test	Case	(document)

LTD	Level	Test	Design	(document)

LTL	Level	Test	Log	(document)

LTP	Level	Test	Plan	(document)

LTPr	Level	Test	Procedure	(document)

LTR	Level	Test	Report	(document)

M

Man-hour	 A	 unit	 of	 one	 hour	 of	 work	 performed	 by	 one
person.	Used	for	accounting	purposes.

Marginal	 integrity	 level	 A	 level	 of	 performance	 where
software	 must	 execute	 properly,	 or	 there	 may	 be	 (minor)
incorrect	results	and	some	program	functionality	lost.

MBA	Master	of	Business	Administration

Medium-sized	 projects	 Projects	 that	 require	 a	 small	 team
(typically	five	people	or	fewer)	to	accomplish	in	a	reasonable
amount	of	time.

Metaphor	A	figurative	representation	of	a	real	situation,	often
used	as	an	analogy.	For	example,	“It’s	 like	shooting	fish	 in	a
barrel”	is	a	metaphor	meaning	something	is	very	easy	to	do.

Milestone	 A	 significant	 (and	 often	 articulated)	 point	 in
development.

Mnemonic	A	memory	aid.

MSCS	Master	of	Science	in	Computer	Science

MTP	Master	Test	Plan	(document)

MTR	Master	Test	Report	(document)

Multiplicity	 An	 expression	 denoting	 a	 counting	 relationship
between	 two	 objects	 (or	 the	 number	 of	 elements	 associated
with	a	single	object).	Can	also	 represent	one-to-many,	many-
to-one,	and	other	unbounded	relationships.

N

Negligible	integrity	level	A	software	performance	level	below
which	some	expected	functionality	might	not	be	present	in	the
system	but	no	serious	consequences	will	result.

NRC	 Nuclear	 Regulatory	 Commission	 (a	 US-based
governmental	 agency	 that	 oversees	 many	 of	 the	 nuclear
reactors	in	the	United	States).

O

OAOO	Once	and	only	once	(see	also	DRY).

Overhead	 Activities	 that	 add	 time	 and	money	 to	 a	 project’s
cost	but	don’t	directly	contribute	to	getting	the	work	done.

P

Penta-rectangle	A	rectangle	with	the	lower	right-hand	corner
folded	in	(which	actually	makes	it	a	pentagon).

Personal	software	engineering	Processes	and	methodologies
that	apply	to	a	single	programmer	working	on	a	small	project
or	on	their	portion	of	a	larger	project.

PERT	Program	Evaluation	Review	Technique

Polymorphism	The	ability	 to	 take	on	different	 forms	 (types)
based	on	context.

Productivity	 The	 number	 of	 unit	 tasks	 completed	 in	 a	 unit

amount	of	time	or	for	a	given	cost.

Project	head	The	engineer	or	manager	directly	in	charge	of	a
project	(or	portion	of	a	project).

PSP	 Personal	 Software	 Process	 (see	Watts	 S.	Humphrey’s	A
Discipline	for	Software	Engineering).

Q

QA	Quality	Assurance

R

R&D	Research	and	development

Rapid	 Application	 Development	 (RAD)	 A	 lightweight
version	 of	 the	 Spiral	 development	 model	 emphasizing
prototypes	and	VHLLs.

Real	 hours	 The	 amount	 of	 real	 time	 (“wall	 clock	 time”	 or
“calendar	 time”)	 consumed	 by	 a	 project	 regardless	 of	 the
number	of	people	working	on	it	(see	also	man-hour).

Regression	 test	 A	 test	 to	 ensure	 that	 something	 that	 was
previously	 working	 hasn’t	 broken	 (regressed)	 in	 the	 current
version	of	the	software.

Requirement	 A	 mandatory	 goal	 associated	 with	 a	 software
system.

Requirement	gap	Features	 (and	associated	 tests)	 that	 should

be	 in	 a	 program	 to	 satisfy	 user	 needs,	 but	 do	 not	 appear	 as
actual,	documented	requirements	for	the	software.

Reverse	 Traceability	 Matrix	 (RTM)	 A	 document/database
that	allows	the	reader	to	trace	features	in	documentation	(such
as	 the	 STP,	 STC,	 and	 SDD)	 back	 to	 their	 original
requirements.

RFP	Request	for	Proposal,	a	request	for	a	bid	from	vendors	to
supply	products	or	services.

Risk	 assessment	 Evaluation	 of	 the	 risks	 associated	 with	 a
project	 and	 attempting	 to	 quantify	 those	 risks,	 allowing	 for
mitigating	them.

RTM	 Reverse	 Traceability	 Matrix.	 Also	 known	 as	 the
Requirements	Traceability	Matrix.

S

SAT	Site	Acceptance	Test

SBC	Single-board	computer

Scaffolding	See	code	scaffolding.

Scale	down	Modifying	a	process	that	works	for	a	large	project
so	it	will	work	for	a	smaller	project.

Scaling	up	Modifying	a	process	that	works	for	a	small	project
so	it	will	work	for	a	larger	project.

Scenario	(UML)	A	single	path	through	a	use	case.

Scope	 complexity	 Complexity	 resulting	 when	 the	 size	 of	 a
system	 becomes	 too	 large	 for	 a	 single	 person	 to	 completely
understand	the	whole	system.

SDD	Software	Design	Description

SDLC	Software	Development	Life	Cycle

Self-validating	A	test	is	self-validating	if	the	simple	execution
of	that	test	runs	properly	(that	is,	without	crashing	the	system
or	indicating	errors).

Setter	 A	 function	 that	 allows	 a	 caller	 to	 write	 a	 value	 to	 a
private	member	of	some	object.

Small-scale	 projects	 Software	 systems	 than	 can	 be	 easily
produced	by	a	single	engineer	in	a	reasonable	amount	of	time.

SMS	Short	Message	Service,	a	text	message	on	a	cell	phone.

Software	crisis	A	situation	 in	which	 the	need	for	software	 is
expanding	 faster	 than	 the	 supply	 of	 programmers	 who	 can
write	that	software.

Software	development	model	An	abstraction	of	the	software
development	 process	 that	 helps	 engineers	 understand	 how	 to
compare	different	approaches	to	software	development.

Software	 engineering	 The	 study	 of	 the	 development	 and
management	of	large	software	systems.

Software	 IC	 A	 standardized	 software	 module	 that	 can	 be
plugged	 into	 arbitrary	 applications,	 much	 like	 how	 an
integrated	 circuit	 (IC)	 could	 be	 plugged	 into	 an	 electronic

circuit.

Software	methodology	A	system	of	principles—as	well	as	a
set	 of	 ideas,	 concepts,	 methods,	 techniques,	 and	 tools—that
defines	the	style	of	software	development.

Spiral	model	 An	 iterative	 software	 development	 model	 that
repeats	four	phases:	planning,	design,	risk	analysis/evaluation,
and	construction.

SPM	 Swimming	 pool	 monitor,	 a	 software	 system	 example
used	throughout	this	book.

Sprint	A	 short	 amount	 of	 time,	 typically	 one	 to	 four	weeks,
allotted	to	complete	a	software	development	task.

SRL	Software	Review	List	(document)

SRS	Software	Requirements	Specification	(document)

Stakeholder	An	 individual	or	other	party	 that	has	an	 interest
in	the	design	and	development	of	a	system.

Standard	 library	 A	 set	 of	 standardized	 functions	 and
subroutines,	often	tied	to	a	specific	programming	language	or
framework,	to	achieve	common	tasks.

Stand-up	meeting	 A	 meeting	 where	 every	 (capable)	 person
remains	 standing.	 This	 forces	 the	 meeting	 to	 be	 short	 and
focused,	 as	 people	 don’t	 want	 to	 stand	 for	more	 than	 a	 few
minutes.

State	 diagram	 A	 graphical	 representation	 showing	 how	 a
system	transitions	from	one	state	to	another.

STC	Software	Test	Cases

Stereotype	An	extension	mechanism	 for	UML	 to	create	new
elements.

STP	Software	Test	Procedures

SyRS	System	Requirements	Specification	(document)

T

TBD	To	be	determined

TDD	Test-driven	development

Test-driven	 development	 (TDD)	 A	 software	 development
process	 in	 which	 you	 develop	 tests	 first	 and	 then	 write	 the
code	that	satisfies	these	tests.

Throwaway	programs	Small	programs	that	are	written	once,
used	once	or	only	a	 few	 times,	and	 then	discarded	and	never
used	again.

Time	 to	 market	 The	 time	 between	 the	 initial
conceptualization	 of	 a	 product	 and	 its	 first	 delivery	 to
customers.

Traceability	matrix	See	Reverse	Traceability	Matrix.

Trigger	(UML)	External	event	that	causes	the	execution	of	a
use	case.

U

UML	Unified	Modeling	Language

Unit	 testing	 Testing	 small	 program	units	 (such	 as	 functions)
independently	of	the	rest	of	the	system.

UPS	Uninterruptible	Power	Supply

URL	 Uniform	 Resource	 Locator,	 a	 protocol	 for	 addressing
objects	on	the	internet	(for	instance,	a	web	address).

Use	 case	 A	 list	 of	 actions	 or	 event	 steps	 defining	 the
interactions	 between	 an	 (external)	 actor	 and	 a	 system	 to
achieve	some	goal.

User	 stories	 Requirements,	 features,	 and	 use	 case
documentation.

V

V	 model	 A	 software	 development	 process	 based	 on	 the
Waterfall	model	(see	also	Waterfall	model).

Validation	 The	 process	 of	 showing	 that	 a	 product	meets	 the
needs	of	its	end	users.

Verification	 The	 process	 of	 ensuring	 that	 a	 product	 meets
requirements.

VHLL	Very	high-level	language

W

Waterfall	 model	 A	 software	 development	 process	 whereby
software	 occurs	 in	 distinct	 and	 serial	 steps	 (for	 example,
system	 documentation,	 coding,	 testing,	 deployment,
maintenance,	and	retirement).

Weak	 words	 Imprecise	 words,	 generally	 adjectives,	 that
attempt	to	make	something	sound	better	or	worse	without	any
quantification.

White-box	 test	data	 Input	 test	 data	 generated	 by	 looking	 at
the	 source	 code	 for	 a	 system.	 For	 example,	 to	 achieve	 code
coverage	you	need	to	look	at	the	source	code	to	create	test	data
that	exercises	all	statements	in	a	program.

X

XP	Extreme	Programming

Y

Y2K	 Year	 2000.	 Specifically	 relating	 to	 computer	 software
maintaining	 only	 the	 last	 two	 digits	 of	 a	 year	 (for	 example,
“99”	for	“1999”)	and	being	unable	to	handle	dates	from	2000
and	beyond.

YAGNI	You	aren’t	gonna	need	it.	Avoid	speculative	coding.

