
R A N D A L L H Y D E

W R I T E G R E A T C O D E / V O L U M E 1

2 N D E D I T I O N

U N D E R S T A N D I N G
T H E M A C H I N E

U N D E R S T A N D I N G
T H E M A C H I N E

PRAISE FOR THE FIRST EDITION OF
WRITE GREAT CODE, VOLUME 1

“Today’s programmers can hardly keep up with the race against inhumane
deadlines and new technologies; therefore, they rarely have a chance to learn
the basics of computer architectures and the inner workings of their program-
ming languages. This book fills in the gaps. I strongly recommend it.”
—InformIT.com

“[Write Great Code] isn’t your typical ‘teach yourself to program’ book. . .
It’s relevant to all languages, and all levels of programming experience. . .
Run, don’t walk, to buy and read this book.”
—Bay Area Large Installation System Administrators (BayLISA)

5/5 stars: “[Write Great Code] fills in the blanks nicely and really could be
part of a computer science degree required reading set. . . . Once this book
is read, you will have a greater understanding and appreciation for code that
is written efficiently—and you may just know enough to do that yourself. At
least you will have a great start at the art of crafting efficient software.”
—MacCompanion

“Great fun to read.”
—VSJ Magazine

“Write Great Code, Volume 1: Understanding the Machine should be on the
required reading list for anyone who wants to develop terrific code in any
language without having to learn assembly language.”
—WebServerTalk

by Randall Hyde

San Francisco

W R I T E G R E AT
C O D E
V O L U M E 1

2 N D E D I T I O N

U n d e r s t a n d i n g t h e M a c h i n e

WRITE GREAT CODE, Volume 1: Understanding the Machine, 2nd Edition.
Copyright © 2020 by Randall Hyde.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-10: 1-71850-036-X
ISBN-13: 978-1-71850-036-5

Publisher: William Pollock
Executive Editor: Barbara Yien
Production Editor: Rachel Monaghan
Developmental Editor: Athabasca Witschi
Project Editor: Dapinder Dosanjh
Cover and Interior Design: Octopod Studios
Technical Reviewer: Anthony Tribelli
Copyeditor: Rachel Monaghan
Compositor: Danielle Foster
Proofreader: James Fraleigh
Illustrator: David Van Ness

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; info@nostarch.com
www.nostarch.com

The Library of Congress issued the following Cataloging-in-Publication Data for the first edition of Volume 1:

Hyde, Randall.

 Write great code : understanding the machine / Randall Hyde.

 p. cm.

 ISBN 1-59327-003-8

1. Computer programming. 2. Computer architecture. I. Title.

 QA76.6.H94 2004

 005.1--dc22

 2003017502

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in it.

www.nostarch.com

About the Author
Randall Hyde is the author of The Art of Assembly Language and
Write Great Code, Volumes 1, 2, and 3 (all from No Starch Press), as
well as Using 6502 Assembly Language and P-Source (Datamost). He is
also the coauthor of Microsoft Macro Assembler 6.0 Bible (The Waite
Group). Over the past 40 years, Hyde has worked as an embedded
software/hardware engineer developing instrumentation for
nuclear reactors, traffic control systems, and other consumer elec-
tronics devices. He has also taught computer science at California
State Polytechnic University, Pomona, and at the University of
California, Riverside. His website is www.randallhyde.com/.

About the Technical Reviewer
Tony Tribelli has more than 35 years of experience in software
development, including work on embedded device kernels and
molecular modeling. He developed video games for 10 years
at Blizzard Entertainment. He is currently a software develop-
ment consultant and privately develops applications utilizing
computer vision.

B R I E F C O N T E N T S

Acknowledgments . xvii

Chapter 1: What You Need to Know to Write Great Code . 1

Chapter 2: Numeric Representation . . 9

Chapter 3: Binary Arithmetic and Bit Operations . 37

Chapter 4: Floating-Point Representation . 61

Chapter 5: Character Representation . . 95

Chapter 6: Memory Organization and Access . 131

Chapter 7: Composite Data Types and Memory Objects . 159

Chapter 8: Boolean Logic and Digital Design . 217

Chapter 9: CPU Architecture . 251

Chapter 10: Instruction Set Architecture . 283

Chapter 11: Memory Architecture and Organization . 319

Chapter 12: Input and Output . 349

Chapter 13: Computer Peripheral Buses . 367

Chapter 14: Mass Storage Devices and Filesystems . 381

Chapter 15: Miscellaneous Input and Output Devices . 413

Afterword: Thinking Low-Level, Writing High-Level . . 425

Appendix A: ASCII Character Set . 427

Glossary . 431

Index . . 443

C O N T E N T S I N D E T A I L

ACKNOWLEDGMENTS 	 XVII

1
WHAT YOU NEED TO KNOW TO WRITE GREAT CODE	 1
1.1  The Write Great Code Series . 1
1.2  What This Book Covers . 2
1.3  Assumptions This Book Makes . 4
1.4  Characteristics of Great Code . 5
1.5  The Environment for This Book . 6
1.6  Additional Tips . 6
1.7  For More Information . 7

2
NUMERIC REPRESENTATION	 9
2.1  What Is a Number? . 9
2.2  Numbering Systems . 11

2.2.1  The Decimal Positional Numbering System . 11
2.2.2  Radix (Base) Values . 12
2.2.3  The Binary Numbering System . 13
2.2.4  The Hexadecimal Numbering System . 15
2.2.5  The Octal Numbering System . 17

2.3  Numeric/String Conversions . 18
2.4  Internal Numeric Representation . 19

2.4.1  Bits . 20
2.4.2  Bit Strings . 20

2.5  Signed and Unsigned Numbers . 23
2.6  Useful Properties of Binary Numbers . 24
2.7  Sign Extension, Zero Extension, and Contraction . 26
2.8  Saturation . 28
2.9  Binary-Coded Decimal Representation . 29
2.10  Fixed-Point Representation . 30
2.11  Scaled Numeric Formats . 33
2.12  Rational Representation . 35
2.13  For More Information . 35

3
BINARY ARITHMETIC AND BIT OPERATIONS	 37
3.1  Arithmetic Operations on Binary and Hexadecimal Numbers 37

3.1.1  Adding Binary Values . 38
3.1.2  Subtracting Binary Values . 39
3.1.3  Multiplying Binary Values . 40
3.1.4  Dividing Binary Values . 41

x ﻿

3.2  Logical Operations on Bits . 42
3.3  Logical Operations on Binary Numbers and Bit Strings . 44
3.4  Useful Bit Operations . . 45

3.4.1  Testing Bits in a Bit String Using AND . 45
3.4.2  Testing a Set of Bits for Zero/Not Zero Using AND 45
3.4.3  Comparing a Set of Bits Within a Binary String 46
3.4.4  Creating Modulo-n Counters Using AND . 47

3.5  Shifts and Rotates . 48
3.6  Bit Fields and Packed Data . 51
3.7  Packing and Unpacking Data . . 55
3.8  For More Information . 59

4
FLOATING-POINT REPRESENTATION	 61
4.1  Introduction to Floating-Point Arithmetic . 61
4.2  IEEE Floating-Point Formats . . 66

4.2.1  Single-Precision Floating-Point Format . 67
4.2.2  Double-Precision Floating-Point Format . . 69
4.2.3  Extended-Precision Floating-Point Format . 69
4.2.4  Quad-Precision Floating-Point Format . . 70

4.3  Normalization and Denormalized Values . . 70
4.4  Rounding . 71
4.5  Special Floating-Point Values . 73
4.6  Floating-Point Exceptions . 74
4.7  Floating-Point Operations . . 75

4.7.1  Floating-Point Representation . 75
4.7.2  Floating-Point Addition and Subtraction . 75
4.7.3  Floating-Point Multiplication and Division . 86

4.8  For More Information . 93

5
CHARACTER REPRESENTATION	 95
5.1  Character Data . . 96

5.1.1  The ASCII Character Set . 96
5.1.2  The EBCDIC Character Set . 99
5.1.3  Double-Byte Character Sets . 100
5.1.4  The Unicode Character Set . 101
5.1.5  Unicode Code Points . . 101
5.1.6  Unicode Code Planes . 102
5.1.7  Surrogate Code Points . . 102
5.1.8  Glyphs, Characters, and Grapheme Clusters 103
5.1.9  Unicode Normals and Canonical Equivalence 105
5.1.10  Unicode Encodings . 107
5.1.11  Unicode Combining Characters . 108

5.2  Character Strings . 110
5.2.1  Character String Formats . 110
5.2.2  Types of Strings: Static, Pseudo-Dynamic, and Dynamic 116
5.2.3  Reference Counting for Strings . 117
5.2.4  Delphi Strings . . 118
5.2.5  Custom String Formats . 119

﻿ xi

5.3  Character Set Data Types . 119
5.3.1  Powerset Representation of Character Sets . 119
5.3.2  List Representation of Character Sets . 120

5.4  Designing Your Own Character Set . 121
5.4.1  Designing an Efficient Character Set . 122
5.4.2  Grouping the Character Codes for Numeric Digits 123
5.4.3  Grouping Alphabetic Characters . 123
5.4.4  Comparing Alphabetic Characters . 125
5.4.5  Grouping Other Characters . 127

5.5  For More Information . 130

6
MEMORY ORGANIZATION AND ACCESS	 131
6.1  The Basic System Components . 131

6.1.1  The System Bus . 132
6.2  Physical Organization of Memory . . 135

6.2.1  8-Bit Data Buses . 137
6.2.2  16-Bit Data Buses . 138
6.2.3  32-Bit Data Buses . 140
6.2.4  64-Bit Data Buses . 141
6.2.5  Small Accesses on Non-80x86 Processors . 141

6.3  Big-Endian vs. Little-Endian Organization . 142
6.4  The System Clock . 147

6.4.1  Memory Access and the System Clock . . 148
6.4.2  Wait States . 150
6.4.3  Cache Memory . . 151

6.5  CPU Memory Access . . 154
6.5.1  The Direct Memory Addressing Mode . 155
6.5.2  The Indirect Addressing Mode . 155
6.5.3  The Indexed Addressing Mode . 156
6.5.4  The Scaled-Index Addressing Modes . 157

6.6  For More Information . 157

7
COMPOSITE DATA TYPES AND MEMORY OBJECTS	 159
7.1  Pointer Types . 159

7.1.1  Pointer Implementation . 160
7.1.2  Pointers and Dynamic Memory Allocation . 161
7.1.3  Pointer Operations and Pointer Arithmetic . 162

7.2  Arrays . 166
7.2.1  Array Declarations . 167
7.2.2  Array Representation in Memory . . 170
7.2.3  Accessing Elements of an Array . 171
7.2.4  Multidimensional Arrays . 172

7.3  Records/Structures . 181
7.3.1  Records in Pascal/Delphi . . 181
7.3.2  Records in C/C++ . 182
7.3.3  Records in HLA . . 183
7.3.4  Records (Tuples) in Swift . 183
7.3.5  Memory Storage of Records . 184

xii ﻿

7.4  Discriminant Unions . 187
7.4.1  Unions in C/C++ . 187
7.4.2  Unions in Pascal/Delphi . 187
7.4.3  Unions in Swift . 189
7.4.4  Unions in HLA . 190
7.4.5  Memory Storage of Unions . 190
7.4.6  Other Uses of Unions . 191

7.5  Classes . 192
7.5.1  Inheritance . . 194
7.5.2  Class Constructors . . 198
7.5.3  Polymorphism . . 201
7.5.4  Abstract Methods and Abstract Base Classes 202

7.6  Classes in C++ . . 205
7.6.1  Abstract Member Functions and Classes in C++ 206
7.6.2  Multiple Inheritance in C++ . 206

7.7  Classes in Java . 208
7.8  Classes in Swift . 209
7.9  Protocols and Interfaces . 210
7.10  Generics and Templates . 213
7.11  For More Information . 215

8
BOOLEAN LOGIC AND DIGITAL DESIGN	 217
8.1  Boolean Algebra . 218

8.1.1  The Boolean Operators . 218
8.1.2  Boolean Postulates . 218
8.1.3  Boolean Operator Precedence . 220

8.2  Boolean Functions and Truth Tables . . 220
8.3  Function Numbers . . 222
8.4  Algebraic Manipulation of Boolean Expressions . 223
8.5  Canonical Forms . . 224

8.5.1  Sum-of-Minterms Canonical Form and Truth Tables 225
8.5.2  Algebraically Derived Sum-of-Minterms Canonical Form 227
8.5.3  Product-of-Maxterms Canonical Form . . 228

8.6  Simplification of Boolean Functions . 229
8.7  What Does This Have to Do with Computers, Anyway? 237

8.7.1  Correspondence Between Electronic Circuits and Boolean Functions . . 238
8.7.2  Combinatorial Circuits . . 239
8.7.3  Sequential and Clocked Logic . 245

8.8  For More Information . 249

9
CPU ARCHITECTURE	 251
9.1  Basic CPU Design . 252
9.2  Decoding and Executing Instructions: Random Logic vs. Microcode 254
9.3  Executing Instructions, Step by Step . . 255

9.3.1  The mov Instruction . 256
9.3.2  The add Instruction . 257

﻿ xiii

9.3.3  The jnz Instruction . 258
9.3.4  The loop Instruction . 259

9.4  RISC vs. CISC: Improving Performance by Executing More, Faster, Instructions . . . 259
9.5  Parallelism: The Key to Faster Processing . 260

9.5.1  Functional Units . 263
9.5.2  The Prefetch Queue . 265
9.5.3  Conditions That Hinder the Performance of the Prefetch Queue 267
9.5.4  Pipelining: Overlapping the Execution of Multiple Instructions 267
9.5.5  Instruction Caches: Providing Multiple Paths to Memory 272
9.5.6  Pipeline Hazards . 273
9.5.7  Superscalar Operation: Executing Instructions in Parallel 275
9.5.8  Out-of-Order Execution . 277
9.5.9  Register Renaming . 277
9.5.10  VLIW Architecture . 278
9.5.11  Parallel Processing . 279
9.5.12  Multiprocessing . 280

9.6  For More Information . 281

10
INSTRUCTION SET ARCHITECTURE	 283
10.1  The Importance of Instruction Set Design . 284
10.2  Basic Instruction Design Goals . 285

10.2.1  Choosing Opcode Length . 287
10.2.2  Planning for the Future . . 289
10.2.3  Choosing Instructions . . 289
10.2.4  Assigning Opcodes to Instructions . . 290

10.3  The Y86 Hypothetical Processor . 291
10.3.1  Y86 Limitations . . 291
10.3.2  Y86 Instructions . 291
10.3.3  Operand Types and Addressing Modes on the Y86 293
10.3.4  Encoding Y86 Instructions . 293
10.3.5  Examples of Encoding Y86 Instructions . 296
10.3.6  Extending the Y86 Instruction Set . 300

10.4  Encoding 80x86 Instructions . 301
10.4.1  Encoding Instruction Operands . 303
10.4.2  Encoding the add Instruction . 310
10.4.3  Encoding Immediate (Constant) Operands on the x86 314
10.4.4  Encoding 8-, 16-, and 32-Bit Operands . 315
10.4.5  Encoding 64-Bit Operands . . 316
10.4.6  Alternate Encodings for Instructions . 316

10.5  Implications of Instruction Set Design to the Programmer 317
10.6  For More Information . 317

11
MEMORY ARCHITECTURE AND ORGANIZATION	 319
11.1  The Memory Hierarchy . 319
11.2  How the Memory Hierarchy Operates . 322
11.3  Relative Performance of Memory Subsystems . 324

xiv ﻿

11.4  Cache Architecture . 326
11.4.1  Direct-Mapped Cache . 326
11.4.2  Fully Associative Cache . 327
11.4.3  n-Way Set Associative Cache . . 328
11.4.4  Cache-Line Replacement Policies . . 329
11.4.5  Cache Write Policies . . 330
11.4.6  Cache Use and Software . 331

11.5  NUMA and Peripheral Devices . . 332
11.6  Virtual Memory, Memory Protection, and Paging . 332
11.7  Writing Software That Is Cognizant of the Memory Hierarchy 336
11.8  Runtime Memory Organization . . 338