INDEX

SYMBOLS
+	(UML	class	visibility	operator),	105

~	(UML	package	class	visibility	operator),	107

*	(iteration	specification	in	UML	sequence	diagrams),	132

-	(UML	private	class	visibility	operator),	106

#	(UML	protected	class	visibility	operator),	107

«component»	stereotype	(UML),	156

«create»	message	in	a	UML	sequence	diagram,	136–137

«destroy»	message	in	a	UML	sequence	diagram,	136–137

«extend»	keyword,	79

{frozen}	UML	constraint,	124

{ordered}	UML	constraint,	121

{readOnly}	UML	property,	112

{static}	UML	property,	112

{unique}	UML	property,	112

A
Acceptance	Test	Cases,	274

Acceptance	Test	Design,	269

Acceptance	Test	Plan,	267

acceptance	testing	(AT),	42,	265

accessor	functions,	106,	109

actions
in	a	requirement,	186
in	a	test	procedure,	295

activation	bars	(sequence	diagrams,	UML),	133

activity	diagrams,	UML,	89–101,	239–251
call	symbols,	96
expression	coverage,	92
partitions,	96,	97
states,	91
state	symbols,	89

actor
in	a	requirement,	186
use	case	element,	74

Adaptive	Software	Development	(ASD),	53

adding	SRL	items	to	the	traceability	matrix,	274

aggregration	relationships,	UML,	116

Agile	Manifesto,	53

Agile	software	methodology
heavyweight	documentation,	54–55
JBGE	(Just	Barely	Good	Enough)	documentation,	55
pair	programming,	54
regression	testing,	53
sprints,	53–54
stand-up	meetings,	54

algorithmic	viewpoint	(SDD),	229,	239

Allocations	column	(RTM),	222

alternative	flows	in	UML	sequence	diagrams,	81,	135

alt	sequence	fragment	(UML),	146

amateur	(programmer	classification),	xxii

ambiguity
in	requirements,	188
in	state	machines,	164

analysis	phase,	software	development,	40

analysis	verification	method	(RTM),	222

analysts	(programmers),	6

annotations	and	comments	(UML),	98

anomaly	logging	during	tests,	293

Anomaly	Reports	(AR),	262,	308–311
assessment	of	urgency,	311
conclusions	and	recommendations,	311
Context	section,	310
correcting	defects,	309
date	and	time	of	defect	occurrence,	308
Description	of	Anomaly	section,	310
Description	of	Corrective	Action	section,	311
Details	section,	310
document	identifier,	309
electronic	versus	paper,	312
Impact	section,	311
information	to	include,	308–309
Introduction	section,	309
References	section,	310
reproducing	defects,	308
Scope	section,	310
summary,	310

workarounds	to	a	defect,	309

anomaly	status,	309

anonymous	ports	(UML),	163

applying	engineering	principles	to	software	development,	12

Apportioning	of	Requirements	section	(SRS),	199

apprenticeship,	7,	13

architects
computer	programmers	as,	6
contribution	to	software	development,	8

AR.	See	Anomaly	Reports

artists
computer	programmers	as,	5
contribution	to	software	development,	8

assert	sequence	fragment,	141

assessment	of	urgency	(AR),	311

associating	test	cases	with	a	test	procedure,	294

associations,	UML
links,	115
names,	115,	118
relationships,	114

Assumptions	and	Dependencies	section	(SRS),	198

asynchronous	messages	in	UML	sequence	diagrams,	129

AT	(acceptance	testing),	42,	265

atomic	requirements,	190

ATP	(Acceptance	Test	Procedure),	289

attributes,	UML
data	types,	110

derived	values,	109
multiplicity,	111
names,	109
syntax,	112
visibility,	109

audit	functions	in	an	SRS,	198

automated	test	procedures,	275–276

automated	unit	testing
Agile,	53
XP,	57

availability	(SRS),	201

B
ball	and	socket	notation	(UML),	156,	163

base	values	in	a	class	(UML),	109

BASIC	programming	language,	xxi

best	practices,	14,	265
Agile,	53

lack	of	in	Scrum,	66
in	software	development,	15

binary	numbering	system,	xxi

black-box-generated	test	data,	276

break	sequence	fragment	(UML),	138,	145

Brief	Description	section	(STP),	294–296

build	by	feature	(FDD),	68

burn-down	chart	in	Scrum,	66

C
C	and	C++	programming	languages,	xxi
C,	C++,	and	C#	programming	languages,	xxi

calling	a	UML	subroutine,	96

CASE	(computer-aided	software	engineering),	50

case	neutrality	in	identifiers,	110

casual	narratives,	81

catch-all	transition	in	a	UML	activity	diagram,	92

changeability,	124

change-driven	process	in	XP,	57

change	history
STC,	280
STP,	292

change	procedures
STC,	280

characteristics	of	good	requirements,	187–193

class	aggregation	relationships	(UML),	116

class	association	relationships	(UML),	115

class	attributes	(UML),	108–112

class	composition	relationships	(UML),	117

class	dependency	relationships	(UML),	114

class	diagrams,	UML,	104,	235,	236,	238

class	inheritance	relationships	(UML),	125

class	interface,	105

class	operators,	UML,	112

class	relationships,	UML,	114–125

cleaning	up	UML	sequence	diagrams,	129

coach	on	XP	team,	56

coder	(programmer	classification),	xxii

coding	in	XP,	57

coding	standards	in	XP,	60

collaboration	diagrams	(UML),	152,	239

collective	ownership	in	XP,	60

collocation	in	XP,	64

comments	and	annotations	(UML),	98

common	setup	for	test	cases,	288

communication	diagrams.	See	collaboration	diagrams	(UML)

Communication	Interfaces	section	(SRS),	197

communication	links,	UML,	74

communication	in	XP,	58

completeness	of	an	SDD,	240

complete	programmer	(programmer	classification),	xxiii

component	diagrams,	UML,	155–158,	236,	237

Component	Integration	Test	Cases,	274

Component	Integration	Test	Design,	269

Component	Integration	Test	Plan,	267

«component»	stereotype	(UML),	156

Component	Test	Cases,	274

Component	Test	Design,	269

Component	Test	Plan,	267

Component	Test	Procedures,	289

composite	structure	diagrams	(UML),	160–163,	236,	238

composition	relationships,	UML,	117

composition	viewpoint	(SDD),	233–235

compound	requirement,	190

computer-aided	software	engineering	(CASE),	50

computer	programmers	as	musicians,	5

conceptual	model	diagrams	(SDD),	44

concurrent	processing	(UML),	96

conditionals	(UML)
decision	points,	92–93
transition	guards,	91–92

condition	for	a	requirement,	186

Configuration	Management	Plan,	280

connectors	(UML),	98

consider	sequence	fragment	(UML),	138

consistency	in	requirements,	187

consistency	in	an	SDD,	240

consistency	in	system	documentation,	171

constraints	in	requirements,	185

Constraints	section	(SRS),	198

constraints,	UML,	121
{frozen},	124

{ordered},	121

timing	in	sequence	diagrams,	133

construction	phase	in	Rapid	Application	Development	model,
50

Context	section
in	an	AR,	310
in	an	STC	document,	278

context	viewpoint	(SDD),	231–233

continuous	integration	in	XP,	63

control	functions	in	an	SRS,	198

correcting	defects,	309

courage	in	XP,	55

craftsmen
computer	programmers	as,	7
contribution	to	software	development,	8

«create»	message	in	a	UML	sequence	diagram,	136–137

creating	requirements,	212–214

criticality	of	an	application	in	an	SRS,	198

critical	requirements,	188

critical	section	of	UML	activity	diagram,	99

customer	representative	in	XP,	56

cutover	phase	in	RAD	model,	50

D
dangerous-to-test	requirements,	222

database	viewpoint	(SDD),	236

data	dictionary
in	a	class	diagram,	235
in	an	SDD,	41

data	fields.	See	class	attributes	(UML)

debriefings	in	XP,	64

decision	points,	92–93

decision	symbols	(UML),	163–165

default	attribute	values	(UML),	111–112

Defect	Reports.	See	Anomaly	Reports

defining	software	systems,	12

definite	loops,	UML,	142

Definitions	section	(SRS),	196

dependency	relationships,	UML,	114,	117

dependency	viewpoint	(SDD),	235–236

deployment	diagrams,	UML,	159–160

deployment	phase,	42

derived	attributes,	253

derived	classes	in	UML,	125

derived	use	cases,	79

derived	values	in	a	class	(UML),	109

Description	of	Anomaly	section	(AR),	310

Description	of	Corrective	Action	section	(AR),	311

design	by	feature	(FDD),	68

design	concerns	in	a	viewpoint	(SDD),	229

Design	Constraints	section	(SRS),	201

design	elements	(SDD),	230

design	entities	(SDD),	230

design	goals	(SRS),	193,	203

design	guidelines,	62

designing	in	XP,	57

design	language	(SDD),	231

design	overlay	(SDD),	241–242

design	patterns	(SDD),	236

design	phase
in	RAD,	50
in	SDD,	41

design	quality	obtained	from	pair	programming,	61

design	rationale	(SDD),	242

design	relationships	(SDD),	230

design	verification	method	(RTM),	222

design	viewpoints	(SDD),	229–239

design	views	(SDD),	239–240

desirable	requirements,	188

«destroy»	message	in	a	UML	sequence	diagram,	136–137

Detailed	Steps	Required	to	Run	This	Test	Procedure	section
(STP),	295

Details	section	(Anomaly	Report),	310

deterministic	defects,	308

deterministic	state	machines,	164

developing	an	overall	model	in	FDD,	67

dialog	(use	case),	81

differentiating	between	branching	and	long	delays	in	UML
sequence	diagrams,	135

difficult-to-test	requirements,	222

document	change	procedures	for	a	test	procedure	(STP),	296

documented	code,	xxi

document	identifier
in	an	AR,	309
in	an	STP,	292

Don’t	repeat	yourself	(DRY)	design	principle,	62

downtime,	201

driver	on	pair	programming	team,	60

dropped	title	box	(UML	sequence	diagrams),	136

DRY	(Don’t	repeat	yourself)	design	principle,	62

duplicate	code,	62

E
economic	benefits	of	pair	programming,	61

education	and	training,	xxiv–xxv,	13

efficiency	and	great	code,	xxi

electronic	test	logs,	307–308

electronic	versus	paper	ARs,	312

elements,	design	(SDD),	230

empirical	processes,	12

encapsulation,	105,	107

end	conditions	(UML),	81

end	state	(UML),	163

engineers
computer	programmers	as,	7
contribution	to	software	development,	8

engineers,	software,	xxiv

enhanceable	code,	xxi

environmental	condition	requirement	in	test	cases	and	test
procedures,	288

environmental	needs	(STC),	279

event	(state	machine),	164

events	(UML),	94–95

exceptions	(use	case),	81

expression	coverage	in	a	UML	activity	diagram,	92

«extend»	keyword,	79

extension,	use	case,	79–80,	81,	85

External	Interfaces	section	(SRS),	199

external	objects	in	a	UML	sequence	diagram,	133

Extreme	Programming	(XP)
change-driven	process,	57
coding	in,	57
coding	standards,	60
collective	ownership,	60
continuous	integration,	63
debriefings,	64
designing,	57
feature	creep,	65
functional	testing,	58
implementation	phase,	58
iterations,	58
listening,	57
metaphors,	59
No	Big	Design	Up	Front,	65
onsite	customer,	59
open	workspace	and	collocation,	64
pair	programming,	54,	60–63
planning	game,	58
priorities	(release	planning),	56
problems	with,	64
refactoring,	60
release	cycles,	58
release	planning,	58
respect,	55

retrospectives,	64
roles,	56
scalability,	65
self-directed	teams,	64
simple	design,	59,	60
simplicity,	55
small	releases	(building	blocks),	7
software	development	activities,	65
steering	phase,	184
sustainable	pace,	59,	63
test-driven	development,	57
testers,	56
testing,	57,	59,	60
unit	tests,	65
user	stories,	56,	59
values	of,	55
whole	team	concept,	55

F
factory	acceptance	(software	development	level),	265

Factory	Acceptance	Test	Cases,	274

Factory	Acceptance	Test	Design,	269

Factory	Acceptance	Test	Plan,	267

Factory	Acceptance	Test	Procedures,	289

faking	test	logs,	307

fast	code,	xxi

feasible	requirements,	187

feature	creep	in	XP,	65

Feature-Driven	Development	(FDD),	66
build	by	feature,	68
design	by	feature,	68
developing	an	overall	model,	67
iteration	zero,	66
plan	by	feature,	67

feedback	in	XP,	55

flat	messages	in	UML	sequence	diagrams,	129

flowcharts.	See	activity	diagrams,	UML

Flow	of	Events	(UML	use	cases),	81

fork	operation	(UML),	96

forward	traceability	(requirements),	192

{frozen}	UML	constraint,	124

fully	dressed	use	case,	81

functional	requirements,	185

Functional	Requirements	section	(SRS),	200

Functional	Requirements	Specification,	171

functional	tests	in	XP,	56,	58

function	return	type,	129

G
generalization	relationship.	See	class	inheritance	relationships

(UML)

generalization,	use	case,	77–79

getter	functions,	106,	109

Glossary	section	(STC),	280

GNU	toolset,	15

Golden	Rule	of	Software	Development,	xxi

gold	plating,	187

graduating	from	a	software	apprenticeship,	14

great	programmers,	characteristics	of,	xxiv

guard	conditions	in	UML	sequence	diagram	messages,	131,
134

guards	(UML),	91

guidelines	for	simple	design,	62

H
hacking,	43

hardware	environmental	needs	(STC),	279

Hardware	Interfaces	section	(SRS),	197

hardware	limitations	(SRS),	198

heavyweight	documentation,	54–55

hexadecimal	numbering	system,	xxi

high-level	language	requirements	(SRS),	198

I
IEEE/EIA	Std	12207.0-1996	[B21],	263

IEEE	Standard	for	Software	and	System	Test	Documentation,
261

IEEE	Std	829-2009	Level	Test	Procedure,	289

IEEE	Std	1016-1998	versus	IEEE	Std	1016-2009,	228

IEEE	Std	1016-2009,	227

if	statements	in	use	case	descriptions,	84

ignore	sequence	fragment,	138

impact	of	a	defect,	309

Impact	section	(AR),	311

imperative	(procedural)	programming	languages,	xxi

implementation-independent	requirements,	190

implementation	phase	in	XP,	58

importance	of	an	apprenticeship,	13

important	requirements,	188

impractical-to-test	requirements,	222

including	test	logs	in	the	RTM,	308

inclusion	(use	case),	77

incompleteness	in	requirements,	188

Incremental	software	development	model,	51–52
disadvantages	of,	51
“keep	the	code	working”	concept,	51

indefinite	loops,	143

industry	best	practices,	14

information	in	an	Anomaly	Report,	308–309

information	viewpoint	(SDD),	236

inheritance,	107

input/output	parameters	(UML),	113

Input	section	(STC),	278

inspection	verification	method	(RTM),	222

Instructions	for	Running	Tests	section	(STP),	293

integration	(software	development	level),	265

Integration	Test	Cases,	274

Integration	Test	Design,	269

Integration	Test	Plan,	267

Integration	Test	Procedures,	289

integration	testing,	11,	41,	265

integrity	levels,	263–265

intellectual	property	(IP),	61

interaction	occurrence	sequence	diagram	(UML),	139

interaction	viewpoint	(SDD),	239

intercase	dependencies	(STC),	280

interface	specifiers,	119–120

interfaces	to	other	applications	(SRS),	198

interfaces	(UML),	156

interface	viewpoint	(SDD),	237

Internet	of	Things,	133

intern	(programmer	classification),	xxii

intern,	software,	7

Introduction	section
in	an	AR,	309
in	an	SRS,	195
in	an	STC,	277

iterations	in	UML	sequence	diagrams,	132

iterations	in	XP,	58

iteration	zero	in	FDD,	66

Iterative	software	development	model,	46–47

J
Java	programming	language,	xxi

JBGE	(Just	Barely	Good	Enough)	documentation,	55

join	operation	(UML),	96

journeyman,	software,	7

junior	programmer	(programmer	classification),	xxii

Just	Barely	Good	Enough	(JBGE)	documentation,	55

K
keeping	test	logs,	306

killer	app,	315

KLOC	(thousands	of	lines	of	code),	10

L
large	projects,	10,	12

lead	programmer,	11

learning	while	pair	programming,	61

legal	jeopardy,	test	logs	and,	308

Level	Interim	Test	Status	Reports,	262,	312

Level	Test	Case,	262

Level	Test	Design,	262

Level	Test	Design	documentation,	269

Level	Test	Logs,	303

Level	Test	Plans,	267–269

Level	Test	Procedures,	262,	289,	290

Level	Test	Reports,	312

lifeline	in	UML	sequence	diagrams,	128

lifetime	of	an	object	in	a	UML	sequence	diagram,	136

lightweight	software	development	models,	50

limiting	APIs,	62

lines	of	code	(LOC),	10

Linux,	15

listening	in	XP,	57

List	of	Test	Cases	Covered	by	This	Procedure	section	(STP),
294

LOC	(lines	of	code),	10

logging	anomalies	during	tests	(STP),	293

Logical	Database	Requirements	section	(SRS),	200

logical	viewpoint	(SDD),	229,	235

long	delays	in	UML	sequence	diagrams,	132–133

looking	for	new	software	development	tools	and	techniques,
14

loop	sequence	fragment	(UML),	138,	141–145

loosely	coupled	classes	(UML),	114

M
maintainability	(SRS),	201

maintainable	code,	xxi

maintaining	documentation,	54

maintenance	phase	of	software	development,	42

management	complexity	in	Spiral	model,	49

manager/tracker	on	XP	team,	56

man-hours	and	real	time,	19

master	craftsman,	15

masterpieces,	software,	15

Master	Test	Plan,	266–267

Master	Test	Reports,	312

medium-sized	projects,	10,	11

Memory	Constraints	section	(SRS),	197

memory	usage	of	great	code,	xxi

merge	points	(UML),	93–94

merging	test	cases	into	a	single	test	procedure,	288

messages	in	UML	sequence	diagrams,	129–130

metaphors,	computer	programming
programmer	as	architect,	6
programmer	as	artist,	5
programmer	as	craftsman,	7
programmer	as	engineer,	7

metaphors	in	XP,	59

minimal	guarantees	(use	case),	81

minimum	viable	product	(MVP),	47

modifiable	requirements,	191

multiple	merge/decision	points	(UML),	94

multiple	requirements	in	one	statement,	190

multiplicity,	120

musicians,	computer	programmers	as,	5

MVP	(minimum	viable	product),	47

N
namespaces	(packages),	UML,	76

naming	a	communication	link	(UML),	163

NATO	and	the	creation	of	software	engineering,	7

natural	talents	of	a	computer	programmer,	5

navigability	(UML),	115,	123

navigator	on	pair	programming	team,	60

neg	sequence	fragment	(UML),	138,	148

Netburner	MOD54415,	213

No	Big	Design	Up	Front	(XP),	65

nodes	(UML),	159

nondeterministic	state	machines,	164

nonfunctional	requirements,	185

nonintelligibility	in	requirements,	189

Notation	for	Description	section
in	STC,	278
in	STP,	290,	292

no	test	verification	method	(RTM),	222

O
object	(in	a	requirement),	186

object-oriented	analysis	and	design	(UML),	103–104

object-oriented	programming	languages,	xxi

Objective	section	(STC),	278

objects	in	UML,	125

old	test	logs,	306

Once	and	only	once	(OAOO)	design	principle,	62

onsite	customer	in	XP,	59

open	hardware,	283

open	source,	283

open	workspace	in	XP,	64

Operations	section	(SRS),	197

operator	return	type,	129

operators,	UML,	112

opt	sequence	fragment	(UML),	138,	146

optimization	in	Spiral-based	software	development	model,	49

optionality	(requirements),	188

{ordered}	constraint	(UML),	121

organizing	test	procedures	by	their	related	activities	(STP),
290

other	allocations	in	an	RTM,	222

other	verification	method	(RTM),	222

Outcome	section	(STC),	279

overgeneralization	in	requirements,	189

overlapping	test	cases,	288

Overview	section	(SRS),	196

P
package	diagrams	(UML),	236,	238

package	visibility	(UML),	107

packages	(UML),	76

pair	programming
Agile,	54
design	quality,	61
driver	role,	60
economic	benefits	of,	61
learning	during,	61
navigator	role,	60

satisfaction,	61
team	building	and	communication,	61
in	XP,	59

parallel	execution	in	UML	diagrams,	149

parallel	operations	(SRS),	198

parameters	in	UML	sequence	diagram	messages,	131

par	sequence	fragment	(UML),	138,	149

partial	class	diagrams	(UML),	104

Pascal	programming	language,	xxi

pass/fail	criteria,	280
in	an	STP,	291

passive	voice	in	requirements,	189

patterns	use	viewpoint	(SDD),	236

penta-rectangle	symbol	in	sequence	diagram,	138

Performance	Requirements	section	(SRS),	200

phases	in	software	development
coding,	41
deployment,	42
design,	41
maintenance,	42
product	conceptualization,	40
requirement	development	and	analysis,	40
retirement,	42
testing,	41

plan	by	feature	(FDD),	67

planning	game	in	XP,	58

polymorphism,	107

portability	(SRS),	203

ports,	162

positively	stated	requirements,	192

post	conditions	(UML),	81

predictive	software	development	methodologies,	52

priorities	(release	planning)	in	XP,	56

private	class	visibility	(UML),	106

problems	with	XP,	64

procedural	programming	languages,	xxi

procedure	identifier/tag	(STP),	294

product	conceptualization	phase,	40

Product	Functions	section	(SRS),	198

product	owner	in	Scrum,	65

programmer/analysts,	6

programmer	classifications
amateurs,	xxii
problem	with,	xxiii
programmers,	xxii

coder,	xxii
complete	programmer,	xxiii
interns,	xxii
junior	programmer,	xxii
Programmer	I	and	II,	xxiii
system	analyst,	xxiii
system	architect,	xxiii