11.8.1  Static and Dynamic Objects, Binding, and Lifetime 339
11.8.2  The Code, Read-Only, and Constant Sections 340
11.8.3  The Static Variables Section . 341
11.8.4  The Storage Variables Section . 341
11.8.5  The Stack Section . 342
11.8.6  The Heap Section and Dynamic Memory Allocation 342

11.9  For More Information . 348

12
INPUT AND OUTPUT	 349
12.1  Connecting a CPU to the Outside World . 350
12.2  Other Ways to Connect Ports to the System . 353
12.3  I/O Mechanisms . 354

12.3.1  Memory-Mapped I/O . 354
12.3.2  I/O-Mapped Input/Output . 355
12.3.3  Direct Memory Access . 355

12.4  I/O Speed Hierarchy . 356
12.5  System Buses and Data Transfer Rates . 357

12.5.1  Performance of the PCI Bus . 359
12.5.2  Performance of the ISA Bus . 359
12.5.3  The AGP Bus . 360

12.6  Buffering . 360
12.7  Handshaking . 361
12.8  Timeouts on an I/O Port . 362
12.9  Interrupts and Polled I/O . 363
12.10  Protected-Mode Operation and Device Drivers . 364

12.10.1  The Device Driver Model . 365
12.10.2  Communication with Device Drivers . 365

12.11  For More Information . 366

13
COMPUTER PERIPHERAL BUSES	 367
13.1  The Small Computer System Interface . 367

13.1.1  Limitations . 368
13.1.2  Improvements . 369
13.1.3  SCSI Protocol . 370
13.1.4  SCSI Advantages . 372

﻿ xv

13.2  The IDE/ATA Interface . . 372
13.2.1  The SATA Interface . 374
13.2.2  Fibre Channel . 374

13.3  The Universal Serial Bus . 374
13.3.1  USB Design . 374
13.3.2  USB Performance . 376
13.3.3  Types of USB Transmissions . 377
13.3.4  USB-C . 379
13.3.5  USB Device Drivers . 380

13.4  For More Information . 380

14
MASS STORAGE DEVICES AND FILESYSTEMS	 381
14.1  Disk Drives . . 381

14.1.1  Floppy Disk Drives . 382
14.1.2  Hard Drives . 382
14.1.3  RAID Systems . 388
14.1.4  Optical Drives . 389
14.1.5  CD, DVD, and Blu-ray Drives . . 390

14.2  Tape Drives . 392
14.3  Flash Storage . 393
14.4  RAM Disks . 395
14.5  Solid-State Drives . 395
14.6  Hybrid Drives . 396
14.7  Filesystems on Mass Storage Devices . 396

14.7.1  Sequential Filesystems . 397
14.7.2  Efficient File Allocation Strategies . 399

14.8  Writing Software That Manipulates Data on a Mass Storage Device 407
14.8.1  File Access Performance . 407
14.8.2  Synchronous and Asynchronous I/O . 409
14.8.3  The Implications of I/O Type . 409
14.8.4  Memory-Mapped Files . . 410

14.9  For More Information . 411

15
MISCELLANEOUS INPUT AND OUTPUT DEVICES	 413
15.1  Exploring Specific PC Peripheral Devices . 413

15.1.1  The Keyboard . . 414
15.1.2  The Standard PC Parallel Port . . 415
15.1.3  Serial Ports . . 417

15.2  Mice, Trackpads, and Other Pointing Devices . 417
15.3  Joysticks and Game Controllers . 419
15.4  Sound Cards . 419

15.4.1  How Audio Interface Peripherals Produce Sound 420
15.4.2  The Audio and MIDI File Formats . 422
15.4.3  Programming Audio Devices . 423

15.5  For More Information . 424

xvi ﻿

AFTERWORD: THINKING LOW-LEVEL, WRITING HIGH-LEVEL	 425

A
ASCII CHARACTER SET	 427

GLOSSARY	 431

INDEX	 443

A C K N O W L E D G M E N T S

Many people have read and reread every word, symbol, and punctuation
mark in this book in order to produce a better result. Kudos to the follow-
ing people for their careful work on the second edition: development editor
Athabasca Witschi, copyeditor/production editor Rachel Monaghan, and
proofreader James Fraleigh.

I would like to take the opportunity to graciously thank Anthony
Tribelli, a longtime friend, who went well beyond the call of duty when
doing a technical review of this book. He pulled every line of code out
of this book (including snippets) and compiled and ran it to make sure it
worked properly. His suggestions and opinions throughout the technical
review process have dramatically improved the quality of this work.

Of course, I would also like to thank all the countless readers over the
years who’ve emailed suggestions and corrections, many of which have
found their way into this second edition.

Thanks to all of you,
Randall Hyde

1
W H A T Y O U N E E D T O K N O W T O

W R I T E G R E A T C O D E

The Write Great Code (WGC) series will teach
you how to write code you can be proud of;

code that will impress other programmers,
satisfy customers, and prove popular with

users; and code that people (customers, your boss,
and so on) won’t mind paying top dollar to obtain.
In general, the books in the WGC series will discuss how to write software
that achieves legendary status, eliciting the awe and admiration of other
programmers.

1.1  The Write Great Code Series
Write Great Code, Volume 1: Understanding the Machine (WGC1 hereafter) is the
first of six books in the WGC series. Writing great code requires a combina-
tion of knowledge, experience, and skill that programmers usually obtain
only after years of mistakes and discoveries. The purpose of this series is to
share with both new and experienced programmers a few decades’ worth of

2 Chapter 1

observations and experience. I hope that these books will help reduce the
time and frustration it takes to learn things “the hard way.”

This book, WGC1, fills in the low-level details that are often skimmed
over in a typical computer science or engineering curriculum. These details
are the foundation for the solutions to many problems, and you can’t write
efficient code without this information. Though I’m attempting to keep
each book independent, WGC1 might be considered a prerequisite for the
subsequent volumes in the series.

Write Great Code, Volume 2: Thinking Low-Level, Writing High-Level (WGC2)
immediately applies the knowledge from this book. WGC2 will teach you
how to analyze code written in a high-level language to determine the qual-
ity of the machine code that a compiler would generate for it. Optimizing
compilers don’t always generate the best machine code possible—the state-
ments and data structures you choose in your source files can have a big
impact on the efficiency of the compiler’s output. WGC2 will teach you how
to write efficient code without resorting to assembly language.

There are many attributes of great code besides efficiency, and the
third book in this series, Write Great Code, Volume 3: Engineering Software
(WGC3), will cover some of those. WGC3 will discuss software development
metaphors, development methologies, types of developers, system docu-
mentation, and the Unified Modeling Language (UML). WGC3 provides
the basis for personal software engineering.

Great code begins with a great design. Write Great Code, Volume 4:
Designing Great Code (WGC4), will describe the process of analysis and
design (both structured and object-oriented). WGC4 will teach you how to
translate an initial concept into a working design for your software systems.

Write Great Code, Volume 5: Great Coding (WGC5) will teach you how to
create source code that others can easily read and maintain, as well as how
to improve your productivity without the burden of the “busy work” that
many software engineering books discuss.

Great code works. Therefore, I’d be remiss not to include a book on test-
ing, debugging, and quality assurance. Few programmers properly test their
code. This generally isn’t because they find testing boring or beneath them,
but because they don’t know how to test their programs, eradicate defects,
and ensure the quality of their code. To help overcome this problem, Write
Great Code, Volume 6: Testing, Debugging, and Quality Assurance (WGC6) will
describe how to efficiently test your applications without all the drudgery
engineers normally associate with this task.

1.2  What This Book Covers
In order to write great code, you need to know how to write efficient code,
and to write efficient code, you must understand how computer systems
execute programs and how abstractions in programming languages map to
the low-level hardware capabilities of the machine.

In the past, learning great coding techniques has required learning
assembly language. While this isn’t a bad approach, it’s overkill. Learning

What You Need to Know to Write Great Code 3

assembly language involves learning two related subjects: machine organi-
zation, and programming in assembly language. The real benefits of learn-
ing assembly language come from the machine organization component.
Thus, this book focuses solely on machine organization so you can learn to
write great code without the overhead of also learning assembly language.

Machine organization is a subset of computer architecture that covers
low-level data types, internal CPU organization, memory organization and
access, low-level machine operations, mass storage organization, peripher-
als, and how computers communicate with the rest of the world. This book
concentrates on those parts of computer architecture and machine organi-
zation that are visible to the programmer or are helpful for understanding
why system architects chose a particular system design. The goal of learning
machine organization, and of this book, is not to enable you to design your
own CPU or computer system, but to equip you to make the most efficient
use of existing computer designs. Let’s do a quick run-through of the spe-
cific topics we’ll cover.

Chapters 2, 4, and 5 deal with basic computer data representation—
how computers represent signed and unsigned integer values, characters,
strings, character sets, real values, fractional values, and other numeric and
non-numeric quantities. Without a solid grasp of how computers represent
these various data types internally, it’ll be difficult for you to understand
why some operations that use these data types are so inefficient.

Chapter 3 discusses binary arithmetic and bit operations used by most
modern computer systems. It also offers several insights into how you can
write better code by using arithmetic and logical operations in ways not
normally taught in beginning programming courses. Learning these kinds
of standard “tricks” is part of how you become a great programmer.

Chapter 6 introduces memory, discussing how the computer accesses
its memory and describing characteristics of memory performance. This
chapter also covers various machine code addressing modes, which CPUs use
to access different types of data structures in memory. In modern applica-
tions, poor performance often occurs because the programmer, unaware of
the ramifications of memory access in their programs, creates bottlenecks.
Chapter 6 addresses many of these ramifications.

Chapter 7 returns to data types and representation by covering compos-
ite data types and memory objects: pointers, arrays, records, structures, and
unions. All too often, programmers use large composite data structures
without even considering the memory and performance impact of doing so.
The low-level description of these high-level composite data types will make
clear their inherent costs, so you can use them sparingly and wisely.

Chapter 8 discusses Boolean logic and digital design. This chapter
provides the mathematical and logical background you’ll need to under-
stand the design of CPUs and other computer system components. In par-
ticular, this chapter discusses how to optimize Boolean expressions, such
as those found in common high-level programming language statements
like if and while.

4 Chapter 1

Continuing the hardware discussion from Chapter 8, Chapter 9 dis-
cusses CPU architecture. A basic understanding of CPU design and opera-
tion is essential if you want to write great code. By writing your code in a
manner consistent with how a CPU will execute it, you’ll get much better
performance using fewer system resources.

Chapter 10 discusses CPU instruction set architecture. Machine instruc-
tions are the primitive units of execution on any CPU, and the duration
of program execution is directly determined by the number and type of
machine instructions the CPU must process. Learning how computer archi-
tects design machine instructions can provide valuable insight into why cer-
tain operations take longer to execute than others. Once you understand the
limitations of machine instructions and how the CPU interprets them, you
can use this information to turn mediocre code sequences into great ones.

Chapter 11 returns to the subject of memory, covering memory archi-
tecture and organization. This chapter is especially important for anyone
wanting to write fast code. It describes the memory hierarchy and how to
maximize the use of the cache and other fast memory components. You’ll
learn about thrashing and how to avoid low-performance memory access in
your applications.

Chapters 12 through 15 describe how computer systems communicate
with the outside world. Many peripheral (input/output) devices oper-
ate at much lower speeds than the CPU and memory. You could write the
fastest-executing sequence of instructions possible, and your application
would still run slowly because you didn’t understand the limitations of the
I/O devices in your system. These four chapters discuss generic I/O ports,
system buses, buffering, handshaking, polling, and interrupts. They also
explain how to efficiently use many popular PC peripheral devices, includ-
ing keyboards, parallel (printer) ports, serial ports, disk drives, tape drives,
flash storage, SCSI, IDE/ATA, USB, and sound cards.

1.3  Assumptions This Book Makes
This book was written with certain assumptions about your prior knowl-
edge. You’ll reap the greatest benefit from this material if your skill set
matches the following:

•	 You should be reasonably competent in at least one modern program-
ming language. This includes C/C++, C#, Java, Swift, Python, Pascal/
Delphi (Object Pascal), BASIC, and assembly, as well as languages like
Ada, Modula-2, and FORTRAN.

•	 Given a small problem description, you should be capable of working
through the design and implementation of a software solution for that
problem. A typical semester or quarter course at a college or university
(or several months’ experience on your own) should be sufficient back-
ground for this book.

What You Need to Know to Write Great Code 5

At the same time, this book is not language specific; its concepts tran-
scend whatever programming language(s) you’re using. Furthermore, this
book does not assume that you use or know any particular language. To
help make the examples more accessible, the programming examples rotate
among several languages. This book explains exactly how the example code
operates so that even if you’re unfamiliar with the specific programming
language, you’ll be able to understand its operation by reading the accom-
panying description.

This book uses the following languages and compilers in various examples:

•	 C/C++: GCC, Microsoft’s Visual C++

•	 Pascal: Embarcadero’s Delphi, Free Pascal

•	 Assembly language: Microsoft’s MASM, HLA (High-Level Assembly),
Gas (the Gnu Assembler; on the PowerPC and ARM)

•	 Swift 5 (Apple)

•	 Java (v6 or later)

•	 BASIC: Microsoft’s Visual Basic

Often, the examples appear in multiple languages, so it’s usually safe
to ignore a specific example if you don’t understand the syntax of the lan-
guage it uses.

1.4  Characteristics of Great Code
Different programmers will have different definitions for great code, so it’s
impossible to provide an all-encompassing definition that will satisfy every-
one. However, nearly everyone will agree that great code:

•	 Uses the CPU efficiently (that is, it’s fast)

•	 Uses memory efficiently (that is, it’s small)

•	 Uses system resources efficiently

•	 Is easy to read and maintain

•	 Follows a consistent set of style guidelines

•	 Uses an explicit design that follows established software engineering
conventions

•	 Is easy to enhance

•	 Is well tested and robust (that is, it works)

•	 Is well documented

We could easily add dozens of items to this list. Some programmers, for
example, may feel that great code must be portable, must follow a given set
of programming style guidelines, or must be written in a certain language
(or not be written in a certain language). Some may feel that great code
must be written as simply as possible, while others believe that it must be

6 Chapter 1

written quickly. Still others may feel that great code is created on time and
under budget.

Here is the definition this book uses:

Great code is software that is written using a consistent and pri-
oritized set of good software characteristics. In particular, great
code follows a set of rules that guide the decisions a programmer
makes when implementing an algorithm as source code.

Two different programs do not have to follow the same set of rules (that
is, they need not possess the same set of characteristics) in order for both
to be great. In one environment, the priority might be producing code
that’s portable across different CPUs and operating systems. In a different
environment, efficiency (speed) might be the primary goal, and portability
might not be an issue. Neither program would qualify as great according
to the rules of the other, but as long as the software consistently follows the
guidelines established for that particular program, you can argue that it is
an example of great code.

1.5  The Environment for This Book
Although this book presents generic information, parts of the discus-
sion will necessarily be specific to a particular system. Because the Intel
Architecture PCs are, by far, the most common in use today, this book will
use that platform when discussing specific system-dependent concepts.

Most of the specific examples in this book run on a late-model Intel
Architecture (including AMD) CPU under macOS, Windows, or Linux,
with a reasonable amount of RAM and other system peripherals normally
found on a late-model PC. This book attempts to stick with standard library
interfaces to the operating system (OS) wherever possible, and it makes
OS-specific calls only when the alternative is to write “less than great” code.
The concepts, if not the software itself, will apply to Android, Chrome, iOS,
Macs, Unix boxes, embedded systems, and even mainframes, though you
may need to research how to apply a concept to your platform.

1.6  Additional Tips
No single book can completely cover everything you need to know in order
to write great code. This book, therefore, concentrates on the areas that are
most pertinent for machine organization, providing the 90 percent solution
for those who are interested in writing the best possible code. To get that
last 10 percent you’ll need additional help. Here are some suggestions:

Learn assembly language.  Fluency in at least one assembly language
will fill in many missing details that you just won’t get by learning
machine organization alone. Unless you plan to use assembly language
in your software systems, you don’t have to learn it on the platform(s)
to which you’re targeting your software. Probably your best bet is to

What You Need to Know to Write Great Code 7

learn 80x86 assembly language on a PC, because there are lots of great
software tools for learning Intel Architecture assembly language (for
example, HLA) that simply don’t exist on other platforms. The point
of learning assembly language here is not to write assembly code, but
to learn the assembly paradigm. If you know 80x86 assembly language,
you’ll have a good idea of how other CPUs (such as the ARM or the
IA-64 family) operate.

Study advanced computer architecture.  Machine organization is
a subset of computer architecture, but space limitations prevent full
coverage of both in this book. While you may not need to know how to
design your own CPUs, studying computer architecture might teach you
something omitted here.

1.7  For More Information
Hennessy, John L., and David A. Patterson. Computer Architecture:

A Quantitative Approach. 5th ed. Waltham, MA: Morgan Kaufmann, 2012.

Hyde, Randall. The Art of Assembly Language. 2nd ed. San Francisco:
No Starch Press, 2010.

High-level languages shield programmers
from the pain of dealing with low-level

numeric representation. Writing great
code, however, requires that you understand

how computers represent numbers, so that is the
focus of this chapter. Once you understand internal
numeric representation, you’ll discover efficient ways
to implement many algorithms and avoid the pitfalls
associated with common programming practices.

2.1  What Is a Number?
Having taught assembly language programming for many years, I’ve dis-
covered that most people don’t understand the fundamental difference
between a number and the representation of that number. Most of the
time, this confusion is harmless. However, many algorithms depend on

2
N U M E R I C R E P R E S E N T A T I O N

10 Chapter 2

the internal and external representations we use for numbers to operate
correctly and efficiently. If you don’t understand the difference between
the abstract concept of a number and the representation of that number,
you’ll have trouble understanding, using, or creating such algorithms.

A number is an intangible, abstract concept. It is an intellectual device
that we use to denote quantity. Let’s say I told you that a book has one hun-
dred pages. You could touch the pages—they are tangible. You could even
count those pages to verify that there are one hundred of them. However,
“one hundred” is simply an abstraction I’m applying to the book as a way of
describing its size.

The important thing to realize is that the following is not one hundred:

100

This is nothing more than ink on paper forming certain lines and
curves (called glyphs). You might recognize this sequence of symbols as a
representation of one hundred, but this is not the actual value 100. It’s just
three symbols on this page. It isn’t even the only representation for one
hundred—consider the following, which are all different representations
of the value 100:

100 Decimal representation

C Roman numeral representation

6416 Base-16 (hexadecimal) representation

11001002 Base-2 (binary) representation

1448 Base-8 (octal) representation

one hundred English representation

The representation of a number is (generally) some sequence of sym-
bols. For example, the common representation of the value one hundred,
“100,” is really a sequence of three numeric digits: the digit 1 followed by
the digit 0 followed by a second 0 digit. Each of these digits has some spe-
cific meaning, but we could have just as easily used the sequence “64” to
represent one hundred. Even the individual digits that make up this repre-
sentation of 100 are not numbers. They are numeric digits, tools we use to
represent numbers, but they are not numbers themselves.

Now you might be wondering why you should even care whether a
sequence of symbols like “100” is the actual value one hundred or just the
representation of it. The reason is that you’ll encounter several different
sequences of symbols in a computer program that look like numbers (that
is, they look like “100”), and you don’t want to confuse them with actual
numeric values. Conversely, there are many different representations for
the value one hundred that a computer could use, and it’s important for
you to realize that they are equivalent.

Numeric Representation 11

2.2  Numbering Systems
A numbering system is a mechanism we use to represent numeric values.
Today, most people use the decimal (or base-10) numbering system, and most
computer systems use the binary (or base-2) numbering system. Confusion
between the two can lead to poor coding practices.

The Arabs developed the decimal numbering system we commonly
use today (this is why the 10 decimal digits are known as Arabic numerals).
The decimal system uses positional notation to represent values with a small
group of different symbols. Positional notation gives meaning not only to the
symbol itself, but also to the position of the symbol in the sequence of sym-
bols—a scheme that is far superior to other, nonpositional, representations.
To appreciate the difference between a positional system and a nonpositional
system, consider the tally-slash representation of the number 25 in Figure 2-1.

Figure 2-1: Tally-slash representation of 25

The tally-slash representation uses a sequence of n marks to represent
the value n. To make the values easier to read, most people arrange the tally
marks in groups of five, as in Figure 2-1. The advantage of the tally-slash
numbering system is that it’s easy to use for counting objects. However, the
notation is bulky, and arithmetic operations are difficult. The biggest prob-
lem with the tally-slash representation is the amount of physical space it con-
sumes. To represent the value n requires an amount of space proportional to
n. Therefore, for large values of n, this notation becomes unusable.

2.2.1  The Decimal Positional Numbering System
The decimal positional numbering system represents numbers using strings
of Arabic numerals, optionally including a decimal point to separate whole
and fractional portions of the number representation. The position of a
digit in the string affects its meaning: each digit to the left of the decimal
point represents a value between 0 and 9, multiplied by an increasing power
of 10 (see Figure 2-2). The symbol immediately to the left of the decimal
point in the sequence represents a value between 0 and 9. If there are
at least two digits, the second symbol to the left of the decimal point rep-
resents a value between 0 and 9 times 10, and so forth. To the right of the
decimal point, the values decrease.

1 2 3 4 5

102 10 1 10 0 10–1 10–2

The magnitude associated with each digit is relative
to its distance from the decimal point.

Figure 2-2: A positional numbering system

12 Chapter 2

The numeric sequence 123.45 represents:

(1 × 102) + (2 × 101) + (3 × 100) + (4 × 10–1) + (5 × 10–2)

or:

100 + 20 + 3 + 0.4 + 0.05

To understand the power of the base-10 positional numbering system,
consider that, compared to the tally-slash system:

•	 It can represent the value 10 in one-third the space.

•	 It can represent the value 100 in about 3 percent of the space.

•	 It can represent the value 1,000 in about 0.3 percent of the space.

As the numbers grow larger, the disparity becomes even greater.
Because of their compact and easy-to-recognize notation, positional num-
bering systems are quite popular.

2.2.2  Radix (Base) Values
Humans developed the decimal numbering system because it corresponds
to the number of fingers (“digits”) on their hands. However, decimal isn’t
the only positional numbering system possible; in fact, for most computer-
based applications, it isn’t even the best numbering system available. So,
let’s take a look at how to represent values in other numbering systems.

The decimal positional numbering system uses powers of 10 and 10
unique symbols for each digit position. Because decimal numbers use pow-
ers of 10, we call them “base-10” numbers. By substituting a different set of
numeric digits and multiplying those digits by powers of some base other
than 10, we can devise a different numbering system. The base, or radix,
is the value that we raise to successive powers for each digit to the left of
the radix point (note that the term decimal point applies only to decimal
numbers).

As an example, we can create a base-8 (octal) numbering system using
eight symbols (0–7) and successive powers of 8. Consider the octal number
1238 (the subscript denotes the base using standard mathematical nota-
tion), which is equivalent to 8310:

1 × 82 + 2 × 81 + 3 × 80

or:

64 + 16 + 3

To create a base-n numbering system, you need n unique digits. The
smallest possible radix is 2 (for this scheme). For bases 2 through 10, the
convention is to use the Arabic digits 0 through n − 1 (for a base-n sys-
tem). For bases greater than 10, the convention is to use the alphabetic
digits a through z or A through Z (ignoring case) for digits greater than
9. This scheme supports numbering systems through base 36 (10 numeric
digits and 26 alphabetic digits). There’s no agreed-upon convention for
symbols beyond the 10 Arabic numeric digits and the 26 alphabetic digits.

Numeric Representation 13

Throughout this book, we’ll deal with base-2, base-8, and base-16 values
because base 2 (binary) is the native representation most computers use,
base 8 was popular on older computer systems, and base 16 is more com-
pact than base 2. You’ll find that many programs use these three bases, so
it’s important to be familiar with them.

2.2.3  The Binary Numbering System
Since you’re reading this book, chances are pretty good that you’re already
familiar with the base-2, or binary, numbering system; nevertheless, a quick
review is in order. The binary numbering system works just like the decimal
numbering system, except binary uses only the digits 0 and 1 (rather than
0–9) and uses powers of 2 (rather than powers of 10).

Why even worry about binary? After all, almost every computer lan-
guage available allows programmers to use decimal notation (automatically
converting decimal representation to the internal binary representation).
Despite this capability, most modern computer systems talk to I/O devices
using binary, and their arithmetic circuitry operates on binary data. Many
algorithms depend upon binary representation for correct operation. In
order to write great code, then, you’ll need a complete understanding of
binary representation.

2.2.3.1  Converting Between Decimal and Binary Representation

To appreciate what the computer does for you, it’s useful to learn how to
convert between decimal and binary representations manually.

To convert a binary value to decimal, add 2i for each 1 in the binary
string, where i is the zero-based position of the binary digit. For example,
the binary value 110010102 represents:

1 × 27 + 1 × 26 + 0 × 25 + 0 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 0 × 20

or:

128 + 64 + 8 + 2

or:

20210

Converting decimal to binary is almost as easy. Here’s an algorithm that
converts decimal representation to the corresponding binary representation:

1.	 If the number is even, emit a 0. If the number is odd, emit a 1.

2.	 Divide the number by 2 and discard any fractional component or
remainder.

3.	 If the quotient is 0, the algorithm is complete.

4.	 If the quotient is not 0 and the number is odd, insert a 1 before the cur-
rent string. If the quotient is not 0 and the number is even, prefix your
binary string with 0.

5.	 Go back to step 2 and repeat.

14 Chapter 2

This example converts 202 to binary:

1.	 202 is even, so emit a 0 and divide by 2 (101): 0

2.	 101 is odd, so emit a 1 and divide by 2 (50): 10

3.	 50 is even, so emit a 0 and divide by 2 (25): 010

4.	 25 is odd, so emit a 1 and divide by 2 (12): 1010

5.	 12 is even, so emit a 0 and divide by 2 (6): 01010

6.	 6 is even, so emit a 0 and divide by 2 (3): 001010

7.	 3 is odd, so emit a 1 and divide by 2 (1): 1001010

8.	 1 is odd, so emit a 2 and divide by 2 (0): 11001010

9.	 The result is 0, so the algorithm is complete, producing 11001010.

2.2.3.2  Making Binary Numbers Easier to Read

As you can tell by the equivalent representations 20210 and 110010102,
binary representation is not as compact as decimal representation. We
need some way to make the digits, or bits, in binary numbers less bulky
and easier to read.

In the United States, most people separate every three digits with a
comma to make larger numbers easier to read. For example, 1,023,435,208
is much easier to read and comprehend than 1023435208. This book will
adopt a similar convention for binary numbers; each group of 4 binary
bits will be separated with an underscore. For example, the binary value
10101111101100102 will be written as 1010_1111_1011_00102.

2.2.3.3  Representing Binary Values in Programming Languages

Thus far, this chapter has used the subscript notation embraced by mathe-
maticians to denote binary values (the lack of a subscript indicates the deci-
mal base). Subscripts are not generally recognized by program text editors
or programming language compilers, however, so we need some other way
to represent various bases within a standard ASCII text file.

Generally, only assembly language compilers (“assemblers”) allow
the use of literal binary constants in a program.1 Because assemblers vary
widely, there are many different ways to represent binary literal constants in
an assembly language program. This book presents examples using MASM
and HLA, so it makes sense to adopt their conventions.

MASM represents binary values as a sequence of binary digits (0 and 1)
ending with a b or B. The binary representation for 9 would be 1001b in a
MASM source file.

HLA prefixes binary values with the percent symbol (%). To make
binary numbers more readable, HLA also allows you to insert underscores
within binary strings like so:

%11_1011_0010_1101

1. Swift also allows you to specify binary numbers, using a 0b prefix.

Numeric Representation 15

2.2.4  The Hexadecimal Numbering System
As noted earlier, binary number representation is verbose. Hexadecimal
representation offers two great features: it’s very compact, and it’s easy to
convert between binary and hexadecimal. Therefore, software engineers
generally use hexadecimal representation rather than binary to make their
programs more readable.

Because hexadecimal representation is base 16, each digit to the left of
the hexadecimal point represents some value times a successive power of 16.
For example, the number 123416 is equal to:

1 × 163 + 2 × 162 + 3 × 161 + 4 × 160

or:

4096 + 512 + 48 + 4

or:

466010

Hexadecimal representation uses the letters A through F for the addi-
tional six digits it requires (above the 10 standard decimal digits, 0–9). The
following are all examples of valid hexadecimal numbers:

23416  DEAD16  BEEF16  0AFB16  FEED16  DEAF16

2.2.4.1  Representing Hexadecimal Values in Programming Languages

One problem with hexadecimal representation is that it’s difficult to differ-
entiate hexadecimal values like “DEAD” from standard program identifiers.
Therefore, most programming languages use a special prefix or suffix char-
acter to denote hexadecimal values. Here’s how you specify literal hexadeci-
mal constants in several popular languages:

•	 The C, C++, C#, Java, Swift, and other C-derivative programming lan-
guages use the prefix 0x. You’d use the character sequence 0xdead for
the hexadecimal value DEAD16.

•	 The MASM assembler uses an h or H suffix. Because this doesn’t com-
pletely resolve the ambiguity between certain identifiers and literal
hexadecimal constants (for example, “deadh” still looks like an identi-
fier to MASM), it also requires that a hexadecimal value begin with
a numeric digit. So, you would add 0 to the beginning of the value
(because a prefix of 0 does not alter the value of a numeric representa-
tion) to get 0deadh, which unambiguously represents DEAD16.

•	 Visual Basic uses the &H or &h prefix. Continuing with the current exam-
ple, you’d use &Hdead to represent DEAD16 in Visual Basic.

•	 Pascal (Delphi) uses the prefix $. So, you’d use $dead to represent the
current example in Delphi/Free Pascal.

•	 HLA also uses the prefix $. As with binary numbers, it also allows you to
insert underscores into a hexadecimal number to make it easier to read
(for example, $FDEC_A012).

16 Chapter 2

In general, this book will use the HLA/Delphi/Free Pascal format
except in examples specific to other programming languages. Because
there are several C/C++ examples in this book, you’ll frequently see the
C/C++ notation as well.

2.2.4.2  Converting Between Hexadecimal and Binary Representations

Another reason hexadecimal notation is popular is because it’s easy to convert
between the binary and hexadecimal representations. By memorizing the few
simple rules shown in Table 2-1, you can mentally perform this conversion.

Table 2-1: Binary/Hexadecimal Conversion Chart

Binary Hexadecimal

%0000 $0

%0001 $1

%0010 $2

%0011 $3

%0100 $4

%0101 $5

%0110 $6

%0111 $7

%1000 $8

%1001 $9

%1010 $A

%1011 $B

%1100 $C

%1101 $D

%1110 $E

%1111 $F

To convert the hexadecimal representation of a number into binary,
substitute the corresponding 4 bits for each hexadecimal digit. For exam-
ple, to convert $ABCD into the binary form %1010_1011_1100_1101, convert each
hexadecimal digit according to the values in Table 2-1:

A B C D Hexadecimal
1010 1011 1100 1101 Binary

Converting the binary representation of a number into hexadecimal
is almost as easy. First, pad the binary number with 0s to make sure it is a
multiple of 4 bits long. For example, given the binary number 1011001010,
add two 0 bits to the left of the number to make it 12 bits without changing
its value: 001011001010. Next, separate the binary value into groups of 4
bits: 0010_1100_1010. Finally, look up these binary values in Table 2-1 and

Numeric Representation 17

substitute the appropriate hexadecimal digits: $2CA. As you can see, this
is much simpler than converting between decimal and binary or between
decimal and hexadecimal.