Programmer	I	(programmer	classification),	xxiii

Programmer	II	(programmer	classification),	xxiii

programmer	role	in	XP,	56

project	head,	11

property	strings	(UML),	109,	112

protected	class	visibility	(UML),	107

protocols,	119

provided	interfaces
UML	components,	156
UML	composite	structures,	162

pseudocode,	239

public	class	visibility	(UML),	105

Purpose	section
in	an	SRS,	195
in	an	STP,	290,	294

Q
qualified	names	in	UML	packages,	159

qualifiers	(UML),	122

Quality	Assurance	department,	266

quality	requirements,	185

R
RAD	(Rapid	Application	Development)	model,	49–51

construction	phase,	50
cutover	phase,	50
design	phase,	50
requirements	planning	phase,	50
risk	management,	50

rake	symbol	(UML),	96

Rapid	Application	Development	model.	See	RAD	model

rapid	prototyping,	49

readable	code,	xxi

{readOnly}	property	(UML),	112

redlines	in	test	procedures,	307

reducing	resource	usage	with	test	procedures,	290

refactoring	in	XP,	60

References	section
in	an	AR,	310
in	an	SRS,	196
in	an	STC,	277

ref	sequence	fragment	(UML),	138,	139

region	sequence	fragment	(UML),	138,	151

regression	testing,	53,	276,	290

regulatory	policies	(SRS),	198

relationship	features,	UML,	117

relationship	strength,	UML,	114

Relationship	to	Other	Documents	section	(STP),	292

release	cycles	in	XP,	58

release	planning	in	XP,	58

reliability	(SRS),	198,	201

reproducing	defects	(AR),	308

request	for	proposal	(RFP),	263

required	interfaces	(UML	composite	structures),	162

required	setup	for	an	STP,	291

requirement	gaps,	46

requirement	organization	(SRS),	202

requirement	origins,	185

requirements
atomic,	190
characteristics	of	good,	187–193
compound,	190
consistency,	187
constraints,	185
correctness,	187
creating	in	SRS,	212–214
desirable,	188
difficult	to	test,	222
feasible,	187
gold	plating,	avoiding,	187
implementation-independent,	190
important,	188
impractical	to	test,	222
incompleteness,	ambiguity	as	result	of,	188
modifiable,	191
multiple	in	one	statement,	190
nonfunctional,	185
nonintelligibility	in,	189
optionality,	188
organization,	202
overgeneralization	in,	189
passive	voice	in,	189
portability,	203
positively	stated,	192
prioritized,	187–188
quality,	185
reverse	traceability,	192

for	SDD,	228
subjectivity,	188
for	SyRS,	193
tags	and	traceability,	192
traceability,	192
unbounded	lists,	189
underreference,	189
underspecification,	188
uniqueness,	191
unnecessary,	187
vagueness,	188
verifiable,	190
weak	words	and,	189

requirements	and	architecture	phase	in	V	model,	45

requirements	planning	phase	in	RAD	model,	50

rerunning	test	procedures	(STP),	290

resource	usage	when	running	tests	(STP),	290

resource	viewpoint	(SDD),	239

respect	in	XP,	55

resuming	tests	(STP),	293

retirement	phase,	42

retrospectives	in	XP,	64

return	from	subroutine	in	a	UML	sequence	diagram,	145

return	messages	in	UML	sequence	diagrams,	129

return	type	(UML),	113

return	values	in	UML	class	diagrams,	110

return	values	in	UML	sequence	diagram	messages,	131

reusability	of	UML	components,	155–158

reuse	in	computer	programming,	12

reverse	traceability,	171,	186,	192
in	an	SRS	tag,	175

Reverse	Traceability	Matrix.	See	RTM

review	verification	method	(RTM),	222

RFP	(request	for	proposal),	263

risk	assessment,	263

risk-based	software	development	models,	48

risk	management	in	the	RAD	model,	50

risk	management	in	the	Spiral	development	model,	49

risk	management	in	the	Waterfall	model,	45

robust	code,	xxi

roles	in	XP,	56

roles	(UML),	119

RTM	(Reverse	Traceability	Matrix),	170,	172,	186,	302
adding	SRL	items,	274
Allocations	column,	222
including	test	logs	in,	308
SDD	tag	column,	259
Software	Test/Review	Cases	column,	288
SRS	tag	column,	222
verification	methods,	222

running	test	procedures	in	parallel	(STP),	290

running	tests	(STP	instructions),	293

S
satisfaction	from	pair	programming,	61

SAT	(Site	Acceptance	Test),	265,	289,	291

scalability	in	XP,	65

scaling	up	and	down	(engineering	methodologies),	10,	42

scenario	(use	case),	86

scheduled	downtime,	201

Scope	section
in	an	AR,	310
in	an	SRS,	196
in	an	STC,	277
in	an	STP,	292

scrum	master	in	Scrum,	65

Scrum	methodology,	53,	65
burn-down	chart,	66
product	owner,	65
scrum	master,	65
scrum-of-scrums,	66
sprint	restrospectives,	66
stand-up	meeting,	65

SDD	(Software	Design	Description),	227
completeness	of,	240
conceptual	model	diagrams,	44
definition	of,	170
design	concerns	in	a	viewpoint,	229
design	constraints,	230
design	elements,	230
design	entities,	230
design	overlay,	241–242
design	patterns,	236

design	phase,	41
design	rationale,	242
design	relationship,	242
design	views,	239–240
source	element,	291
state	dynamics	viewpoint,	163
tags,	44
target	element,	230
validation,	183
viewpoint	name,	229
viewpoints

composition,	233–235
context,	231–233
database,	236
dependency,	235–236
design,	229–239
information,	236
interaction,	239
interface,	237
logical,	229
patterns	use,	236
resource,	290
structure,	237

Waterfall	model,	44

SDD	tag	column	(RTM),	259

SDLC	(Software	Development	Life	Cycle),	39–42

secondary	actors	in	use	cases,	81

security	(SRS),	201

seeking	better	approaches	to	designing	applications,	15

self-directed	teams	in	XP,	64

seq	sequence	fragment	(UML),	138,	150

sequence	diagrams,	UML
activation	bars,	133
alternative	flow,	135
asynchronous	messages,	129
consider	sequence	fragment,	138

«create»	message	in,	136–137
creating	objects,	136
«destroy»	message,	136–137
destroying	objects,	136
differentiating	between	branching	and	long	delays,	135
dropped	title	box,	136
external	objects,	133
flat	messages,	129
guard	conditions,	131,	134
ignore	sequence	fragment,	138,	140

indefinite	loops,	143
interaction	occurrence,	139
interaction	viewpoint,	239
iterations,	309
lifelines,	128
long	delays	and	time	constraints,	132–133
loop	sequence	fragment,	141–145

message	parameters,	131
messages,	129–130
neg	sequence	fragment,	148

object	lifetime,	136
opt	sequence	fragment,	138,	146

par	sequence	fragment,	149

ref	sequence	fragment,	139

entry	point,	139
region	sequence	fragment,	138,	151

return	from	subroutine,	145
return	messages,	129
seq	sequence	fragment,	138

sequence	numbers,	138
showing	operation	order,	128
synchronous	messages,	129
time	constraints,	133

sequence	fragments,	UML,	137,	149
alt,	146

assert,	146

break,	138

ignore,	138

loop,	142

neg,	138

opt,	138

par,	149

ref,	139

region,	138,	151

seq,	138,	150

strict,	138,	150

sequence	message	labels,	UML,	130

sequence	numbers,	UML,	130

sequential	software	development	models,	46

setter	functions,	106,	109

setup	(STP),	295

showing	the	order	of	operations	in	UML	diagrams,	128

signal	handshake	protocols	(SRS),	198

sign-off	on	a	test	procedure	(STP),	296

simple	design
guidelines	for,	62
in	XP,	59,	60

simplicity	in	XP,	55

site	acceptance	(software	development	level),	265

Site	Acceptance	Test	Cases,	274

Site	Acceptance	Test	Design,	269

Site	Acceptance	Test	Plan,	267

Site	Acceptance	Test	Procedures,	289

Site	Acceptance	Test	(SAT),	265,	289,	291

Site	Adaptation	Requirements	section	(SRS),	198

SIT	(System	Integration	Test),	289,	291

small	projects,	6,	10,	11

small	releases	(building	blocks)	in	XP,	59

SMS	message,	133

software	allocations	in	an	RTM,	222

software	apprentices,	7,	13

software	craftsman,	14

software	craftsmanship,	13–15

software	crisis	of	the	1960s,	xix

Software	Design	Description.	See	SDD

Software	Development	Life	Cycle	(SDLC),	39–42

software	development	methodologies,	52–68
Agile,	52
definition	of,	52
predictive,	52
traditional,	52

software	development	models,	42–52
Incremental,	51
Iterative,	46–47
lightweight,	50
RAD,	49,	74

risk	management,	50
risk-based,	48
sequential	models,	46
Spiral,	48–49

risk	management,	50
V,	45–46
Waterfall,	44–45

software	development	phases
deployment,	42
design	in	RAD,	50
maintenance,	42
product	conceptualization,	40
retirement,	42
testing,	41

software	development	testing	levels
factory	acceptance,	265

integration,	265
site	acceptance,	265
system	integration,	265
unit,	191,	265

software	engineering
IEEE	definition,	7
invention	of,	7
original	definition,	9

software	engineering	conventions	and	great	code,	xxi

software	engineers,	xxiv

software	environmental	needs	(STC),	279

Software	Interfaces	section	(SRS),	197

software	journeyman,	7,	14–15

Software	Requirements	Specification	(SRS)	document.	See
SRS

Software	Review	List	(SRL)	document,	270–274

Software	System	Attributes	section	(SRS)
downtime,	201
maintainability,	201
portability,	203
reliability,	201
security,	201

Software	Test	Case	(STC)	document.	See	STC

software	test	document	types,	262

Software	Test	Procedure	(STP)	document.	See	STP

Software	Test/Review	Cases	column	(RTM),	288

software	version	for	a	test	procedure	run	(STP),	291,	295

source	element	(SDD),	230

Special	Requirements	section	(STP),	291,	295

Specific	Requirements	section	(SRS),	199

Spiral	software	development	model,	48–49
risk	management,	50

sprint	retrospectives,	66

sprints,	Agile,	53–54

SRS	(Software	Requirements	Specification),	44,	170
Apportioning	of	Requirements	section,	199
Assumptions	and	Dependencies	section,	198
attributes

security,	201
audit	functions,	198
Communications	Interfaces	section,	197
Constraints	section,	198
control	functions,	59
creating	requirements,	212–214
Definitions	section,	196
Design	Constraints	section,	201
External	Interfaces	section,	199
Functional	Requirements	section,	200
Hardware	Interfaces	section,	197
hardware	limitations,	198
high-level	language	requirements,	198
interfaces	to	other	applications,	198
Introduction	section,	195
Logical	Database	Requirements	section,	200
maintainability,	201
Memory	Constraints	section,	197

Operations	section,	197
organization	by	feature,	202
organization	by	functional	hierarchy,	202
organization	by	input	stimulus,	202
organization	by	object	class,	202
organization	by	output	response,	202
organization	by	system	mode,	202
organization	by	user	class,	202
Overview	section,	288
parallel	operations,	198
Performance	Requirements	section,	200
Product	Functions	section,	198
Purpose	section,	195
References	section,	196
regulatory	policies,	198
requirement	organization,	202
safety	and	security	considerations,	198
Scope	section,	292
signal	handshake	protocols,	198
Site	Adaption	Requirements	section,	198
Software	Interfaces	section,	197
Specific	Requirements	section,	199
stakeholders,	228
Standards	Compliance	section,	201
supporting	information,	203
tags,	175
User	Characteristics	section,	198
User	Interfaces	section,	196,	197
validating,	183