2.2.5  The Octal Numbering System
Octal (base-8) representation was common in early computer systems,
so you might still see it in use now and then. Octal is great for 12-bit and
36-bit computer systems (or any other size that is a multiple of 3), but not
particularly for computer systems whose bit size is a power of 2 (8-, 16-, 32-,
and 64-bit computer systems). Nevertheless, some programming languages
allow you to specify numeric values in octal notation, and you can still find
some older Unix applications that use it.

2.2.5.1  Representing Octal Values in Programming Languages

The C programming language (and derivatives like C++ and Java), MASM,
Swift, and Visual Basic support octal representation. You should be aware
of the notation they use for octal numbers in case you come across it in pro-
grams written in these languages.

•	 In C, you specify the octal base by prefixing a numeric string with a
0 (zero). For example, 0123 is equivalent to the decimal value 8310 and
definitely not equivalent to the decimal value 12310.

•	 MASM uses a Q or q suffix. (Microsoft/Intel probably chose Q because it
looks like the letter O but isn’t likely to be confused with a zero.)

•	 Swift uses a 0o prefix. For example, 0o14 represents the decimal value 1210.

•	 Visual Basic uses the prefix &O (that’s the letter O, not a zero). For exam-
ple, you’d use &O123 to represent the decimal value 8310.

2.2.5.2  Converting Between Octal and Binary Representation

Converting between binary and octal is similar to converting between binary
and hexadecimal, except that you work in groups of 3 bits rather than 4. See
Table 2-2 for the list of binary and octal equivalent representations.

Table 2-2: Binary/Octal Conversion Chart

Binary Octal

%000 0

%001 1

%010 2

%011 3

%100 4

%101 5

%110 6

%111 7

18 Chapter 2

To convert octal into binary, replace each octal digit in the number
with the corresponding 3 bits from Table 2-2. For example, when you con-
vert 123q into a binary value, the final result is %0_0101_0011:

1 2 3

001 010 011

To convert a binary number into octal, you break up the binary string
into groups of 3 bits (padding with 0s, as necessary) and then replace each
triad with the corresponding octal digit from Table 2-2.

To convert an octal value to hexadecimal notation, convert the octal
number to binary and then convert the binary value to hexadecimal.

2.3  Numeric/String Conversions
In this section, we’ll explore conversions from string to numeric form and
vice versa. Because most programming languages (or their libraries) per-
form these conversions automatically, beginning programmers are often
unaware that they’re even taking place. For example, consider how easy it is
to convert a string to numeric form in various languages:

cin >> i; // C++
readln(i); // Pascal
let j = Int(readLine() ?? "")! // Swift
input i // BASIC
stdin.get(i); // HLA

In each of these statements, the variable i can hold some integer num-
ber. The input from the user’s console, however, is a string of characters.
The programming language’s runtime library is responsible for convert-
ing that string of characters to the internal binary form the CPU requires.
Note that Swift only allows you to read a string from the standard input;
you must explicitly convert that string to an integer using the Int() con-
structor/type conversion function.

Unfortunately, if you have no idea of the cost of these statements, you
won’t realize how they can impact your program when performance is criti-
cal. It’s important to understand the underlying work involved in the con-
version algorithms so you won’t frivolously use statements like these.

N O T E 	 For simplicity’s sake, we’ll discuss unsigned integer values and ignore the possibil-
ity of illegal characters and numeric overflow. Therefore, the following algorithms
slightly understate the actual work involved.

Use this algorithm to convert a string of decimal digits to an integer value:

1.	 Initialize a variable with 0; this will hold the final value.

2.	 If there are no more digits in the string, then the algorithm is com-
plete, and the variable holds the numeric value.

Numeric Representation 19

3.	 Fetch the next digit (moving from left to right) from the string and
convert it from ASCII to an integer.

4.	 Multiply the variable by 10, and then add in the digit fetched in step 3.

5.	 Return to step 2 and repeat.

Converting an integer value to a string of characters takes even
more effort:

1.	 Initialize a string to the empty string.

2.	 If the integer value is 0, output a 0, and the algorithm is complete.

3.	 Divide the current integer value by 10, computing the remainder
and quotient.

4.	 Convert the remainder (always in the range 0..92) to a character, and
insert the character at the beginning of the string.

5.	 If the quotient is not 0, make it the new value and repeat steps 3–5.

6.	 Output the characters in the string.

The particulars of these algorithms are not important. What is impor-
tant is that these steps execute once for each output character and division
is very slow. So, a simple statement like one of the following can hide a fair
amount of work from the programmer:

printf("%d", i); // C
cout << i; // C++
print i // BASIC
write(i); // Pascal
print(i) // Swift
stdout.put(i); // HLA

To write great code, you don’t need to avoid using numeric/string con-
versions altogether; however, a great programmer will take care to use them
only as necessary.

Remember that these algorithms are valid only for unsigned integers.
Signed integers require a little more effort to process (though the extra
work is almost negligible). Floating-point values, however, are far more dif-
ficult to convert between string and numeric form, so keep that in mind
when writing code that uses floating-point arithmetic.

2.4  Internal Numeric Representation
Most modern computer systems use an internal binary format to repre-
sent values and other objects. However, most systems can only efficiently
represent binary values of a given size. In order to write great code, you
need to make sure that your programs use data objects that the machine

2. The “..” notation, taken from Pascal and other programming languages, denotes a range of
values. Thus, “0..9” denotes all integer values between 0 and 9.

20 Chapter 2

can represent efficiently. This section will describe how computers physi-
cally represent values so you can design your programs accordingly.

2.4.1  Bits
The smallest unit of data on a binary computer is a single bit. Because a bit
can represent only two different values (typically 0 or 1), you might assume
that you can’t use it for much. But in fact, there’s an infinite number of
two-item combinations you can represent with a single bit. Here are some
examples (with arbitrary binary encodings I’ve created):

•	 Zero (0) or one (1)

•	 False (0) or true (1)

•	 Off (0) or on (1)

•	 Male (0) or female (1)

•	 Wrong (0) or right (1)

You’re not limited to representing binary data types, either (that is,
those objects that have only two distinct values). You could also use a single
bit to represent any two distinct items:

•	 The numbers 723 (0) and 1,245 (1)

•	 The colors red (0) and blue (1)

You could even represent two unrelated objects with a single bit. For
example, you could use the bit value 0 to represent the color red and the bit
value 1 to represent the number 3,256. You can represent any two different
values with a single bit—but only two different values. Therefore, individual
bits aren’t sufficient for most computational needs. To overcome the limita-
tions of a single bit, we create bit strings from a sequence of multiple bits.

2.4.2  Bit Strings
By combining bits into a sequence, we can form binary representations that
are equivalent to other representations of numbers, like hexadecimal and
octal. Most computer systems don’t let you combine an arbitrary number of
bits, so you have to work with bit strings of certain fixed lengths.

A nibble is a collection of 4 bits. Most computer systems don’t provide
efficient access to nibbles in memory. Notably, it takes exactly 1 nibble to
represent a single hexadecimal digit.

A byte is 8 bits and is the smallest addressable data item on many CPUs;
that is, the CPU can efficiently retrieve data in groups of 8 bits from mem-
ory. For this reason, the smallest data type that many languages support
consumes 1 byte of memory (regardless of the actual number of bits the
data type requires).

Numeric Representation 21

Because the byte is the smallest unit of storage on most machines, and
many languages use bytes to represent objects that require fewer than 8 bits,
we need some way of denoting individual bits within a byte. To describe the
bits within a byte, we’ll use bit numbers. As Figure 2-3 shows, bit 0 is the low-
order (LO), or least significant, bit, and bit 7 is the high-order (HO), or most signifi-
cant, bit of the byte. We’ll refer to all other bits by their number.

7 6 5 4 3 2 1 0

Figure 2-3: Bit numbering in a byte

A word is defined differently depending on the CPU: it may be a 16-bit,
32-bit, or 64-bit object. This book adopts the 80x86 terminology and
defines a word as a collection of 16 bits. As with bytes, we’ll use bit numbers
for a word, starting with bit number 0 for the LO bit and working our way
up to bit 15, the HO bit (see Figure 2-4).

15 14 13 12 11 10 7 6 5 4 3 2 1 09 8

Figure 2-4: Bit numbers in a word

Notice that a word contains exactly 2 bytes. Bits 0 through 7 form the
LO byte, and bits 8 through 15 form the HO byte (see Figure 2-5).

15 14 13 12 11 10 7 6 5 4 3 2 1 09 8

HO byte LO byte

Figure 2-5: The 2 bytes in a word

A double word (or dword) is exactly what its name implies—a pair of words.
Therefore, a double-word quantity is 32 bits long, as shown in Figure 2-6.

31 23 15 7 0

Figure 2-6: Bit layout in a double word

22 Chapter 2

Figure 2-7 shows that a double word comprises 2 words or 4 bytes.

31 23 15 7 0

Byte #1Byte #2HO byte LO byte

31 23

HO word LO word

15 7 0

Figure 2-7: Bytes and words in a double word

As noted, most CPUs efficiently handle objects up to a certain size (typi-
cally 32 or 64 bits on contemporary systems). That doesn’t mean you can’t
work with larger objects, only that it’s less efficient to do so. You typically
won’t see programs handling numeric objects much larger than about 128
or 256 bits. Some programming languages make 64-bit integers available,
and most languages support 64-bit floating-point values, so for these data
types we’ll use the term quad word. Finally, we’ll use long word to describe
128-bit values; although few languages today support them,3 this gives us
some room to grow.

We can break down quad words into 2 double words, 4 words, 8 bytes,
or 16 nibbles. Likewise, we can break down long words into 2 quad words, 4
double words, 8 words, or 16 bytes.

Intel 80x86 platforms also support an 80-bit type that Intel calls a tbyte
(short for “ten byte”) object. The 80x86 CPU family uses tbyte variables
to hold extended precision floating-point values and certain binary-coded
decimal (BCD) values.

In general, with an n-bit string you can represent up to 2n different val-
ues. Table 2-3 shows the number of possible objects you can represent with
nibbles, bytes, words, double words, quad words, and long words.

Table 2-3: Number of Values Representable with Bit Strings

Size of bit string (in bits) Number of possible combinations (2n)

4 16

8 256

16 65,536

32 4,294,967,296

64 18,446,744,073,709,551,616

128 340,282,366,920,938,463,463,374,607,431,768,211,456

3. HLA supports 128-bit values.

Numeric Representation 23

2.5  Signed and Unsigned Numbers
The binary number 0…000004 represents 0; 0…00001 represents 1;
0…00010 represents 2; and so on toward infinity. But what about negative
numbers? To represent signed values, most computer systems use the two’s
complement numbering system. The representation of signed numbers places
some fundamental restrictions on them, so it’s important that you under-
stand how signed and unsigned numbers are represented differently in a
computer system in order to use them efficiently.

With n bits, we can represent only 2n different objects. Because negative
values are objects in their own right, we’ll have to divide these 2n combina-
tions between negative and non-negative values. So, for example, a byte can
represent the negative values –128 through –1 and the non-negative val-
ues 0 to 127. With a 16-bit word, we can represent signed values in the
range –32,768 to +32,767. With a 32-bit double word, we can represent val-
ues in the range –2,147,483,648 to +2,147,483,647. In general, with n bits we
can represent the signed values in the range –2n–1 to +2n–1 − 1.

The two’s complement system uses the HO bit as a sign bit. If the HO bit
is 0, the number is non-negative and has the usual binary encoding; if the
HO bit is 1, the number is negative and uses the two’s complement encod-
ing. Here are some examples using 16-bit numbers:

•	 $8000 (%1000_0000_0000_0000) is negative because the HO bit is 1.

•	 $100 (%0000_0001_0000_0000) is non-negative because the HO bit is 0.

•	 $7FFF (%0111_1111_1111_1111) is non-negative.

•	 $FFFF (%1111_1111_1111_1111) is negative.

•	 $FFF (%0000_1111_1111_1111) is non-negative.

To negate a number, you can use the two’s complement operation
as follows:

1.	 Invert all the bits in the number; that is, change all the 0s to 1s and
vice versa.

2.	 Add 1 to the inverted result (ignoring any overflow).

If the result is negative (has its HO bit set), then this is the two’s
complement form of the non-negative value.

For example, these are the steps to compute the 8-bit equivalent of
the decimal value −5:

1.	 %0000_0101  5 (in binary).

2.	 %1111_1010  Invert all the bits.

3.	 %1111_1011  Add 1 to obtain −5 (in two’s complement form).

4. The ellipses (. . .) have the standard mathematical meaning: repeat a string of zeros an
indefinite number of times.

24 Chapter 2

If we take −5 and negate it, the result is 5 (%0000_0101), just as we expect:

1.	 %1111_1011  Two’s complement for −5.

2.	 %0000_0100  Invert all the bits.

3.	 %0000_0101  Add 1 to obtain 5 (in binary).

Let’s look at some 16-bit examples and their negations.
First, negate 32,767 ($7FFF):

1.	 %0111_1111_1111_1111  +32,767, the largest 16-bit positive number.

2.	 %1000_0000_0000_0000  Invert all the bits (8000h).

3.	 %1000_0000_0000_0001  Add 1 (8001h, or –32,767).

Now negate 16,384 ($4000):

1.	 %0100_0000_0000_0000  16,384.

2.	 %1011_1111_1111_1111  Invert all the bits ($BFFF).

3.	 %1100_0000_0000_0000  Add 1 ($C000 or –16,384).

And now negate –32,768 ($8000):

1.	 %1000_0000_0000_0000  –32,768, the smallest 16-bit negative number.

2.	 %0111_1111_1111_1111  Invert all the bits ($7FFF).

3.	 %1000_0000_0000_0000  Add 1 ($8000 or –32,768).

$8000 inverted becomes $7FFF, and after adding 1 we obtain $8000!
Wait, what’s going on here: −(–32,768) is –32,768? Of course not. However,
the 16-bit two’s complement numbering system cannot represent the value
+32,768. In general, you cannot negate the smallest negative value in the
two’s complement numbering system.

2.6  Useful Properties of Binary Numbers
Here are some properties of binary values that you might find useful in
your programs:

•	 If bit position 0 of a binary (integer) value contains 1, the number is an
odd number; if this bit contains 0, then the number is even.

•	 If the LO n bits of a binary number all contain 0, then the number is
evenly divisible by 2n.

•	 If a binary value contains a 1 in bit position n, and 0s everywhere else,
then that number is equal to 2n.

•	 If a binary value contains all 1s from bit position 0 up to (but not
including) bit position n, and all other bits are 0, then that value is
equal to 2n − 1.

Numeric Representation 25

•	 Shifting all the bits in a number to the left by one position multiplies
the binary value by 2.

•	 Shifting all the bits of an unsigned binary number to the right by one
position effectively divides that number by 2 (this does not apply to
signed integer values). Odd numbers are rounded down.

•	 Multiplying two n-bit binary values together may require as many as
2 × n bits to hold the result.

•	 Adding or subtracting two n-bit binary values never requires more than
n + 1 bits to hold the result.

•	 Inverting all the bits in a binary number (that is, changing all the 0s to
1s and vice versa) is the same thing as negating (changing the sign) of
the value and then subtracting 1 from the result.

•	 Incrementing (adding 1 to) the largest unsigned binary value for a given
number of bits always produces a value of 0.

•	 Decrementing (subtracting 1 from) 0 always produces the largest
unsigned binary value for a given number of bits.

•	 An n-bit value provides 2n unique combinations of those bits.

•	 The value 2n–1 contains n bits, each containing the value 1.

It’s a good idea to memorize all the powers of 2 from 20 through 216
(see Table 2-4), as these values come up in programs all the time.

Table 2-4: Powers of 2

n 2n

0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1,024

11 2,048

12 4,096

13 8,192

14 16,384

15 32,768

16 65,536

26 Chapter 2

2.7  Sign Extension, Zero Extension, and Contraction
With the two’s complement system, a single negative value is represented
differently depending on the size of the representation. An 8-bit signed
value must be converted for use in an expression involving a 16-bit number.
This conversion and its converse—converting a 16-bit value to 8 bits—are
the sign extension and contraction operations, respectively.

Consider the value −64. The 8-bit two’s complement value for this num-
ber is $C0. The 16-bit equivalent is $FFC0. Clearly, these are not the same bit
pattern. Now consider the value +64. The 8- and 16-bit versions of this value
are $40 and $0040, respectively. We extend the size of negative values differ-
ently than we extend the size of non-negative values.

To sign-extend a value, copy the sign bit into the additional HO bits in
the new format. For example, to sign-extend an 8-bit number to a 16-bit
number, copy bit 7 of the 8-bit number into bits 8 through 15 of the 16-bit
number. To sign-extend a 16-bit number to a double word, copy bit 15 into
bits 16 through 31 of the double word.

When adding a byte quantity to a word quantity, you need to sign-
extend the byte to 16 bits before adding the two numbers. Other operations
may require a sign extension to 32 bits.

Table 2-5 provides several examples of sign extension.

Table 2-5: Sign Extension Examples

8 bits 16 bits 32 bits Binary (two’s complement)

$80 $FF80 $FFFF_FF80 %1111_1111_1111_1111_1111_1111_1000_0000

$28 $0028 $0000_0028 %0000_0000_0000_0000_0000_0000_0010_1000

$9A $FF9A $FFFF_FF9A %1111_1111_1111_1111_1111_1111_1001_1010

$7F $007F $0000_007F %0000_0000_0000_0000_0000_0000_0111_1111

n/a $1020 $0000_1020 %0000_0000_0000_0000_0001_0000_0010_0000

n/a $8086 $FFFF_8086 %1111_1111_1111_1111_1000_0000_1000_0110

Zero extension converts small unsigned values to larger unsigned values.
Zero extension is very easy—just store 0s in the HO byte(s) of the larger
operand. For example, to zero-extend the 8-bit value $82 to 16 bits, you
insert a 0 for the HO byte, yielding $0082.

Further examples are listed in Table 2-6.

Table 2-6: Zero Extension Examples

8 bits 16 bits 32 bits Binary

$80 $0080 $0000_0080 %0000_0000_0000_0000_0000_0000_1000_0000

$28 $0028 $0000_0028 %0000_0000_0000_0000_0000_0000_0010_1000

$9A $009A $0000_009A %0000_0000_0000_0000_0000_0000_1001_1010

$7F $007F $0000_007F %0000_0000_0000_0000_0000_0000_0111_1111

n/a $1020 $0000_1020 %0000_0000_0000_0000_0001_0000_0010_0000

n/a $8086 $0000_8086 %0000_0000_0000_0000_1000_0000_1000_0110

Numeric Representation 27

Many high-level language compilers automatically handle sign and zero
extension. The following examples in C demonstrate how this works:

signed char sbyte; // Chars in C are byte values.
short int sword; // Short integers in C are *usually* 16-bit values.
long int sdword; // Long integers in C are *usually* 32-bit values.
 . . .
sword = sbyte; // Automatically sign-extends the 8-bit value to 16 bits.
sdword = sbyte; // Automatically sign-extends the 8-bit value to 32 bits.
sdword = sword; // Automatically sign-extends the 16-bit value to 32 bits.

Some languages (such as Ada or Swift) require an explicit cast from a
smaller size to a larger size. Check the reference manual for your particu-
lar language to see if this is necessary. The advantage of a language that
requires you to provide an explicit conversion is that the compiler never
does anything behind your back. If you fail to do the conversion yourself,
the compiler emits a diagnostic message.

The important thing to realize about sign and zero extension is that
they aren’t always free. Assigning a smaller integer to a larger integer may
require more machine instructions (taking longer to execute) than mov-
ing data between two like-sized integer variables. Therefore, you should be
careful about mixing variables of different sizes within the same arithmetic
expression or assignment statement.

Sign contraction—converting a value with some number of bits to the
same value with a fewer number of bits—is a little more troublesome. For
example, consider the value −448. As a 16-bit hexadecimal number, its rep-
resentation is $FE40. The magnitude of this number is too large to fit into 8
bits, so you can’t sign-contract it to 8 bits.

To properly sign-contract one value to another, you must look at the
HO byte(s) that you want to discard. First, the HO bytes must all contain
either 0 or $FF. Second, the HO bit of your resulting value must match every
bit you’ve removed from the number. Here are some examples of convert-
ing 16-bit values to 8-bit values (including a couple of failures):

•	 $FF80 (%1111_1111_1000_0000) can be sign-contracted to $80 (%1000_0000).

•	 $0040 (%0000_0000_0100_0000) can be sign-contracted to $40 (%0100_0000).

•	 $FE40 (%1111_1110_0100_0000) cannot be sign-contracted to 8 bits.

•	 $0100 (%0000_0001_0000_0000) cannot be sign-contracted to 8 bits.

Some high-level languages, like C, will simply store the LO portion of
the expression into a smaller variable and discard the HO component—at
best, the C compiler may give you a warning about the loss of precision that
may occur. You can often quiet the compiler, but it still doesn’t check for
invalid values. Typically, you’d use code like the following to sign-contract a
value in C:

signed char sbyte; // Chars in C are byte values.
short int sword; // Short integers in C are *usually* 16-bit values.
long int sdword; // Long integers in C are *usually* 32-bit values.

28 Chapter 2

 . . .
sbyte = (signed char) sword;
sbyte = (signed char) sdword;
sword = (short int) sdword;

The only safe solution in C is to compare the result of the expression to
an upper- and lower-bound value before attempting to store the value into a
smaller variable. Here’s the preceding code with these checks in place:

if(sword >= -128 && sword <= 127)
{
 sbyte = (signed char) sword;
}
else
{
 // Report appropriate error.
}

// Another way, using assertions:

assert(sword >= -128 && sword <= 127)
sbyte = (signed char) sword;

assert(sdword >= -32768 && sdword <= 32767)
sword = (short int) sdword;

This code gets pretty ugly. In C/C++, you’d probably want to turn
this into a macro (#define) or a function so your code would be a bit more
readable.

Some high-level languages (such as Free Pascal and Delphi) automati-
cally sign-contract values and then check the value to ensure it fits in the
destination operand.5 Such languages raise some sort of exception (or stop
the program) if a range violation occurs. To take corrective action, you’ll
either need to write some exception-handling code or use an if statement
sequence similar to the one in the C example just given.

2.8  Saturation
You can also reduce the size of an integer value through saturation, which is
useful when you’re willing to live with a possible loss of precision. To con-
vert a value via saturation, you copy the LO bits of the larger object into the
smaller object. If the larger value is outside the smaller object’s range, then
you clip the larger value by setting the smaller object to the largest (or small-
est) value within the smaller value’s range.

For example, when converting a 16-bit signed integer to an 8-bit
signed integer, if the 16-bit value is in the range –128 through +127, you
simply copy the LO byte into the 8-bit object. If the 16-bit signed value is

5. Borland’s compilers require the use of a special compiler directive to activate this check.
By default, the compiler does not do the bounds check.

Numeric Representation 29

greater than +127, then you clip the value to +127 and store +127 into the
8-bit object. Likewise, if the value is less than –128, you clip the final 8-bit
object to –128. Saturation works the same way when you clip 32-bit values to
smaller values.

If the larger value is outside the range of the smaller value, there will
be a loss of precision during the conversion. While clipping the value is
never desirable, sometimes it’s better than raising an exception or oth-
erwise rejecting the calculation. For many applications, such as audio or
video, the clipped result is still recognizable to the end user, so this is a rea-
sonable conversion scheme.

Many CPUs support saturation arithmetic in their special “multimedia
extension” instruction sets—for example, the MMX/SSE/AVX instruc-
tion extensions on the Intel 80x86 processor family. Most CPUs’ standard
instruction sets, as well as most high-level languages, do not provide direct
support for saturation, but the technique is not difficult. Consider the fol-
lowing Free Pascal/Delphi code, which uses saturation to convert a 32-bit
integer to a 16-bit integer:

var
 li :longint;
 si :smallint;
 . . .
 if(li > 32767) then

 si := 32767;

 else if(li < -32768) then

 si := -32768;

 else
 si := li;

2.9  Binary-Coded Decimal Representation
The binary-coded decimal (BCD) format, as its name suggests, encodes
decimal values using a binary representation. Common general-purpose
high-level languages (like C/C++, Pascal, and Java) rarely support decimal
values. However, business-oriented programming languages (like COBOL
and many database languages) do. So, if you’re writing code that interfaces
with a database or some language that supports decimal arithmetic, you
may need to deal with BCD representation.

BCD values consist of a sequence of nibbles, with each nibble represent-
ing a value in the range 0 to 9. (The BCD format uses only 10 of the pos-
sible 16 values represented by a nibble.) With a byte we can represent values
containing two decimal digits (0..99), as shown in Figure 2-8. With a word,
we can represent four decimal digits (0..9999). A double word can repre-
sent up to eight decimal digits.

30 Chapter 2

7 6 5 4 3 2 1 0

HO nibble
(HO digit)

LO nibble
(LO digit)

0..9 0..9

Figure 2-8: BCD data representation in a byte

An 8-bit BCD variable can represent values in the range 0 to 99, while
that same 8 bits, holding a binary value, could represent values in the range
0 to 255. Likewise, a 16-bit binary value can represent values in the range 0
to 65,535, while a 16-bit BCD value can represent only about a sixth of
those values (0..9999). Inefficient storage isn’t the only problem with BCD,
though—BCD calculations also tend to be slower than binary calculations.

The BCD format does have two saving graces: it’s very easy to convert
BCD values between the internal numeric representation and their decimal
string representations, and it’s also very easy to encode multidigit decimal
values in hardware when using BCD—for example, when using a set of
dials, with each dial representing a single digit. For these reasons, you’re
likely to see people using BCD in embedded systems (such as toaster ovens
and alarm clocks) but rarely in general-purpose computer software.

A few decades ago, people thought that calculations involving BCD
(or just decimal) arithmetic were more accurate than binary calculations.
Therefore, they would often perform important calculations, like those
involving monetary units, using decimal-based arithmetic. Certain calcula-
tions can produce more accurate results in BCD, but for most calculations,
binary is more accurate. This is why most modern computer programs rep-
resent all values (including decimal values) in a binary form. For example,
the Intel 80x86 floating-point unit (FPU) supports a pair of instructions for
loading and storing BCD values. Internally, the FPU converts these BCD
values to binary. It only uses BCD as an external (to the FPU) data format.
This approach generally produces more accurate results.

2.10  Fixed-Point Representation
There are two ways computer systems commonly represent numbers with
fractional components: fixed-point representation and floating-point
representation.

Back in the days when CPUs didn’t support floating-point arithmetic
in hardware, fixed-point arithmetic was very popular with programmers
writing high-performance software that dealt with fractional values. There’s
less software overhead needed to support fractional values in a fixed-point
format than in floating-point. However, CPU manufacturers added FPUs to
their CPUs to support floating-point in hardware, and today, it’s fairly rare

Numeric Representation 31

to see someone attempt fixed-point arithmetic on a general-purpose CPU.
It’s usually more cost-effective to use the CPU’s native floating-point format.

Although CPU manufacturers have worked hard at optimizing the
floating-point arithmetic on their systems, in certain circumstances, care-
fully written assembly language programs that use fixed-point calculations
will run faster than the equivalent floating-point code. Certain 3D gaming
applications, for example, may produce faster computations using a 16:16
(16-bit integer, 16-bit fractional) format rather than a 32-bit floating-point
format. Because there are some very good uses for fixed-point arithmetic,
this section discusses fixed-point representation and fractional values using
the fixed-point format.

N O T E 	 Chapter 4 will discuss the floating-point format.

As you’ve seen, positional numbering systems represent fractional
values (values between 0 and 1) by placing digits to the right of the radix
point. In the binary numbering system, each bit to the right of the binary
point represents the value 0 or 1 multiplied by some successive negative
power of 2. We represent that fractional component of a value using sums
of binary fractions. For example, the value 5.25 is represented by the binary
value 101.01. The conversion to decimal yields:

1 × 22 + 1 × 20 + 1 × 2–2 = 4 + 1 + 0.25 = 5.25

When using a fixed-point binary format, you choose a particular bit
in the binary representation and implicitly place the binary point before
that bit. You choose the position of the binary point based on the number
of significant bits you require in the fractional portion of the number. For
example, if your values’ integer components can range from 0 to 999, you’ll
need at least 10 bits to the left of the binary point to represent this range of
values. If you require signed values, you’ll need an extra bit for the sign. In
a 32-bit fixed-point format, this leaves either 21 or 22 bits for the fractional
part, depending on whether your value is signed.

Fixed-point numbers are a small subset of the real numbers. Because
the number of values between any two integer values is infinite, fixed-point
values cannot exactly represent every single one (doing so would require
an infinite number of bits). With fixed-point representation, we have to
approximate most of the real numbers. Consider the 8-bit fixed-point for-
mat, which uses 6 bits for the integer portion and 2 bits for the fractional
component. The integer component can represent values in the range 0 to
63 (or signed values in the range –32 to +31). The fractional component
can represent only four different values: 0.0, 0.25, 0.5, and 0.75. You cannot
exactly represent 1.3 with this format; the best you can do is approximate
it by choosing the value closest to it (1.25). This introduces error. You can
reduce this error by adding further bits to the right of the binary point
in your fixed-point format (at the expense of reducing the range of the
integer component or adding more bits to your fixed-point format). For
example, if you move to a 16-bit fixed-point format using an 8-bit integer

32 Chapter 2

and an 8-bit fractional component, then you can approximate 1.3 using the
binary value 1.01001101. The decimal equivalent is as follows:

1 + 0.25 + 0.03125 + 0.15625 + 0.00390625 = 1.30078125

Adding more bits to the fractional component of your fixed-point num-
ber will give you a more accurate approximation of this value (the error is
only 0.00078125 using this format, compared to 0.05 in the previous format).

In a fixed-point binary numbering system, there are certain values you
can never accurately represent regardless of how many bits you add to the
fractional part of your fixed-point representation (1.3 just happens to be
such a value). This is probably the main reason why people (mistakenly)
feel that decimal arithmetic is more accurate than binary arithmetic (par-
ticularly when working with decimal fractions like 0.1, 0.2, 0.3, and so on).

To contrast the comparative accuracy of the two systems, let’s consider
a fixed-point decimal system (using BCD representation). If we choose a
16-bit format with 8 bits for the integer portion and 8 bits for the fractional
portion, we can represent decimal values in the range 0.0 to 99.99 with two
decimal digits of precision to the right of the decimal point. We can exactly
represent values like 1.3 in this BCD notation using a hex value like $0130
(the implicit decimal point appears between the second and third digits in
this number). As long as you use only the fractional values 0.00 to 0.99 in
your computations, this BCD representation is more accurate than the
binary fixed-point representation (using an 8-bit fractional component).

In general, however, the binary format is more accurate. The binary
format lets you exactly represent 256 different fractional values, whereas
BCD lets you represent only 100. If you pick an arbitrary fractional value,
it’s likely the binary fixed-point representation provides a better approxima-
tion than the decimal format (because there are over two and a half times
as many binary versus decimal fractional values). (You can extend this com-
parison to larger formats: for example, with a 16-bit fractional component,
the decimal/BCD fixed-point format gives you exactly four digits of preci-
sion; the binary format, on the other hand, offers over six times the resolu-
tion—65,536 rather than 10,000 fractional values.) Decimal fixed-point
format has the advantage only when you regularly work with the fractional
values that it can exactly represent. In the United States, monetary compu-
tations commonly produce these fractional values, so programmers figured
the decimal format is better for monetary computations. However, given the
accuracy most financial computations require (generally four digits to the
right of the decimal point is the minimum precision), it’s usually better to
use a binary format.

If you absolutely, positively need to exactly represent the fractional val-
ues between 0.00 and 0.99 with at least two digits of precision, the binary
fixed-point format is not a viable solution. Fortunately, you don’t have to use
a decimal format; as you’ll soon see, there are other binary formats that will
let you exactly represent these values.