SRS	tag	column	(RTM),	222

stakeholder	in	system	design,	228

Standards	Compliance	section	(SRS),	201

stand-up	meeting,	54

start	state	(UML),	90

start	symbol	(UML),	164

statechart	diagrams,	UML,	163–165
end	state,	163
start	state,	163

state	dynamics	viewpoint	(SDD),	239

statement	count	metric,	24

states	(UML),	91

state	transitions,	UML,	163

{static}	property	(UML),	112

status	of	an	anomaly,	309

STC	(Software	Test	Case),	170,	261
change	history,	280
change	procedures,	280
Context	section,	278
document	identifier,	277
environmental	needs,	279
Glossary	section,	280
hardware	environmental	needs,	279
identifiers,	278
Input	section,	278
intercase	dependencies,	280
Introduction	section,	277
Notation	for	Description	section,	278

Objective	section,	278
Outcome	section,	279
references,	139
References	section,	277
Scope	section,	277
software	environmental	needs,	279
special	procedural	requirements,	279
validation,	184

STC	tag	format,	278

steering	phase	in	XP,	58

stereotype	notation	(UML),	120

stop	state	(UML),	90

STP	(Software	Test	Procedure),	170,	261
Brief	Description	section,	294–296
change	history,	292
Detailed	Steps	Required	to	Run	a	Test	Procedure	section

(STP),	295
document	change	procedures,	296
document	identifier,	292
Instructions	for	Running	Tests	section,	293
Introduction	section,	292
List	of	Test	Cases	Covered	by	Procedure	section,	294
Notation	for	Descriptions	section,	290
organizating	test	procedures,	290
pass/fail	criteria,	291
procedure	identifier/tag,	294
Purpose	section,	290,	294
reducing	resource	usage	by	test	procedures,	290

References	section,	292
Relationship	to	Other	Documents	section,	292
required	setup,	291
rerunning	test	procedures,	290
resuming	tests,	293
running	test	procedures	in	parallel,	56
Scope	section,	292
setup,	46
sign-off	on	test	procedures,	296
software	version	for	a	test	run,	295
Special	Requirements	section,	291,	295
streamlining	test	procedures	(STP),	288,	290
suspended	tests,	293
Traceability	section,	291
verifying,	295

STP	tag	format,	292

streamlining	test	procedures	(STP),	288,	290

strength	of	a	relationship	(UML),	114

strict	sequence	fragment	(UML),	138,	150

structure	viewpoint	(SDD),	237

style	guidelines,	xxi

subjectivity	(requirement),	188

subroutine	entry	point	in	a	ref	sequence	fragment	(UML),	139

subsystem	stereotype	(UML),	156

successful	guarantees	(use	cases),	81

summary	(AR),	310

supporting	information	(SRS),	203

suspended	tests	(STP),	293

sustainable	pace	in	XP,	59,	63

Swift	programming	language,	xxi

swim	lanes	(UML),	97

synchronization	(UML),	96

synchronous	messages	(sequence	diagram,	UML),	129

SyRS	(System	Requirements	Specification),	40,	44,	170,	193
validating,	183

SyRS	tag	column	(in	RTM),	222

SyRS	tags,	172

system	analyst	(programmer	classification),	xxiii

system	architect	(programmer	classification),	xxiii

system	boundary	diagrams	(UML),	87

system	documentation	consistency,	171

system	documentation	traceability,	171

system	integration	(software	development	testing	level),	265

System	Integration	Test,	265

System	Integration	Test	Cases,	274

System	Integration	Test	Design,	269

System	Integration	Test	Plan,	267

System	Integration	Test	Procedures,	289

System	Requirements	Specification	(SyRS)	document.	See
SyRS

system	resources	and	great	code,	xxi

System	Test	Cases,	274

System	Test	Design,	269

System	Test	Plan,	267

system	testing,	42

T
tags,	172–178,	245

dotted	sequences,	174
requirement,	192
SRS,	175
STC,	177
STP,	178
SyRS,	172

target	element	(SDD),	230

team	building	and	communication	from	pair	programming,	61

termination	(use	case),	81

test	case	assignment	to	a	test	procedure,	294

test	case	dependencies,	288

test	case	identifier	(STC),	278

test	design,	269–270

test-driven	development	(TDD),	46,	54,	57

test	logs,	306

test	plans,	266

test	procedures	(STP),	294–296

Test	Reports,	312–315

test	verification	method	(RTM),	222

Test/verification	type	column	in	an	RTM,	222

tested	code,	xxi

testers	on	XP	team,	56

testing	in	XP,	57,	59,	60

testing	phase,	41

“throwaway”	programs,	43

tightly	coupled	classes	(UML),	114

time	constraints	in	UML	sequence	diagrams,	133

time	to	market,	47

traceability,	171–181,	192

Traceability	section	(STP),	291

tracing	STP	tags	back	to	test	cases	and	requirements,	303

traditional	software	development	methodologies,	52

training	new	software	apprentices,	14

transition	guards,	91–92

transitions	(UML),	90,	91
state,	163

triggers
in	a	requirement,	186
state	machine,	164
UML,	94

U
UML	(Unified	Modeling	Language)

-	(private	class	visibility	operator),	106
*	(iteration	operator	in	sequence	diagrams),	132
#	(protected	class	visibility	operator),	107
+	(class	visibility	operator),	105
~	(package	class	visibility	operator),	107
activity	diagrams

catch-all	transition,	92
expression	coverage,	92
partitions,	97

activity	diagram	symbols,	89
alternative	flows,	135
annotations,	98
attributes

data	types,	110
derived	values,	109
multiplicity,	111,	120
names,	109
syntax,	112
visibility,	109

ball	and	socket	notation,	156,	163
base	values	in	a	class,	109
changeability,	124
class	attributes,	108–112
class	composition	relationships,	117
class	diagrams,	104
class	operators,	112
class	relationships,	114–125

aggregation,	116
association,	115
composition,	117
dependency,	114
inheritance,	114

collaboration	diagrams,	152
comments,	98
communication	links,	74
component	diagrams,	155–158
«component»	stereotype,	156
composite	structure	diagrams,	160–163,	236,	238

concurrent	processing,	96
conditionals,	91
connectors,	98
constraints,	121

{frozen},	124

{ordered},	121

decision	symbols,	163–165
default	attribute	values,	111–112
deployment	diagrams,	159–160
derived	classes,	253
derived	values,	109
events,	94–95
fork	operation,	96
guards,	91
input/output	parameters,	113
interfaces,	156
join	operation,	96
merge	points,	93–94
message	types,	129
multiple	merge/decision	points,	94
namespaces	(packages),	76
naming	a	communication	link,	163
navigability,	123
nodes,	159
object-oriented	analysis,	103–104
object-oriented	design,	103–104
objects,	125
package	diagrams,	236,	238

package	visibility,	107
packages,	76
partial	class	diagrams,	104
ports,	201
private	class	visibility,	106
property	strings,	109,	112
protected	class	visibility,	107
provided	interfaces,	156,	162
public	class	visibility,	105
qualified	names	in	packages,	159
qualifiers,	159
rake	symbol,	96
{readOnly}	property,	112

relationship	strength,	114
required	interfaces,	162
return	type,	129
return	values	in	sequence	diagram	messages,	129
reusability	of	components,	155–158
roles,	56
sequence	diagrams

«create»	message,	136–137
creating	objects,	136
«destroy»	message,	136–137
destroying	objects,	136
differentiating	between	branching	and	long	delays,

135
dropped	title	box,	136
external	objects,	133
flat	messages,	129

guard	conditions,	131,	134
indefinite	loops,	143
interaction	occurrence,	139
iterations,	309
lifelines,	128
long	delays	and	time	constraints,	132–133
message	parameters,	131
messages,	129–130
object	lifetime,	136
return	from	subroutine,	145
return	messages,	129
sequence	numbers,	138
showing	operation	order,	128
strict	sequence	fragment,	150

synchronous	messages,	129
time	constraints,	133

sequence	fragments
alt,	146

assert,	138

break,	138

consider,	138

ignore,	138

loop,	141–145,	142

neg,	138,	148

opt,	138,	146

par,	138,	149

ref,	139

region,	138,	151

seq,	138,	150

strict,	138,	150

sequence	message	labels,	130
start	state,	163
start	symbol,	164
statechart	diagrams,	163
states,	91
state	transitions,	163
{static}	property,	112

stereotype	notation,	184
stop	state,	163
subroutine	entry	point	in	a	ref	segment	fragment,	139

subroutines,	96
subsystem	stereotype,	156
swim	lanes,	97
synchronization,	96
system	boundary	diagrams,	87
tightly	coupled	classes,	114
transitions,	90,	91
triggers,	94
{unique}	property,	112

use	cases
description,	80
diagrams,	231
end	conditions,	81
«extend»	keyword,	79
extension,	79–80,	85
Flow	of	Events,	81

formality,	81
fully	dressed,	81
generalization,	77–79
if	statements	in	descriptions,	84

inclusion,	77
minimal	guarantees,	81
narratives,	80–86
post	conditions,	81
scenarios,	86–87,	291
successful	guarantees,	81
termination,	81
triggers,	80

value	parameters,	113
visibility,	105,	108,	120

unbounded	list	in	requirements,	188,	189

underreference	in	requirements,	189

underspecification	in	requirements,	188

Unified	Modeling	Language.	See	UML

{unique}	property	(UML),	112

uniqueness	(requirement),	191

unit	(software	development	testing	level),	265

unit	tasks	(productivity),	18

Unit	Test	Cases,	274

Unit	Test	Design,	269

Unit	Test	Plan,	267

Unit	Test	Procedures,	289

unit	testing,	41,	265

unit	tests	in	XP,	65

unnecessary	requirements,	187

unscheduled	downtime,	201

updating	an	RTM
with	SRL	information,	274
with	STC	information,	288
with	STP	information,	302

use	cases,	UML,	74,	81,	212,	214
derived,	79
description,	80
diagrams,	231
elements,	74
end	conditions,	81
exceptions,	81
«extend»	keyword,	79
extension,	79–80,	81,	85
Flow	of	Events,	81
generalization,	77–79
if	statements	in	descriptions,	84

inclusion,	77
minimal	guarantees,	81
narratives,	80–86

formality	of,	81–82
post	conditions,	81
scenarios,	86–87,	291
secondary	actors,	39
successful	guarantees,	81
termination,	81
triggers,	94

User	Characteristics	section	(SRS),	198

user	feedback	in	Iterative	software	development	models,	46

User	Interfaces	section	(SRS),	196

user	stories	in	XP,	56,	59

V
V	software	development	model,	45–46

shortcomings,	49

vagueness	in	requirements,	188

validation
reducing	costs	via,	182
SDD,	183
SRS,	183
STP,	184
SyRS,	183
versus	verification,	46

value	parameters	(UML),	113

verifiable	requirements,	190

verification,	46,	263
in	a	test	procedure,	295
reducing	costs	via,	183
versus	validation,	46

verification	methods	in	RTM,	222

version	number	for	a	test	procedure,	295

visibility	(UML),	105
spectrum,	108
of	UML	attribute	names,	120

W
Warnier/Orr	diagrams,	239
Waterfall	model,	44–45

weak	words,	ambiguity	as	result	of,	188,	189

white-box-generated	test	data,	276

whole	team	concept	in	XP,	55

workarounds	to	a	defect	(AR),	309

X
XP.	See	Extreme	Programming

XP	software	development	activities,	57

XP	teams,	55

Y
You	aren’t	gonna	need	it	(YAGNI)	design	principle,	62

Write	Great	 Code,	 Volume	 3:	 Engineering	 Software	 is	 set	 in
New	Baskerville,	Futura,	and	Dogma.

RESOURCES

Visit	 https://nostarch.com/greatcode3/	 for	 resources,
errata,	and	more	information.

More	 no-nonsense	 books	 from	 	NO	STARCH

PRESS

WRITE	GREAT	CODE,	VOLUME	1,
2ND	EDITION

Understanding	the	Machine
by	RANDALL	HYDE
JUNE	2020,	472	PP.,	$49.95
ISBN:	978-1-71850-036-5

https://nostarch.com/greatcode3/

WRITE	GREAT	CODE,	VOLUME
2,
2ND	EDITION
Thinking	Low-Level,	Writing	High-Level
by	RANDALL	HYDE

JULY	2020,	656	PP.,	$49.95
ISBN:	978-1-71850-038-9

EFFECTIVE	C
An	Introduction	to	Professional	C	Programming
by	ROBERT	C.	SEACORD
JULY	2020,	272	PP.,	$59.95
ISBN	978-1-71850-104-1

THE	RUST	PROGRAMMING	LANGUAGE
(Covers	Rust	2018)
by	STEVE	KLABNIK	AND	CAROL	NICHOLS
AUGUST	2019,	560	PP.,	$39.95
ISBN	978-1-71850-044-0

PYTHON	CRASH	COURSE,
2ND	EDITION

A	 Hands-On,	 Project-Based	 Introduction	 to
Programming
by	ERIC	MATTHES

MAY	2019,	544	PP.,	$39.95
ISBN	978-1-59327-928-8

THE	SECRET	LIFE	OF	PROGRAMS
Understand	Computers—Craft	Better	Code
by	JONATHAN	E.	STEINHART
AUGUST	2019,	504	PP.,	$44.95
ISBN	978-1-59327-970-7

PHONE:

1.800.420.7240	OR
1.415.863.9900

EMAIL:
SALES@NOSTARCH.COM

WEB:
WWW.NOSTARCH.COM

mailto:SALES@NOSTARCH.COM
http://WWW.NOSTARCH.COM

RE-ENGINEER	YOUR	APPROACH	TO
PROGRAMMING

The	field	of	software	engineering	may	value	team	productivity
over	 individual	 growth,	 but	 legendary	 computer	 scientist
Randall	 Hyde	 wants	 to	 make	 promising	 programmers	 into
masters	of	their	craft.	To	that	end,	Engineering	Software—the
latest	 volume	 in	 Hyde’s	 highly	 regarded	Write	 Great	 Code
series—offers	 his	 signature	 in-depth	 coverage	 of	 everything
from	development	methodologies	and	strategic	productivity	to
object-oriented	 design	 requirements	 and	 system
documentation.

You’ll	learn:

Why	following	the	software	craftsmanship	model	can	lead	you	to	do	your	best
work

How	to	utilize	traceability	to	enforce	consistency	within	your	documentation

The	steps	for	creating	your	own	UML	requirements	with	use-case	analysis

How	to	leverage	the	IEEE	documentation	standards	to	create	better	software

This	advanced	apprenticeship	in	the	skills,	attitudes,	and	ethics
of	quality	software	development	reveals	the	right	way	to	apply
engineering	 principles	 to	 programming.	Hyde	will	 teach	 you
the	rules,	and	show	you	when	to	break	them.	Along	the	way,
he	 offers	 illuminating	 insights	 into	 best	 practices	 while
empowering	you	to	invent	new	ones.

Brimming	 with	 resources	 and	 packed	 with	 examples,
Engineering	Software	is	your	go-to	guide	for	writing	code	that
will	set	you	apart	from	your	peers.

AUTHOR	BIO
Randall	Hyde	is	the	author	of	The	Art	of	Assembly	Language
and	 the	 three	volume	Write	Great	Code	 series	 (all	No	Starch
Press).	He	 is	also	 the	co-author	of	The	Waite	Group’s	MASM
6.0	Bible.	He	has	written	for	Dr.	Dobb’s	Journal	and	Byte,	and
professional	and	academic	journals.

THE	FINEST	IN	GEEK	ENTERTAINMENT™

www.nostarch.com

http://www.nostarch.com

Footnotes

INTRODUCTION

1	SOFTWARE	DEVELOPMENT
METAPHORS

2	PRODUCTIVITY

1.	Or	equivalent	self-study,	which	is	very	rarely	accomplished	in	reality	despite	honest	intentions.

1.	 Probably	 the	 only	 time	 this	 consideration	 comes	 up	 in	 software	 development	 is	when	 the	 program
becomes	so	large	that	it	requires	multiple	CDs,	DVDs,	or	other	media	for	distribution.

2.	Arguably,	we	 could	 say	 software	 “wears	out”	when	 the	hardware	 it	 requires	becomes	obsolete	 and
eventually	fails	without	any	way	of	being	replaced.

3.	We’ll	ignore	the	cost	of	development,	marketing,	and	upgrade	fees	here,	and	simply	consider	the	cost
of	doing	a	field	upgrade	of	a	piece	of	software.

4.	Kathleen	Melymuka,	“Why	Musicians	May	Make	the	Best	Tech	Workers,”	CNN.com,	July	31,	1998.

5.	An	exception	might	be	a	performance	artwork,	such	as	a	fireworks	display.

6.	That	is,	two	software	systems	with	the	same	approximate	complexity	could	vary	by	a	factor	of	almost
100	in	terms	of	the	number	of	lines	of	code.

7.	Another	advantage	to	the	apprenticeship	process	is	that	multiple	individuals	now	understand	how	the
code	operates,	so	if	one	leaves,	another	can	pick	up	the	project	in	their	place.

8.	For	those	too	young	to	remember	VisiCalc,	it	was	the	precursor	to	Microsoft	Excel.

1.	 Harold	 Sackman,	 W.	 J.	 Erikson,	 and	 E.	 E.	 Grant,	 “Exploratory	 Experimental	 Studies	 Comparing
Online	and	Offline	Programming	Performance,”	Communications	of	the	ACM	11,	no.	1	(1968):	3–11.

2.	 Barry	 W.	 Boehm,	 Terence	 E.	 Gray,	 and	 Thomas	 Seewaldt,	 “Prototyping	 Versus	 Specifying:	 A
Multiproject	Experience,”	IEEE	Transactions	on	Software	Engineering	10,	no.	3	(1984):	290–303.

3.	Generally,	this	means	larger,	although	conceptual	complexity	applies	as	well.

4.	Some	 large	projects	 appoint	 a	 “librarian”	whose	 job	 is	 to	keep	 track	of	 reusable	 code	 components.
Programmers	 looking	 for	 a	 particular	 routine	 can	 ask	 the	 librarian	 about	 its	 availability	 and	 spare
themselves	 from	 having	 to	 write	 that	 code.	 The	 productivity	 loss	 is	 limited	 to	 the	 time	 the	 librarian
spends	to	maintain	the	library	and	the	time	the	programmer	and	the	librarian	spend	communicating.

5.	Note	that	a	project	might	contain	multiple	executable	files.	In	such	a	case,	the	“executable	file	size”	is
the	sum	of	all	the	executable	components	in	the	system.

6.	Assuming,	 of	 course,	 that	 the	 library	 routines	 existed	 prior	 to	 the	 project	 and	were	 not	 part	 of	 the
project’s	development.

http://CNN.com

3	SOFTWARE	DEVELOPMENT
MODELS

4	AN	INTRODUCTION	TO	UML	AND
USE	CASES

7.	True	function	point	analysis	 is	based	on	five	components:	external	 inputs,	external	outputs,	external
inquiries,	 internal	 logical	 file	 operations,	 and	 external	 file	 interfaces.	But	 this	 basically	 boils	 down	 to
tracking	the	inputs,	outputs,	and	computations.

8.	Claude	E.	Walston	and	Charles	P.	Felix,	“A	Method	of	Programming	Measurement	and	Estimation,”
IBM	Systems	Journal	16,	no.	1	(1977):	54–73.

9.	Today,	I	don’t	have	a	problem	recommending	Swift.	It’s	a	great	 language,	and	version	5.0	and	later
seem	relatively	stable	and	reliable.	It’s	moved	beyond	the	“Gee	whiz,	ain’t	 this	a	great	new	language”
stage	and	is	now	a	valid	software	development	tool	for	real	projects.

1.	Depending	 on	 the	 system,	 they	might	 also	 produce	 a	Hardware	 Requirements	 Specification	 (HRS)
document,	and	other	documents	as	well,	all	of	which	are	outside	the	scope	of	this	book.

2.	 The	 original	 definition	 of	 hacking,	 from	 https://www.merriam-webster.com,	 is	 “a	 person	 who	 is
inexperienced	or	unskilled	at	a	particular	activity;	e.g.,	a	tennis	hacker.”

3.	Of	course,	along	the	way	the	term	hacker	was	also	redefined	to	describe	someone	engaged	in	criminal
activities	on	computers.	We’ll	ignore	that	definition	here.

4.	 I	 was	 once	 tasked	 with	 setting	 up	 user	 interface	 colors	 on	 an	 embedded	 application.	 The	 client
requested	one	set	of	colors.	A	week	later	 I	showed	up	with	 their	desired	changes,	and	 they	didn’t	 like
them.	So,	we	tried	a	second	set.	They	didn’t	like	those.	Then	a	third	set,	then	a	fourth	set.	A	month	later
they	decided	the	initial	color	set	was	the	best.	In	the	meantime,	the	project	had	lost	a	month.

5.	Sadly,	the	link	to	this	quote	is	no	longer	active.	Ah,	the	joys	of	the	internet.	Nevertheless,	this	is	one	of
the	best,	most	concise	definitions	I’ve	found	that	doesn’t	try	to	promote	a	particular	methodology.

6.	 Note	 that	 although	 face-to-face	 communication	 is	 more	 efficient,	 these	 meetings	 can	 also	 have	 a
negative	impact	on	engineers’	productivity.	See	“Focus	and	Eliminate	Distractions”	on	page	34	for	more
details.

7.	They’re	called	“stand-up”	meetings	because	everyone	who	can	 is	 required	 to	 stand	up.	This	makes
everyone	physically	uncomfortable,	which	results	in	shorter	meetings.

8.	 Wilfrid	 Hutagalung,	 “Extreme	 Programming,”
http://www.umsl.edu/~sauterv/analysis/f06Papers/Hutagalung/.

9.	Actually,	there	are	28	different	XP	rules,	but	they	can	be	simplified	to	these	12.

10.	http://en.wikipedia.org/wiki/Pair_programming

11.	 http://collaboration.csc.ncsu.edu/laurie/Papers/dissertation.pdf	 and
https://collaboration.csc.ncsu.edu/laurie/Papers/ieeeSoftware.PDF

12.	This	isn’t	quite	the	same	as	having	a	manager	constantly	looking	over	your	shoulder	because	your
team	isn’t	explicitly	watching	what	you’re	doing.	Hence,	the	stress	level	is	quite	a	bit	lower.

1.	This	 is	a	good	example	of	redundancy	 in	UML—that	 is,	using	 two	different	notations	 for	 the	same

https://www.merriam-webster.com
http://www.umsl.edu/~sauterv/analysis/f06Papers/Hutagalung/
http://en.wikipedia.org/wiki/Pair_programming
http://collaboration.csc.ncsu.edu/laurie/Papers/dissertation.pdf
https://collaboration.csc.ncsu.edu/laurie/Papers/ieeeSoftware.PDF

5	UML	ACTIVITY	DIAGRAMS

6	UML	CLASS	DIAGRAMS

thing.