Numeric Representation 33

2.11  Scaled Numeric Formats
Fortunately, there’s a numeric representation that combines the exact rep-
resentation of certain decimal fractions with the precision of the binary for-
mat. Known as the scaled numeric format, this representation is also efficient
to use and doesn’t require any special hardware.

Another advantage of the scaled numeric format is that you can choose
any base, not just decimal, for your format. For example, if you’re working
with ternary (base-3) fractions, you can multiply your original input value
by 3 (or a power of 3) and exactly represent values like 1/3, 2/3, 4/9, 7/27,
and so on—something you can’t do in either the binary or decimal num-
bering systems.

To represent fractional values, you multiply your original value by some
value that converts the fractional component to a whole number. For exam-
ple, if you want to maintain two decimal digits of precision to the right of
the decimal point, multiply your values by 100 upon input. This translates
values like 1.3 to 130, which we can exactly represent using an integer value.
Assuming you do this calculation with all your fractional values (and they
have the same two digits of precision to the right of the decimal point), you
can manipulate your values using standard integer arithmetic operations.
For example, if you have the values 1.5 and 1.3, their integer conversion
produces 150 and 130. If you add these two values, you get 280 (which cor-
responds to 2.8). When you need to output these values, you divide them
by 100 and emit the quotient as the integer portion of the value and the
remainder (zero-extended to two digits, if necessary) as the fractional com-
ponent. Other than needing to write specialized input and output routines
that handle the multiplication and division by 100 (as well as dealing with
the decimal point), you’ll find that this scaled numeric scheme is almost as
easy as doing regular integer calculations.

If you scale your values as described here, you’ve limited the maximum
range of the integer portion of your numbers. For example, if you need two
decimal digits of precision to the right of your decimal point (meaning you
multiply the original value by 100), then you may only represent (unsigned)
values in the range 0 to 42,949,672 rather than the normal range of 0 to
4,294,967,296.

When you’re doing addition or subtraction with a scaled format, both
operands must have the same scaling factor. If you’ve multiplied the left
operand by 100, you must multiply the right operand by 100 as well. For
example, if you’ve scaled the variable i10 by 10 and you’ve scaled the vari-
able j100 by 100, you need to either multiply i10 by 10 (to scale it by 100) or
divide j100 by 10 (to scale it down to 10) before attempting to add or sub-
tract these two numbers. This ensures that both operands have the radix
point in the same position (note that this applies to literal constants as well
as to variables).

34 Chapter 2

In multiplication and division operations, the operands do not require
the same scaling factor prior to the operation. However, once the operation
is complete, you may need to adjust the result. Suppose you have two values
you’ve scaled by 100 to produce two digits of precision after the decimal
point, i = 25 (0.25) and j = 1 (0.01). If you compute k = i * j using stan-
dard integer arithmetic, you’ll get 25 (25 × 1 = 25), which is interpreted
as 0.25, but the result should be 0.0025. The computation is correct; the
problem is understanding how the multiplication operator works. We’re
actually computing:

(0.25 × (100)) × (0.01 × (100))
=

0.25 × 0.01 × (100 × 100) (commutative laws allow this)
=

0.0025 × (10,000)
=

25

The final result actually gets scaled by 10,000 because both i and j have
been multiplied by 100; when you multiply their values, you wind up with a
value multiplied by 10,000 (100 × 100) rather than 100. To solve this prob-
lem, you should divide the result by the scaling factor once the computation
is complete. For example, k = (i * j)/100.

The division operation suffers from a similar problem. Suppose we
have the values m = 500 (5.0) and n = 250 (2.5) and we want to compute k =
m/n. We would normally expect to get the result 200 (2.0, which is 5.0/2.5).
However, here’s what we’re actually computing:

(5 × 100) / (2.5 × 100)
=

500/250
=
2

At first blush this may look correct, but the result is really 0.02 after you
factor in the scaling operation. The result we need is 200 (2.0). Division by
the scaling factor eliminates the scaling factor in the final result. Therefore,
to properly compute the result, we need to compute k = 100 * m/n.

Multiplication and division place a limit on the precision you have avail-
able. If you have to premultiply the dividend by 100, then the dividend must
be at least 100 times smaller than the largest possible integer value, or an
overflow will occur (producing an incorrect result). Likewise, when you’re
multiplying two scaled values, the final result must be 100 times less than
the maximum integer value, or an overflow will occur. Because of these
issues, you may need to set aside additional bits or work with small numbers
when using scaled numeric representation.

Numeric Representation 35

2.12  Rational Representation
One big problem with the fractional representations we’ve seen is that they
provide a close approximation, but not an exact representation, for all ratio-
nal values.6 For example, in binary or decimal you cannot exactly represent
the value 1/3 . You could switch to a ternary (base-3) numbering system and
exactly represent 1/3 , but then you wouldn’t be able to exactly represent
fractional values like 1/2 or 1/10 . We need a numbering system that can rep-
resent any rational fractional value.

Rational representation uses pairs of integers to represent fractional
values. One integer represents the numerator (n) of a fraction, and the
other represents the denominator (d). The actual value is equal to n/d.
As long as n and d are “relatively prime” (that is, not both evenly divisible by
the same value), this scheme provides a good representation for fractional
values within the bounds of the integer representation you’re using for n
and d. Arithmetic is quite easy; you use the same algorithms to add, sub-
tract, multiply, and divide fractional values that you learned in grade school
when dealing with fractions. However, certain operations may produce
really large numerators or denominators (to the point where you get inte-
ger overflow in these values). Other than this problem, you can represent a
wide range of fractional values using this scheme.

2.13  For More Information
Knuth, Donald E. The Art of Computer Programming, Volume 2: Seminumerical

Algorithms. 3rd ed. Boston: Addison-Wesley, 1998.

6. It isn’t possible to provide an exact computer representation of an irrational number, so we
won’t even try.

3
B I N A R Y A R I T H M E T I C A N D

B I T O P E R A T I O N S

As Chapter 2 explained, understanding
how computers represent data in binary

is a prerequisite to writing software that
works well on them. Of equal importance is

understanding how computers operate on binary
data. That’s the focus of this chapter, which explores
arithmetic, logical, and bit operations on binary data.

3.1  Arithmetic Operations on Binary and
Hexadecimal Numbers

Often, you need to manually operate on two binary (or hexadecimal) values
in order to use the result in your source code. Although there are calculators
that can compute such results, you should be able to perform simple arithme-
tic operations on binary operands by hand. Hexadecimal arithmetic is suf-
ficiently painful that a hexadecimal calculator (or a software-based calculator

38 Chapter 3

that supports hexadecimal operations, such as the Windows calculator, or a
smartphone app) belongs on every programmer’s desk. Arithmetic opera-
tions on binary values, however, are easier than decimal arithmetic.

Knowing how to manually compute binary arithmetic results is essential
because several important algorithms use these operations (or variants of
them). This section describes how to manually add, subtract, multiply, and
divide binary values, and how to perform various logical operations on them.

3.1.1  Adding Binary Values
Adding two binary values is easy; there are only eight rules to learn:1

•	 0 + 0 = 0

•	 0 + 1 = 1

•	 1 + 0 = 1

•	 1 + 1 = 0 with carry

•	 Carry + 0 + 0 = 1

•	 Carry + 0 + 1 = 0 with carry

•	 Carry + 1 + 0 = 0 with carry

•	 Carry + 1 + 1 = 1 with carry

Once you know these eight rules, you can add any two binary values
together. Here’s a step-by-step example of binary addition:

 0101
 + 0011

Step 1: Add the LO bits (1 + 1 = 0 + carry).
 c
 0101
 + 0011

 0

Step 2: Add the carry plus the bits in bit position 1 (carry + 0 + 1 = 0 + carry).
 c
 0101
 + 0011

 00
Step 3: Add the carry plus the bits in bit position 2 (carry + 1 + 0 = 0 + carry).
 c
 0101
 + 0011

 000

1. This might sound like a lot, but you had to memorize approximately 200 rules for
decimal addition!

Binary Arithmetic and Bit Operations 39

Step 4: Add the carry plus the bits in bit position 3 (carry + 0 + 0 = 1).
 0101
 + 0011

 1000

Here are some more examples:

 1100_1101 1001_1111 0111_0111
+ 0011_1011 + 0001_0001 + 0000_1001
----------- ----------- -----------
1_0000_1000 1011_0000 1000_0000

3.1.2  Subtracting Binary Values
Like addition, binary subtraction has eight rules:

•	 0 − 0 = 0

•	 0 − 1 = 1 with a borrow

•	 1 − 0 = 1

•	 1 − 1 = 0

•	 0 − 0 − borrow = 1 with a borrow

•	 0 − 1 − borrow = 0 with a borrow

•	 1 − 0 − borrow = 0

•	 1 − 1 − borrow = 1 with a borrow

Here’s a step-by-step example of binary subtraction:

 0101
 - 0011

Step 1: Subtract the LO bits (1 − 1 = 0).
 0101
 - 0011

 0
Step 2: Subtract the bits in bit position 1 (0 − 1 = 1 + borrow).
 0101
 - 0011
 b

 10

Step 3: Subtract the borrow and the bits in bit position 2 (1 − 0 − b = 0).
 0101
 - 0011

 010

40 Chapter 3

Step 4: Subtract the bits in bit position 3 (0 − 0 = 0).
 0101
 - 0011

 0010

Here are some more examples:

 1100_1101 1001_1111 0111_0111
- 0011_1011 - 0001_0001 - 0000_1001
----------- ----------- -----------
 1001_0010 1000_1110 0110_1110

3.1.3  Multiplying Binary Values
Multiplication of binary numbers is simple; it follows the same rules as deci-
mal multiplication involving only 0s and 1s:

•	 0 × 0 = 0

•	 0 × 1 = 0

•	 1 × 0 = 0

•	 1 × 1 = 1

Here’s a step-by-step example of binary multiplication:

 1010
 × 0101

Step 1: Multiply the LO bit of the multiplier times the multiplicand.
 1010
 × 0101

 1010 (1 × 1010)

Step 2: Multiply bit 1 of the multiplier times the multiplicand.
 1010
 × 0101

 1010 (1 × 1010)
 0000 (0 × 1010)

 01010 (partial sum)

Step 3: Multiply bit 2 of the multiplier times the multiplicand.
 1010
 × 0101

 001010 (previous partial sum)
 1010 (1 × 1010)

 110010 (partial sum)

Binary Arithmetic and Bit Operations 41

Step 4: Multiply bit 3 of the multiplier times the multiplicand.
 1010
 × 0101

 110010 (previous partial sum)
 0000 (0 × 1010)

 0110010 (product)

3.1.4  Dividing Binary Values
Binary division uses the same (longhand) division algorithm as decimal
division. Figure 3-1 shows the steps in a decimal division problem.

12 3456
24

(1) 12 goes into 34
 two times.

(3) 12 goes into 105
 eight times.

12 3456
24

105
96

28

12 3456
24

105

2
(2) Subtract 24 from 34
 and drop down the 105.

12 3456
24

105
96

28

96

(4) Subtract 96 from 105
 and drop down the 96.

12 3456
24

105
96

288

96
96

(5) 12 goes into 96
 exactly eight times.

12 3456
24

105
96

288

96
96

(6) Therefore, 12 goes into
 3456 exactly 288 times.

2

Figure 3-1: Decimal division (3456/12)

This algorithm is easier in binary because at each step you don’t have
to guess how many times 12 goes into the remainder or multiply 12 by your
guess to obtain the amount to subtract. At each step in the binary algo-
rithm, the divisor goes into the remainder exactly zero or one times. For
example, consider the division of 27 (11011) by 3 (11) shown in Figure 3-2.

42 Chapter 3

11 11011
 11

11 goes into 11 one time.

1

11 11011
 11
 00

Subtract out the 11 and bring down the 0.

1

11 11011
 11
 00
 00

11 goes into 00 zero times.

10

11 11011
 11
 00
 00
 01

Subtract out the 0 and bring down the 1.

10

11 11011
 11
 00
 00
 01
 00

11 goes into 01 zero times.

100

11 11011
 11
 00
 00
 01
 00
 11

Subtract out the 0 and bring down the 1.

100

11 11011
 11
 00
 00
 01
 00
 11
 11

11 goes into 11 one time.

1001

11 11011
 11
 00
 00
 01
 00
 11
 11
 00

This produces the final result
of 1001.

1001

Figure 3-2: Longhand division in binary

3.2  Logical Operations on Bits
There are four main logical operations we’ll need to perform on hexadeci-
mal and binary numbers: AND, OR, XOR (exclusive-or), and NOT. In con-
trast to the arithmetic operations, a hexadecimal calculator isn’t necessary
to perform these operations.

The logical AND, OR, and XOR operations accept two single-bit oper-
ands and compute the following results:

AND:
 0 and 0 = 0
 0 and 1 = 0
 1 and 0 = 0
 1 and 1 = 1

Binary Arithmetic and Bit Operations 43

OR:
 0 or 0 = 0
 0 or 1 = 1
 1 or 0 = 1
 1 or 1 = 1

XOR:
 0 xor 0 = 0
 0 xor 1 = 1
 1 xor 0 = 1
 1 xor 1 = 0

Tables 3-1, 3-2, and 3-3 show the truth tables for the AND, OR, and
XOR operations, respectively. A truth table is just like the multiplication
tables you encountered in elementary school. The values in the left col-
umn correspond to the left operand of the operation. The values in the
top row correspond to the right operand. The result is at the intersection
of the row and column (for a particular pair of operands).

Table 3-1: AND Truth Table

AND 0 1

0 0 0

1 0 1

Table 3-2: OR Truth Table

OR 0 1

0 0 1

1 1 1

Table 3-3: XOR Truth Table

XOR 0 1

0 0 1

1 1 0

In plain English, the logical AND operation translates as, “If the first
operand is 1 and the second operand is 1, the result is 1; otherwise the result
is 0.” We could also state this as “If either or both operands are 0, the
result is 0.” The logical AND operation is useful for forcing a 0 result. If
one of the operands is 0, the result is 0 regardless of the value of the other
operand. If one of the operands contains 1, then the result is the value of
the other operand.

Colloquially, the logical OR operation is, “If the first operand or the
second operand (or both) is 1, the result is 1; otherwise the result is 0.” This
is also known as the inclusive -OR operation. If one of the operands to the
logical-OR operation is 1, the result is 1. If an operand is 0, the result is the
value of the other operand.

44 Chapter 3

In English, the logical XOR operation is, “If the first or second oper-
and, but not both, is 1, the result is 1; otherwise, the result is 0.” If one of
the operands is a 1, the result is the inverse of the other operand.

The logical NOT operation is unary (meaning it accepts only one oper-
and). Table 3-4 is the truth table for the NOT operation. This operator
inverts the value of its operand.

Table 3-4: NOT Truth Table

NOT 0 1

1 0

3.3  Logical Operations on Binary Numbers and Bit Strings
Because most programming languages manipulate groups of 8, 16, 32,
or 64 bits, we need to extend the definition of these logical operations
beyond single-bit operands to operate on a bit-by-bit (or bitwise) basis. Given
two values, a bitwise logical function operates on bit 0 from both source
operands, producing bit 0 in the result operand; it operates on bit 1 of
both operands, producing bit 1 of the result; and so on. For example, if you
want to compute the bitwise logical AND of two 8-bit numbers, you would
logically AND each pair of bits in the two numbers:

%1011_0101
%1110_1110

%1010_0100

This bit-by-bit execution applies to the other logical operations as well.
The ability to force bits to 0 or 1 using the logical AND and OR operations,
and to invert bits using the logical XOR operation, is very important when
you’re working with strings of bits (such as binary numbers). These opera-
tions let you selectively manipulate certain bits within a value while leaving
other bits unaffected. For example, if you have an 8-bit binary value X and
you want to guarantee that bits 4 through 7 contain 0s, AND the value X
with the binary value %0000_1111. This bitwise AND operation forces the
HO 4 bits of X to 0 and leaves the LO 4 bits of X unchanged. Likewise, you
could force the LO bit of X to 1 and invert bit number 2 of X by ORing X
with %0000_0001 and then exclusive-ORing (XORing) X with %0000_0100.