2.	This	is	a	nonexhaustive	list.	You	may	freely	add	any	items	specific	to	your	project.

3.	 This	 example	 is	 from	 a	 real-world	 project:	 Plantation	 Productions’	 “Open	 Source/Open	 Hardware
Digital	 Data	 Acquisition	 &	 Control	 System”	 (http://www.plantation-
productions.com/Electronics/DAQ/DAQ.html).

1.	 Some	 authors	 use	 roundangles,	 rectangles	 with	 rounded	 corners,	 to	 show	 activities.	 However,	 the
UML	standard	uses	roundangles	for	states.

2.	For	the	most	part,	an	event	and	a	trigger	in	UML	are	the	same	thing—a	signal	from	a	source	outside
the	 current	 flow	 of	 control	 that	 causes	 a	 change	 in	 it.	 This	 book	 uses	 the	 terms	 trigger	 and	 event
interchangeably.

3.	 Note	 that	 UML’s	 thread	 operations	 are	 only	 a	 suggestion.	When	 a	 UML	 diagram	 shows	 multiple
threads	 executing	 concurrently,	 it’s	 simply	 an	 indication	 that	 the	 separate	 paths	 are	 independent	 and
could	be	executed	concurrently.	In	actual	execution,	the	system	could	execute	the	paths	serially	in	any
order.

4.	Older	versions	of	UML	call	partitions	swim	lanes,	 so	you’ll	 see	 that	 term	used	 in	many	books	and
papers	referring	to	this	construct.

1.	The	standard	convention	in	C-derived	languages	is	to	use	all	uppercase	characters	to	denote	constants,
but	 this	 is	 an	 absolutely	 terrible	 convention	 that	 I	 refuse	 to	 use	 for	my	 own	 constants	 because	ALL
UPPERCASE	 IDENTIFIERS	 ARE	 MUCH	 HARDER	 TO	 READ	 THAN	 MIXED-CASE
IDENTIFIERS.	I	modified	the	Unix	convention	of	using	_t	to	specify	a	type	identifier	to	include	_c	for
constants.	Also,	this	convention	is	applicable	across	multiple	languages	and	is	not	specific	to	C++.

2.	 This	 is	 not	 to	 imply	 that	 you	 should	 never	 make	 a	 variable	 attribute	 public.	 As	 with	 any	 other
convention	or	rule,	there	are	always	exceptions	where	it	makes	sense	to	violate	the	convention.	However,
violations	should	be	rare.

3.	 Some	modern	 languages,	 like	Apple’s	Swift,	 provide	 syntax	options	 that	 let	 you	 invoke	getter	 and
setter	 functions	 using	 standard	 assignment	 operations.	 Therefore,	 there’s	 no	 syntactical	 overhead
associated	with	using	getters	and	setters	(other	than,	of	course,	writing	the	getter	or	setter	methods	in	the
first	place).

4.	Package	and	protected	visibility	might	vary	in	this	diagram	depending	on	your	choice	of	programming
language,	but	the	basic	idea	of	a	spectrum	applies	nonetheless.

5.	Case	neutrality	guarantees	 that	 the	names	you	choose	will	be	valid	 in	both	case-sensitive	and	case-
insensitive	 languages.	 For	 example,	 hello	 and	 Hello	 would	 be	 considered	 different	 names	 in	 a	 case-
sensitive	 language	 like	C++,	 but	 the	 same	 in	 a	 case-insensitive	 language	 like	 Pascal.	Neither	 is	 case
neutral,	so	you	should	consistently	use	only	one	or	the	other	in	UML	diagrams.

6.	Underlining	the	attribute	 is	 the	standard	way	to	specify	static	objects	 in	UML,	but	using	a	property
string	is	probably	clearer.

7.	 Similar	 to	 a	 key	 but	 not	 identical.	 A	 database	maintains	 records	 and	 keys	 as	 disk	 files;	 qualifiers
generally	 assume	 an	 in-memory	 data	 structure,	 such	 as	 an	 associative	 array,	 hash	 table,	 or	 map,	 to
provide	access	to	the	specific	record	of	interest.

http://www.plantation-productions.com/Electronics/DAQ/DAQ.html

7	UML	INTERACTION	DIAGRAMS

8	MISCELLANEOUS	UML
DIAGRAMS

9	SYSTEM	DOCUMENTATION

8.	The	base	class	is	also	known	as	the	ancestor	class.

1.	If	you’re	thinking	this	is	a	bad	design	element	in	the	UML	language,	you’re	correct.	Given	its	history
and	design-by-(political)-committee	approach,	it’s	understandable	why	UML	isn’t	a	little	cleaner.

2.	Indeterminate	upon	encountering	the	beginning	of	the	loop	on	the	first	iteration.

3.	Arguably,	an	 infinite	 loop	with	a	break	sequence	fragment	 is	also	an	indefinite	 loop,	not	an	infinite
loop.

4.	There	will	be	two	or	more,	separated	by	dashed	lines,	similar	in	syntax	to	the	alt	sequence	fragment.

1.	 The	 protected,	 private,	 and	 package	 visibility	 prefixes	 are	 also	 valid	 here	 with	 the	 appropriate
meanings.

2.	 Technically,	 we	 should	 put	 a	 transition	 arrow	 from	 a	 state	 back	 to	 that	 same	 state	 labeled	 else	 to
handle	this	situation;	however,	the	else	condition	is	implied	in	UML	statechart	diagrams.

1.	 Hardware	 requirements	might	 be	 extracted	 to	 a	 Hardware	 Requirements	 Specification	 (HRS),	 and
other	 requirement	 types	 might	 be	 likewise	 extracted	 to	 their	 own	 specialized	 documents.	 Those
documents	are	beyond	the	scope	of	this	book.

2.	While	the	STC	can	be	influenced	by	the	SDD,	it’s	generated	from	the	SRS,	because	you	create	test
cases	from	the	requirements,	not	from	the	design.	Any	test	cases	constructed	from	the	SDD	will	come
from	design	entities	originating	from	requirements.

3.	Keep	in	mind	that	the	SyRS	might	contain	hardware	and	other	non-software-related	requirements	that
wouldn’t	 be	 copied	 to	 the	 SRS;	 for	 more	 information,	 see	 “The	 Requirements/Reverse	 Traceability
Matrix”	on	page	178,	particularly	the	description	of	allocations.

4.	In	well-designed	systems,	there	can	be	a	many-to-one	relationship	between	requirements	and	design
items;	in	the	worst	case,	there	is	a	many-to-many	relationship.

5.	Generally,	 if	 you	 need	 to	 test	 something,	 a	 requirement	 should	 be	 driving	 that	 test.	However,	 you
might	 derive	 some	 test	 cases	 from	 the	 SDD	 rather	 than	 directly	 from	 the	 SRS.	 For	 example,	 the
requirements	generally	don’t	 state	details	 such	as	whether	a	coder	 should	use	an	array	or	a	dictionary
(lookup	table)	to	implement	some	operation.	The	SDD,	on	the	other	hand,	might	specify	a	particular	data
structure	such	as	an	array.	This	could	lead	to	a	test	case	that	tests	to	ensure	the	program	doesn’t	violate
the	bounds	of	the	array	when	indexing	into	it.

6.	It	might	turn	out	that	a	single	test	case	would	incidentally	work	for	multiple	requirements.	However,
you	would	 still	 produce	 independent	 test	 cases.	This	 redundancy	 is	 resolved	when	you	 create	 the	 test
procedures.

10	REQUIREMENTS
DOCUMENTATION

11	SOFTWARE	DESIGN
DESCRIPTION	DOCUMENTATION

1.	Arguably,	this	could	be	rewritten	as	the	single	requirement	“The	pool	monitor	shall	clear	the	‘good’
condition	when	the	temperature	is	outside	the	range	70	to	85	degrees	F.”

2.	 For	 information	 on	 the	 Plantation	 Productions	 DAQ	 system,	 see	 http://www.plantation-
productions.com/Electronics/DAQ/DAQ.html.

3.	TRIGA™	is	a	registered	trademark	of	General	Atomics,	Inc.

4.	The	Netburner	 runs	 a	 priority-based	multitasking	operating	 system	called	Micro-C/OS	 (or	μC/OS).
Tasks	are	the	equivalent	of	threads	in	other	operating	systems.

5.	For	example,	some	requirements	might	state	that	it	is	preferable	to	damage	the	system	hardware	rather
than	allow	the	system	to	enter	a	state	that	might	cause	bodily	harm	or	death.	You	would	not	want	to	test
this	by	damaging	the	system.

6.	This	is	my	opinion,	so	feel	free	to	add	or	remove	items	from	this	list	if	your	opinion	differs.	Note	that
I	will	use	this	list	when	creating	a	Software	Review	List	later	in	this	book.

1.	IEEE	Std	1016	is	a	registered	trademark	of	the	IEEE.	IEEE	Std	1016-2009	is	a	revision	of	IEEE	Std
1016-1998	that	incorporates	UML	as	the	software	modeling	language.

2.	 There	 are	 actually	 29	 use	 cases	 in	 the	 full	 use	 case	 diagram.	 See	 http://www.plantation-
productions.com/Electronics/DAQ/DAQ.html.

3.	The	IEEE	Std	1016-2009	includes	many	older	viewpoints	carried	over	from	the	1016-1998	standard.
You	probably	shouldn’t	use	these	older	viewpoints	in	new	designs.	They	are	included	only	so	that	older
SDD	documents	can	still	claim	to	be	compliant	with	IEEE	Std	1016.

4.	In	almost	every	sample	SDD	I’ve	found	on	the	internet,	the	authors	combine	design	viewpoints	and
design	views	into	the	same	sections.	When	they	differentiate	them,	the	Design	Views	section	is	a	brief
introduction	and	the	actual	views	are	listed	under	the	Viewpoint	sections	(which	seems	backward	to	me,
but	the	IEEE	Std	1016-2009	document	is	not	very	clear	on	this	matter).

5.	With	a	few	changes	for	clarity.

6.	Note	 that	 a	many-to-many	 relationship	between	design	 concerns	 and	 components	 in	 a	 design	view
isn’t	invalid,	even	if	you	attach	tags	to	all	of	the	components.	However,	the	RTM	can	become	unwieldy
when	this	happens	and,	seeing	as	the	RTM	is	messy	enough	as	it	is,	you	don’t	want	to	make	it	worse.

7.	 These	 modifications	 are	 for	 clarity	 and	 consistency	 with	 the	 SRS	 guidelines	 (see	 “The	 System
Requirements	Specification	Document”	on	page	193).

8.	The	index	is	actually	empty	for	editorial/space	reasons.	It	is	a	placeholder	in	this	sample	to	show	that
you	should	provide	an	index	in	your	SDD.

9.	The	requirements	listing	also	provides	a	means	for	evaluating/verifying	the	design	to	see	that	it	meets
the	 specifications	defined	 in	 the	SRS.	A	 reviewer	will	 compare	 each	of	 the	 listed	 requirements	 in	 the
SRS	against	the	contextual	view	to	see	that	the	view	meets	the	requirements.