Manipulating bit strings with the logical AND, OR, and XOR operations
is known as masking. This term originates from the fact that we can use cer-
tain values (1 for AND, 0 for OR and XOR) to “mask out” or “mask in” certain
bits in an operand while forcing other bits to 0, 1, or their inverse.

Several languages provide operators that let you compute the bitwise
AND, OR, XOR, and NOT of their operands. The C/C++/Java/Swift lan-
guage family uses the ampersand (&) for bitwise AND, the pipe (|) for

Binary Arithmetic and Bit Operations 45

bitwise OR, the caret (^) for bitwise XOR, and the tilde (~) for bitwise NOT,
as shown here:

// Here's a C/C++ example:

 i = j & k; // Bitwise AND
 i = j | k; // Bitwise OR
 i = j ^ k; // Bitwise XOR
 i = ~j; // Bitwise NOT

The Visual Basic and Free Pascal/Delphi languages let you use the and, or,
xor, and not operators with integer operands. From 80x86 assembly lan-
guage, you can use the AND, OR, NOT, and XOR instructions.

3.4  Useful Bit Operations
Although bit operations may seem a bit abstract, they are quite useful for
many non-obvious purposes. This section describes some of their useful
properties in various languages.

3.4.1  Testing Bits in a Bit String Using AND
You can use the bitwise AND operator to test individual bits in a bit string
to see if they are 0 or 1. If you logically AND a value with a bit string that
contains a 1 in a certain bit position, the result of the AND will be 0 if the
corresponding bit contains a 0, and nonzero if that bit position contains 1.
Consider the following C/C++ code, which checks an integer value to see if
it is odd or even by testing bit 0 of the integer:

IsOdd = (ValueToTest & 1) != 0;

In binary form, here’s what this bitwise AND operation is doing:

xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx // Assuming ValueToTest is 32 bits
0000_0000_0000_0000_0000_0000_0000_0001 // Bitwise AND with the value 1

0000_0000_0000_0000_0000_0000_0000_000x // Result of bitwise AND

The result is 0 if the LO bit of ValueToTest contains a 0 in bit position 0.
The result is 1 if ValueToTest contains a 1 in bit position 1. This calculation
ignores all other bits in ValueToTest.

3.4.2  Testing a Set of Bits for Zero/Not Zero Using AND
You can also use the bitwise AND operator to see if all bits in a set are 0.
For example, one way to check if a number is evenly divisible by 16 is to see
if the LO 4 bits are all 0s. The following Free Pascal/Delphi statement uses
the bitwise AND operator to accomplish this:

IsDivisibleBy16 := (ValueToTest and $f) = 0;

46 Chapter 3

In binary form, here’s what this bitwise AND operation is doing:

xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx // Assuming ValueToTest is 32 bits
0000_0000_0000_0000_0000_0000_0000_1111 // Bitwise AND with $F

0000_0000_0000_0000_0000_0000_0000_xxxx // Result of bitwise AND

The result is 0 if and only if the LO 4 bits of ValueToTest are all 0.

3.4.3  Comparing a Set of Bits Within a Binary String
The AND and OR operations are particularly useful if you need to compare
a subset of the bits in a binary value against some other value. For example,
you might want to compare two 6-bit values found in bits 0, 1, 10, 16, 24,
and 31 of a pair of 32-bit values. The trick is to set all the uninteresting bits
to 0 and then compare the two results.2

Consider the following three binary values; x denotes bits whose values
we don’t care about:

%1xxxxxx0xxxxxxx1xxxxx0xxxxxxxx10
%1xxxxxx0xxxxxxx1xxxxx0xxxxxxxx10
%1xxxxxx1xxxxxxx1xxxxx1xxxxxxxx11

The first and second binary values (assuming we’re interested only in
bits 31, 24, 16, 10, 1, and 0) are equal. If we compare either of the first two
values against the third value, we’ll find that they are not equal. The third
value is also greater than the first two. In C/C++ and assembly, this is how
we could compare these values:

// C/C++ example

 if((value1 & 0x81010403) == (value2 & 0x81010403))
 {
 // Do something if bits 31, 24, 16, 10, 1, and 0 of
 // value1 and value2 are equal
 }

 if((value1 & 0x81010403) != (value3 & 0x81010403))
 {
 // Do something if bits 31, 24, 16, 10, 1, and 0 of
 // value1 and value3 are not equal
 }

// HLA/x86 assembly example:

 mov(value1, eax); // EAX = value1
 and($8101_0403, eax); // Mask out unwanted bits in EAX
 mov(value2, edx); // EDX = value2
 and($8101_0403, edx); // Mask out the same set of unwanted bits in EDX

2. It’s also possible to set all the uninteresting bits to 1s via the OR operation, but the AND
operator is often more convenient.

Binary Arithmetic and Bit Operations 47

 if(eax = edx) then // See if the remaining bits match

 // Do something if bits 31, 24, 16, 10, 1, and 0 of
 // value1 and value2 are equal

 endif;

 mov(value1, eax); // EAX = value1
 and($8101_0403, eax); // Mask out unwanted bits in EAX
 mov(value3, edx); // EDX = value2
 and($8101_0403, edx); // Mask out the same set of unwanted bits in EDX

 if(eax <> edx) then // See if the remaining bits do not match

 // Do something if bits 31, 24, 16, 10, 1, and 0 of
 // value1 and value3 are not equal

 endif;

3.4.4  Creating Modulo-n Counters Using AND
A modulo-n counter counts from 03 to some maximum value and then resets
to 0. Modulo-n counters are great for creating repeating sequences of num-
bers such as 0, 1, 2, 3, 4, 5, . . . n − 1; 0, 1, 2, 3, 4, 5, . . . n − 1; 0, 1, You
can use such sequences to create circular queues and other objects that
reuse array elements upon encountering the end of the data structure. The
normal way to create a modulo-n counter is to add 1 to the counter, divide
the result by n, and then keep the remainder. The following code examples
demonstrate the implementation of a modulo-n counter in C/C++, Pascal,
and Visual Basic:

cntr = (cntr + 1) % n; // C/C++/Java/Swift
cntr := (cntr + 1) mod n; // Pascal/Delphi
cntr = (cntr + 1) Mod n ' Visual Basic

However, division is an expensive operation, requiring far more time to
execute than addition. In general, you’ll find it more efficient to implement
modulo-n counters using a comparison rather than the remainder opera-
tor. Here’s a Pascal example:

cntr := cntr + 1; // Pascal example
if(cntr >= n) then
 cntr := 0;

For certain special cases, when n is a power of 2, you can increment
a modulo-n counter more efficiently and conveniently using the AND
operation. To do so, increment your counter and then logically AND it
with the value x = 2m – 1 (2m – 1 contains 1s in bit positions 0..m − 1, and 0s

3. Actually, they could count down to 0 as well, but usually they count up.

48 Chapter 3

everywhere else). Because the AND operation is much faster than division,
AND-driven modulo-n counters are much more efficient than those using
the remainder operator. On most CPUs, using the AND operator is quite a
bit faster than using an if statement. The following examples show how to
implement a modulo-n counter for n = 32 using the AND operation:

//Note: 0x1f = 31 = 25 − 1, so n = 32 and m = 5

 cntr = (cntr + 1) & 0x1f; // C/C++/Java/Swift example
 cntr := (cntr + 1) and $1f; // Pascal/Delphi example
 cntr = (cntr + 1) and &h1f ' Visual Basic example

The assembly language code is especially efficient:

inc(eax); // Compute (eax + 1) mod 32
and($1f, eax);

3.5  Shifts and Rotates
Another set of logical operations on bit strings are the shift and rotate
operations. These functions can be further broken down into shift lefts,
rotate lefts, shift rights, and rotate rights. These operations are very useful
in many programs.

The shift left operation moves each bit in a bit string one position to
the left, as shown in Figure 3-3. Bit 0 moves into bit position 1, the previous
value in bit position 1 moves into bit position 2, and so on.

7 6 5 4 3 2 1 0

Figure 3-3: Shift left operation (on a byte)

You might be asking two questions: “What goes into bit 0?” and “Where
does the HO bit wind up?” We’ll shift a 0 into bit 0, and the previous value
of the HO bit will be the carry out of this operation.

Several high-level languages (such as C/C++/C#, Swift, Java, and Free
Pascal/Delphi) provide a shift left operator. In the C language family, this
operator is <<. In Free Pascal/Delphi, you use the shl operator. Here are
some examples:

// C:
 cLang = d << 1; // Assigns d shifted left one position to
 // variable "cLang"
// Delphi:
 Delphi := d shl 1; // Assigns d shifted left one position to
 // variable "Delphi"

Binary Arithmetic and Bit Operations 49

Shifting the binary representation of a number one position to the left
is equivalent to multiplying that value by 2. If you’re using a programming
language that doesn’t provide an explicit shift left operator, you can simu-
late this by multiplying a binary integer value by 2. Although the multiplica-
tion operation is usually slower than the shift left operation, most compilers
are smart enough to translate a multiplication by a constant power of 2 into
a shift left operation. Therefore, you could write code like the following in
Visual Basic to do a shift left:

vb = d * 2

A shift right operation is similar to a shift left, except we move the data
in the opposite direction. Bit 7 moves into bit 6, bit 6 moves into bit 5, bit
5 moves into bit 4, and so on. During a shift right, we’ll move a 0 into bit 7,
and bit 0 will be the carry out of the operation (see Figure 3-4). C, C++, C#,
Swift, and Java use the >> operator for a shift right operation. Free Pascal/
Delphi uses the shr operator. Most assembly languages also provide a shift
right instruction (shr on the 80x86).

0

7 6 5 4 3 2 1 0

Figure 3-4: The shift right operation (on a byte)

Shifting an unsigned binary value one position to the right divides
that value by 2. For example, if you shift the unsigned representation of
254 ($FE) one place to the right, you get 127 ($7F), exactly as you’d expect.
However, if you shift the 8-bit two’s complement binary representation of
–2 ($FE) one position to the right, you get 127 ($7F), which is not correct.
To divide a signed number by 2 using a shift, we use a third shift opera-
tion, arithmetic shift right, which doesn’t modify the value of the HO bit.
Figure 3-5 shows the arithmetic shift right operation for an 8-bit operand.

7 6 5 4 3 2 1 0

Figure 3-5: Arithmetic shift right operation (on a byte)

This generally produces the result you expect for two’s complement
signed operands. For example, if you perform the arithmetic shift right
operation on –2 ($FE), you get –1 ($FF). Note, however, that this operation
always rounds the numbers to the closest integer that is less than or equal
to the actual result. If you arithmetically shift right –1 ($FF), the result is –1,
not 0. Because –1 is less than 0, the arithmetic shift right operation rounds
toward –1. This is not a “bug” in the arithmetic shift right operation; it just

50 Chapter 3

uses a different (though valid) definition of integer division. The bottom
line is that you probably won’t be able to use a signed division operator as a
substitute for arithmetic shift right in languages that don’t support arithme-
tic shift right, because most integer division operators round toward 0.

It’s rare for a high-level language to support both the logical shift right
and the arithmetic shift right. Worse still, the specifications for certain
languages leave it up to the compiler’s implementer to decide whether to
use an arithmetic shift right or a logical shift right operation. Therefore,
it’s only safe to use the shift right operator on values whose HO bit will
cause both forms of the shift right operation to produce the same result.
To guarantee that a shift right is a logical shift right or an arithmetic shift
right operation, you’ll either have to drop down into assembly language or
handle the HO bit manually. The high-level code gets ugly really fast, so a
quick inline assembly statement might be a better solution if your program
doesn’t need to be portable across different CPUs. The following code
demonstrates how to simulate a 32-bit logical shift right and arithmetic shift
right in languages that don’t guarantee the type of shift they use:

// Written in C/C++, assuming 32-bit integers, logical shift right:
 // Compute bit 30.
 Bit30 = ((ShiftThisValue & 0x80000000) != 0) ? 0x40000000 : 0;
 // Shifts bits 0..30.
 ShiftThisValue = (ShiftThisValue & 0x7fffffff) >> 1;
 // Merge in Bit #30.
 ShiftThisValue = ShiftThisValue | Bit30;

// Arithmetic shift right operation

 Bits3031 = ((ShiftThisValue & 0x80000000) != 0) ? 0xC0000000 : 0;
 // Shifts bits 0..30.
 ShiftThisValue = (ShiftThisValue & 0x7fffffff) >> 1;
 // Merge bits 30/31.
 ShiftThisValue = ShiftThisValue | Bits3031;

Many assembly languages also provide various rotate instructions that
circulate bits through an operand by taking the bits shifted out of one end
of the operand and shifting them into the other end. Few high-level lan-
guages provide this operation; fortunately, you won’t need it very often. If
you do, you can synthesize this operation using the shift operators available
in your high-level language:

// Pascal/Delphi Rotate Left, 32-bit example:
// Puts bit 31 into bit 0, clears other bits.
CarryOut := (ValueToRotate shr 31);
ValueToRotate := (ValueToRotate shl 1) or CarryOut;

For more information on the type of shift and rotate operations that
are possible, consult The Art of Assembly Language (No Starch Press).

Binary Arithmetic and Bit Operations 51

3.6  Bit Fields and Packed Data
CPUs generally operate most efficiently on byte, word, double-word and
quad-word data types,4 but occasionally you’ll need to work with a data
type whose size is something other than 8, 16, 32, or 64 bits. In such cases,
you may be able to save some memory by packing different strings of bits
together as compactly as possible, without wasting any bits to align a par-
ticular data field on a byte or other boundary.

Consider a date of the form 04/02/01. It takes three numeric values to
represent this date: month, day, and year. Months use the values 1 through
12, which require at least 4 bits to represent. Days use the range 1 through
31, which take 5 bits to represent. The year value, assuming that we’re
working with values in the range 0 through 99, requires 7 bits. The total of
4 + 5 + 7 is 16 bits, or 2 bytes. We can pack our date data into 2 bytes rather
than the 3 that would be required if we used a separate byte for each of the
values. This saves 1 byte of memory for each date stored, which could be a
substantial saving if you need to store many dates. You might arrange the
bits as shown in Figure 3-6.

Y Y Y Y Y Y Y

15 14 13 12 11 10 7 6 5 4 3 2 1 09 8

M M M M D D D D D

Figure 3-6: Short packed date format (16 bits)

MMMM represents the 4 bits that hold the month value, DDDDD the 5 bits that
hold the day, and YYYYYYY the 7 bits that hold the year. Each collection of
bits representing a data item is a bit field. We could represent April 2, 2001,
with $4101:

0100 00010 0000001 = %0100_0001_0000_0001 or $4101
 04 02 01

Although packed values are space efficient (that is, they use little mem-
ory), they are computationally inefficient (slow!). The reason? It takes extra
instructions to unpack the data from the various bit fields. These extra instruc-
tions take time to execute (and additional bytes to hold the instructions);
hence, you must carefully consider whether packed data fields will save you
anything. The following sample HLA/x86 code demonstrates packing and
unpacking this 16-bit date format.

program dateDemo;

#include("stdlib.hhf")

static

4. Some RISC CPUs only operate efficiently on double-word or quad-word values, so the con-
cept of bit fields and packed data may apply to any object less than 32 or even 64 bits in size
on such CPUs.