10.	As	the	contextual	view	is	provided	here,	there’s	no	need	to	discuss	the	analysis	needed	to	create	the
design	view;	that’s	trivial,	because	the	design	view	is	already	present.

http://www.plantation-productions.com/Electronics/DAQ/DAQ.html
http://www.plantation-productions.com/Electronics/DAQ/DAQ.html

12	SOFTWARE	TEST
DOCUMENTATION

11.	At	least	those	components	important	to	this	SDD.

1.	IEEE	Std	829-2008	is	a	registered	trademark	of	the	IEEE.

2.	It	might	seem	strange	to	not	have	any	test	cases	at	all.	However,	keep	in	mind	that	having	too	many
trivial	 test	cases	will	make	 the	 testing	process	 lengthy	and	more	expensive,	 resulting	 in	 too	 little	 time
spent	testing	the	really	important	features	of	the	system.

3.	The	names	in	parentheses	are	not	part	of	the	IEEE	Std	829-2008.	However,	they	are	common	industry
names.

4.	The	parenthetical	names	are	common	names	for	these	test	plans;	these	names	do	not	come	from	Std
829.

5.	A	good	example	of	 such	an	external	organization	 is	 the	Nuclear	Regulatory	Commission	 (NRC),	 a
US-based	governmental	organization	tasked	with	licensing	commercial	nuclear	reactors.

6.	 I	 personally	 prefer	 this	 approach,	 even	 at	 the	 cost	 of	 maintaining	 duplicate	 information	 (and
potentially	introducing	inconsistencies),	because	it	keeps	those	documents	self-contained	(especially	the
test	procedure	documents).	During	the	testing	process,	I	don’t	want	to	have	to	keep	referring	to	different
documents,	which	can	slow	down	the	testing	and	lead	to	errors	in	the	testing	process.

7.	There	are	other	verification	types,	but	we’ll	ignore	those	here.	If	you	ever	use	those	types	(typically
for	hardware,	although	analysis,	other,	and	no	test	are	possible	software	options),	you’ll	have	to	create
an	appropriate	document	that	justifies	or	describes	how	you	will	verify	the	associated	requirement.

8.	As	usual,	I’ve	included	some	common	(non-IEEE)	names	in	parentheses.

9.	Do	keep	in	mind,	however,	that	creating	the	automated	test	procedure	can	be	expensive	and	you	have
to	validate	the	resulting	code	to	ensure	that	it	properly	executes	all	the	tests.	In	the	long	run,	automated
test	 procedures	 tend	 to	 be	 cost-effective	 because	 on	 all	 but	 the	 smallest	 of	 projects,	 you	 wind	 up
rerunning	test	procedures	many	times	during	development.

10.	 Even	 if	 your	 system	 is	 not	 life-threatening	 or	 doesn’t	 exhibit	 catastrophic	 consequences	 if	 it
misbehaves,	 having	 formal	 SITC	 and	 ATC	 documentation	 can	 help	 prevent	 you	 from	 delivering	 a
shoddy	product.	At	the	very	least,	great	code	is	going	to	run	through	a	formal	test	process	with	formal
test	case/test	procedure	documentation.

11.	Note	that	test	runs	must	be	reproducible	outputs.	Therefore,	random	input	data	is	rarely	appropriate
as	 an	 input	 data	 stream	 unless	 you’re	 testing	 average	 responses	 to	 inputs	 that	 don’t	 depend	 on	 any
particular	input	data	set.

12.	Write	Great	Code,	Volume	6,	will	go	into	details	concerning	code	scaffolding	and	drivers.

13.	Once	you’ve	seen	a	half-dozen	sample	test	cases	or	so,	you’ll	 learn	the	basic	idea	of	how	to	write
them.	Explicitly	providing	all	the	test	cases	for	a	phantom	project	like	the	DAQ	DIP	switches	won’t	help
you	learn	the	material	any	better.

14.	Commercial	off-the-shelf	systems.

15.	 As	 usual,	 I’ve	 included	 some	 industry-standard	 names	 that	 are	 synonyms	 for	 the	 Level	 Test
Procedure	names	in	parentheses.	Remember,	Software	Test	Procedure	is	a	generic	term	representing	any
one	of	these	four	levels	of	test	procedure.

16.	This	is	not	always	true.	Sometimes	the	SATP	has	to	include	additional	testing	procedures	to	deal	with
site	 environmental	 issues	 that	 may	 not	 exist	 at	 the	 factory.	 For	 example,	 noise	 (electrical	 as	 well	 as

acoustical)	and	the	actual	physical	system	installation	may	expose	some	defects	that	could	not	be	caught
on	the	factory	floor.

17.	 It’s	 also	missing	 the	Context	 field,	but	 that’s	nearly	 irrelevant	here.	The	context	 is	 implied	by	 the
Context	field	in	the	STC	documentation.

18.	 Indeed,	QA	guidelines	claim	that	 it	 is	unacceptable	and	unethical	 for	developers	 to	 run	 the	formal
system	integration	and	acceptance	tests	for	a	product.	Many	companies	won’t	even	allow	the	developers
to	produce	the	executable	code,	 instead	relying	on	the	QA	department	to	construct	 the	builds	from	the
source	code	control	system	for	testing.

19.	Some	might	 even	 require	 running	 the	 entire	STP	 from	 the	beginning,	 although	 this	 is	 usually	 too
expensive	and,	therefore,	impractical.	The	usual	compromise	is	to	rerun	each	test	procedure	that	fails	and
then,	at	the	end	of	the	STP,	rerun	the	whole	STP	to	guarantee	it	runs	in	its	entirety	without	failure.

20.	As	noted	earlier,	 some	QA	teams	will	 require	 running	 the	entire	LTP	over	again	 if	 there	were	any
failures	 on	 individual	 test	 procedures	 (whose	 defects	 were	 presumably	 corrected	 and	 retested).	 This
ensures	that	all	test	procedures	in	the	LTP	all	have	the	same	version	number.

21.	As	usual,	I’ve	included	some	common	names	(non–Std	829)	in	parentheses.

22.	You	should,	of	course,	update	the	electronic	version	of	the	document	so	you	don’t	have	to	re-redline
the	test	procedure	if	you	ever	have	to	run	it	again.

23.	Personally,	I	would	have	a	big	problem	with	this	approach.	However,	if	you	have	a	particularly	large
test	procedure,	it	could	be	very	expensive	to	restart	that	procedure	every	time	testers	find	a	defect.

24.	 Many	 defect-tracking	 systems	 are	 accessible	 via	 a	 web	 page	 interface.	 So	 as	 long	 as	 you	 have
internet	access	and	your	tracking	system	is	available	online,	you	can	fill	out	bug	reports	remotely.

25.	With	careful	requirements	design,	you	can	probably	eliminate	the	SRL	if	all	your	requirements	are
testable.	If	you	are	really	brave,	you	could	combine	the	STC	and	LTP	into	a	single	document;	however,
it’s	almost	always	a	better	idea	to	keep	them	separate.

	Title Page
	Copyright Page
	About the Author
	About the Technical Reviewer
	BRIEF CONTENTS
	CONTENTS IN DETAIL
	ACKNOWLEDGMENTS
	INTRODUCTION
	Assumptions and Prerequisites
	What Is Great Code?
	Programmer Classifications
	So You Want to Be a Great Programmer
	A Final Note on Ethics and Character
	For More Information

	PART I: PERSONAL SOFTWARE ENGINEERING
	1 SOFTWARE DEVELOPMENT METAPHORS
	1.1 What Is Software?
	1.2 Parallels to Other Fields
	1.3 Software Engineering
	1.4 Software Craftsmanship
	1.5 The Path to Writing Great Code
	1.6 For More Information

	2 PRODUCTIVITY
	2.1 What Is Productivity?
	2.2 Programmer Productivity vs. Team Productivity
	2.3 Man-Hours and Real Time
	2.4 Conceptual and Scope Complexity
	2.5 Predicting Productivity
	2.6 Metrics and Why We Need Them
	2.7 How Do We Beat 10 Lines per Day?
	2.8 Estimating Development Time
	2.9 Crisis Mode Project Management
	2.10 How to Be More Productive
	2.11 For More Information

	3 SOFTWARE DEVELOPMENT MODELS
	3.1 The Software Development Life Cycle
	3.2 The Software Development Model
	3.3 Software Development Methodologies
	3.4 Models and Methodologies for the Great Programmer
	3.5 For More Information

	PART II: UML
	4 AN INTRODUCTION TO UML AND USE CASES
	4.1 The UML Standard
	4.2 The UML Use Case Model
	4.3 The UML System Boundary Diagrams
	4.4 Beyond Use Cases
	4.5 For More Information

	5 UML ACTIVITY DIAGRAMS
	5.1 UML Activity State Symbols
	5.2 Extending UML Activity Diagrams
	5.3 For More Information

	6 UML CLASS DIAGRAMS
	6.1 Object-Oriented Analysis and Design in UML
	6.2 Visibility in a Class Diagram
	6.3 Class Attributes
	6.4 Class Operations
	6.5 UML Class Relationships
	6.6 Objects
	6.7 For More Information

	7 UML INTERACTION DIAGRAMS
	7.1 Sequence Diagrams
	7.2 Collaboration Diagrams
	7.3 For More Information

	8 MISCELLANEOUS UML DIAGRAMS
	8.1 Component Diagrams
	8.2 Package Diagrams
	8.3 Deployment Diagrams
	8.4 Composite Structure Diagrams
	8.5 Statechart Diagrams
	8.6 More UML
	8.7 For More Information

	PART III: DOCUMENTATION
	9 SYSTEM DOCUMENTATION
	9.1 System Documentation Types
	9.2 Traceability
	9.3 Validation, Verification, and Reviews
	9.4 Reducing Development Costs Using Documentation
	9.5 For More Information

	10 REQUIREMENTS DOCUMENTATION
	10.1 Requirement Origins and Traceability
	10.2 Design Goals
	10.3 The System Requirements Specification Document
	10.4 The Software Requirements Specification Document
	10.5 Creating Requirements
	10.6 Use Cases
	10.7 Creating DAQ Software Requirements from the Use Cases
	10.8 (Selected) DAQ Software Requirements (from SRS)
	10.9 Updating the Traceability Matrix with Requirement Information
	10.10 For More Information

	11 SOFTWARE DESIGN DESCRIPTION DOCUMENTATION
	11.1 IEEE Std 1016-1998 vs. IEEE Std 1016-2009
	11.2 IEEE 1016-2009 Conceptual Model
	11.3 SDD Required Contents
	11.4 SDD Traceability and Tags
	11.5 A Suggested SDD Outline
	11.6 A Sample SDD
	11.7 Updating the Traceability Matrix with Design Information
	11.8 Creating a Software Design
	11.9 For More Information

	12 SOFTWARE TEST DOCUMENTATION
	12.1 The Software Test Documents in Std 829
	12.2 Test Plans
	12.3 Software Review List Documentation
	12.4 Software Test Case Documentation
	12.5 Software Test Procedure Documentation
	12.6 Level Test Logs
	12.7 Anomaly Reports
	12.8 Test Reports
	12.9 Do You Really Need All of This?
	12.10 For More Information

	AFTERWORD: DESIGNING GREAT CODE
	GLOSSARY
	INDEX
	Footnotes