52 Chapter 3

 day: uns8;
 month: uns8;
 year: uns8;
 packedDate: word;

begin dateDemo;

 stdout.put("Enter the current month, day, and year: ");
 stdin.get(month, day, year);

 // Pack the data into the following bits:
 //
 // 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 // m m m m d d d d d y y y y y y y

 mov(0, ax);
 mov(ax, packedDate); // Just in case there is an error.
 if(month > 12) then
 stdout.put("Month value is too large", nl);

 elseif(month = 0) then
 stdout.put("Month value must be in the range 1..12", nl);

 elseif(day > 31) then
 stdout.put("Day value is too large", nl);

 elseif(day = 0) then
 stdout.put("Day value must be in the range 1..31", nl);

 elseif(year > 99) then
 stdout.put("Year value must be in the range 0..99", nl);

 else

 mov(month, al);
 shl(5, ax);
 or(day, al);
 shl(7, ax);
 or(year, al);
 mov(ax, packedDate);

 endif;

 // Okay, display the packed value:
 stdout.put("Packed data = $", packedDate, nl);

 // Unpack the date:
 mov(packedDate, ax);
 and($7f, al); // Retrieve the year value.
 mov(al, year);

 mov(packedDate, ax); // Retrieve the day value.
 shr(7, ax);
 and(%1_1111, al);
 mov(al, day);

Binary Arithmetic and Bit Operations 53

 mov(packedDate, ax); // Retrieve the month value.
 rol(4, ax);
 and(%1111, al);
 mov(al, month);

 stdout.put("The date is ", month, "/", day, "/", year, nl);

end dateDemo;

Keeping in mind the Y2K5 problem, adopting a date format that sup-
ports only a two-digit year is rather foolish. Consider the better date format
shown in Figure 3-7.

151631 8 7 0

Month (1–12)Year (0–65535) Day (1–31)

Figure 3-7: Long packed date format (32 bits)

Because there are more bits in a 32-bit variable than are needed to
hold the date, even accounting for years in the range 0 through 65,535,
this format allots a full byte for the month and day fields. An application can
manipulate these two fields as byte objects, reducing the overhead to pack
and unpack these fields on processors that support byte access. This leaves
fewer bits for the year, but 65,536 years is probably sufficient (it’s a safe bet
that your software won’t be in use 63,000 years from now).

You could argue that this is no longer a packed date format. After all,
we needed three numeric values, two of which fit just nicely into 1 byte
each and one that should have at least 2 bytes. This “packed” date format
consumes the same 4 bytes as the unpacked version, not the fewest bits pos-
sible. So, in this example, packed effectively means packaged or encapsulated.
By packing the data into a double-word variable, the program can treat the
date value as a single data value rather than as three separate variables.
This means that you can often get away with a single machine instruction to
operate on this data rather than three separate instructions.

Another difference between this long packed date format and the short
date format in Figure 3-6 is that this long date format rearranges the Year,
Month, and Day fields. This allows you to easily compare two dates using an
unsigned integer comparison. Consider the following HLA/assembly code:

mov(Date1, eax); // Assume Date1 and Date2 are double-word variables
if(eax > Date2) then // using the long packed date format.

 << do something if Date1 > Date2 >>

endif;

5. This was a software engineering near-disaster that occurred because programmers in the
1900s encoded dates using only two digits. They realized that when the year 2000 came along,
programs wouldn’t be able to differentiate 1900 and 2000.

54 Chapter 3

Had you kept the different date fields in separate variables or organized
the fields differently, you wouldn’t have been able to compare Date1 and Date2
in such a straightforward way. Even if you don’t realize any space savings,
packing data can make certain computations more convenient or even more
efficient (contrary to what normally happens when you pack data).

Some high-level languages provide built-in support for packed data. For
example, in C you can define structures like the following:

struct
{
 unsigned bits0_3 :4;
 unsigned bits4_11 :8;
 unsigned bits12_15 :4;
 unsigned bits16_23 :8;
 unsigned bits24_31 :8;
} packedData;

This structure specifies that each field is an unsigned object that holds
4, 8, 4, 8, and 8 bits, respectively. The :n item after each declaration specifies
the minimum number of bits the compiler will allocate for the given field.

Unfortunately, it isn’t possible to show how a C/C++ compiler will allo-
cate the values from a 32-bit double word among the fields, because C/C++
compiler implementers are free to implement these bit fields any way they
see fit. The arrangement of the bits within the bit string is arbitrary (for
example, the compiler could allocate the bits0_3 field in bits 28 through
31 of the ultimate object). The compiler can also inject extra bits between
fields, or use a larger number of bits for each field (which is actually the
same thing as injecting extra padding bits between fields). Most C compil-
ers attempt to minimize extraneous padding, but compilers (especially
on different CPUs) do vary. Therefore, C/C++ struct bit field declarations
are almost guaranteed to be nonportable, and you can’t really count on
what the compiler is going to do with those fields.

The advantage of using the compiler’s built-in data-packing capabili-
ties is that the compiler automatically packs and unpacks the data for you.
Given the following C/C++ code, the compiler would automatically emit
the necessary machine instructions to store and retrieve the individual bit
fields for you:

struct
{
 unsigned year :7;
 unsigned month :4;
 unsigned day :5;
} ShortDate;
 . . .
 ShortDate.day = 28;
 ShortDate.month = 2;
 ShortDate.year = 3; // 2003

Binary Arithmetic and Bit Operations 55

3.7  Packing and Unpacking Data
The advantage of packed data types is efficient memory use. Consider the
Social Security number (SSN) used in the United States, a nine-digit iden-
tification code in the following form (each X represents a single decimal
digit):

XXX–XX–XXXX

Encoding an SSN using three separate (32-bit) integers takes 12 bytes.
That’s more than the 11 bytes needed to represent the number using an
array of characters. A better solution is to encode each field using short
(16‑bit) integers. Now it takes only 6 bytes to represent the SSN. Because
the middle field in the SSN is always between 0 and 99, we can actually
shave one more byte off the size of this structure by encoding the middle
field with a single byte. Here’s a sample Free Pascal/Delphi record structure
that defines this data structure:

SSN :record

 FirstField: smallint; // smallints are 16 bits in Free Pascal/Delphi
 SecondField: byte;
 ThirdField: smallint;

end;

If we drop the hyphens in the SSN, the result is a nine-digit number.
Because we can exactly represent all nine-digit values using 30 bits, we
could encode any legal SSN using a 32-bit integer. However, some software
that manipulates SSNs may need to operate on the individual fields. This
means using expensive division, modulo, and multiplication operators in
order to extract fields from a SSN you’ve encoded in a 32-bit integer format.
Furthermore, converting SSNs to and from strings is more complicated
when you’re using the 32-bit format.

Conversely, it’s easy to insert and extract individual bit fields using fast
machine instructions, and it’s also less work to create a standard string
representation (including the hyphens) of one of these fields. Figure 3-8
shows a straightforward implementation of the SSN packed data type using
a separate string of bits for each field (note that this format uses 31 bits and
ignores the HO bit).

ThirdField
0000–9999

SecondField
00–99

FirstField
000–999

31 20 013

Figure 3-8: SSN packed fields encoding

56 Chapter 3

Fields that begin at bit position 0 in a packed data object can be
accessed most efficiently, so you should arrange the fields in your packed
data type such that the field you access most often6 begins at bit 0. If you
have no idea which field you’ll access most often, assign the fields so they
begin on a byte boundary. If there are unused bits in your packed type,
spread them throughout the structure so that individual fields begin on a
byte boundary and those fields consume multiples of 8 bits.

We’ve got only one unused bit in the SSN example shown in Figure 3-8,
but it turns out that we can use this extra bit to align two fields on a byte
boundary and ensure that one of those fields occupies a bit string whose
length is a multiple of 8 bits. Consider Figure 3-9, which shows a rearranged
version of our SSN data type.

31 21

ThirdField
0000–9999

SecondField
00–99

FirstField
000–999

07

Figure 3-9: A (possibly) improved encoding of the SSN

One problem with the data format in Figure 3-9 is that we can’t sort
SSNs in an intuitive way by comparing 32-bit unsigned integers.7 If you
intend to do a lot of sorting based on the entire SSN, the format in Figure
3-8 is probably better.

If this type of sorting isn’t important to you, the format in Figure 3-9
has some advantages. This packed type actually uses 8 bits (rather than 7)
to represent SecondField (along with moving SecondField down to bit position
0); the extra bit will always contain 0. This means that SecondField consumes
bits 0 through 7 (a whole byte) and ThirdField begins on a byte bound-
ary (bit position 8). ThirdField doesn’t consume a multiple of 8 bits, and
FirstField doesn’t begin on a byte boundary, but we’ve done fairly well with
this encoding, considering we only had one extra bit to play around with.

The next question is, “How do we access the fields of this packed type?”
There are two separate activities here. We need to retrieve, or extract, the
packed fields, and we need to insert data into these fields. The AND, OR,
and SHIFT operations provide the tools for this.

When operating on these fields, it’s convenient to work with three
separate variables rather than with the packed data directly. For our SSN
example, we can create the three variables—FirstField, SecondField, and
ThirdField—and then extract the actual data from the packed value into
these three variables, operate on the variables, and insert the data from the
variables back into their fields when we’re done.

6. Which field you’ll access most often depends on the application.

7. “Intuitive” meaning that the first field is the most significant portion of the value, the sec-
ond field is the next most significant, and the third field is the least significant component of
the number.

Binary Arithmetic and Bit Operations 57

To extract the SecondField data from the packed format shown in
Figure 3-9 (remember, the field aligned to bit 0 is the easiest one to access),
copy the data from the packed representation to the SecondField variable
and then mask out all but the SecondField bits using the AND operation.
Because SecondField is a 7-bit value, the mask is an integer containing 1s in
bit positions 0 through 6 and 0s everywhere else. The following C/C++ code
demonstrates how to extract this field into the SecondField variable (assum-
ing packedValue is a variable holding the 32-bit packed SSN):

SecondField = packedValue & 0x7f; // 0x7f = %0111_1111

Extracting fields that are not aligned at bit 0 takes a little more work.
Consider the ThirdField entry in Figure 3-9. We can mask out all the bits
associated with the first and second fields by logically ANDing the packed
value with %_11_1111_1111_1111_0000_0000 ($3F_FF00). However, this leaves the
ThirdField value sitting in bits 8 through 21, which is not convenient for vari-
ous arithmetic operations. The solution is to shift the masked value down
8 bits so that it’s aligned at bit 0 in our working variable. The following
Pascal/Delphi code does this:

ThirdField := (packedValue and $3fff00) shr 8;

You can also shift first and then do the logical AND operation (though
this requires a different mask, $11_1111_1111_1111 or $3FFF). Here’s the C/
C++/Swift code that extracts ThirdField using that technique:

ThirdField = (packedValue >> 8) & 0x3FFF;

To extract a field that is aligned against the HO bit, such as the first
field in our SSN packed data type, shift the HO field down so that it’s
aligned at bit 0. The logical shift right operation automatically fills in
the HO bits of the result with 0s, so no masking is necessary. The following
Pascal/Delphi code demonstrates this:

FirstField := packedValue shr 22; // Delphi's SHR is a logical shift right.

In HLA/x86 assembly language, we can easily access data at any arbi-
trary byte boundary in memory. That allows us to treat both the second and
third fields as though they are aligned at bit 0 in the data structure. In addi-
tion, because the SecondField value is an 8-bit value (with the HO bit always
containing 0), it takes only a single machine instruction to unpack the data,
as shown here:

movzx((type byte packedValue), eax);

This instruction fetches the first byte of packedValue (which is the LO 8
bits of packedValue on the 80x86) and zero-extends this value to 32 bits in
EAX (movzx stands for “move with zero extension”). The EAX register con-
tains the SecondField value after this instruction executes.

58 Chapter 3

The ThirdField value from our packed data type isn’t an even multiple of
8 bits long, so we’ll still need a masking operation to clear the unused bits
from the 32-bit result we produce. However, because ThirdField is aligned on
a byte (8-bit) boundary in our packed structure, we’ll be able to avoid the
shift operation that was necessary in the high-level code. Here’s the HLA/
x86 assembly code that extracts the third field from our packedValue object:

mov((type word packedValue[1]), ax); // Extracts bytes 1 & 2
 // from packedValue.
and($3FFF, eax); // Clears all the undesired bits.

Extracting FirstField from the packedValue object in HLA/x86 assembly
code is identical to the high-level code; we’ll simply shift the upper 10 bits
(which comprise FirstField) down to bit 0:

mov(packedValue, eax);
shr(22, eax);

Assuming the data you want to insert appears in some variable and
contains 0s in the unused bits, inserting a field into a packed object requires
three operations. First, if necessary, you shift the field’s data to the left so its
alignment matches the corresponding field in the packed object. Next, clear
the corresponding bits in the packed structure, then logically OR the shifted
field into the packed object. Figure 3-10 shows the details of this operation.

F F T T T T

Step 1: Align the bits in the ThirdField variable to bit position 8

F F T T T T T T T T T T S S S S S S S S

t t t t t t t t t t t t t t

F FFF F F

Step 2: Mask out the corresponding bits in the packed structure

t t t tt t t t t tt t t t

F T T T TF F T T T T T T T T T T S S S S S S S SF F F F FF F

F F F F F F F F F F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S S S S S S S S

t t t t t t t t t t t t t t

Step 3: Logically OR the two values to produce the final result

F F F F F F F F F F S S S S S S S St t t t t t t t t t t t t t

Final result

Figure 3-10: Inserting ThirdField into the SSN packed type

Binary Arithmetic and Bit Operations 59

Here’s the C/C++/Swift code that accomplishes the operation shown in
Figure 3-10:

packedValue = (packedValue & 0xFFc000FF) | (ThirdField << 8);

$FFC000FF is the hexadecimal value that corresponds to 0s in bit positions
8 through 21 and 1s everywhere else.

3.8  For More Information
Hyde, Randall. The Art of Assembly Language. 2nd ed. San Francisco:

No Starch Press, 2010.

Knuth, Donald E. The Art of Computer Programming, Volume 2: Seminumerical
Algorithms. 3rd ed. Boston: Addison-Wesley, 1998.

4
F L O A T I N G - P O I N T

R E P R E S E N T A T I O N

Floating-point arithmetic is an approxi-
mation of real arithmetic that solves the

major problem with integer data types—
the inability to represent fractional values.

However, the inaccuracies in this approximation
can lead to serious defects in application software.
In order to write great software that produces correct results when using
floating-point arithmetic, programmers must be aware of the machine’s
underlying numeric representation and exactly how floating-point arithme-
tic approximates real arithmetic.

4.1  Introduction to Floating-Point Arithmetic
There is an infinite number of possible real values. Floating-point representa-
tion uses a finite number of bits and, therefore, can represent a finite number
of different values. When a given floating-point format cannot exactly repre-
sent some real value, the closest value that the format can exactly represent is

62 Chapter 4

used. This section describes how the floating-point format works so you can
better understand the drawbacks of these approximations.

Consider a couple of problems with integer and fixed-point formats.
Integers cannot represent any fractional values, and they can represent only
values in the range 0 through 2n – 1 or –2n–1 through 2n–1 – 1. Fixed-point
formats represent fractional values, but at the expense of the range of inte-
ger values they can represent. This problem, which the floating-point for-
mat solves, is one of dynamic range.

Consider a simple 16-bit unsigned fixed-point format that uses 8 bits for
the fractional component and 8 bits for the integer component of the num-
ber. The integer component can represent values in the range 0 through
255, and the fractional component can represent the values 0 and fractions
between 2–8 and 1 (with a resolution of about 2–8). If in a string of calcula-
tions you need only 2 bits to represent the fractional values 0.0, 0.25, 0.5,
and 0.75, the extra 6 bits in the fractional part of the number go to waste.
Wouldn’t it be nice if we could utilize those bits in the integer portion of
the number to extend its range from 0 through 255 to 0 through 16,383?
Well, that’s the basic concept behind the floating-point representation.

In a floating-point value, the radix point (binary point) can float
between digits in the number as needed. So, in a 16-bit binary number
that needs only 2 bits of precision for the fractional component, the binary
point can float down between bits 1 and 2, leaving bits 2 through 15 for
the integer portion. A floating-point format needs one additional field to
specify the position of the radix point within the number, equivalent to the
exponent in scientific notation.

Most floating-point formats use some number of bits to represent
a mantissa and a smaller number of bits to represent an exponent. The
mantissa is a base value that usually falls within a limited range (for exam-
ple, between 0 and 1). The exponent is a multiplier that, when applied to
the mantissa, produces values outside this range. The big advantage of the
mantissa/exponent configuration is that a floating-point format can repre-
sent values across a wide range. However, separating the number into these
two parts means floating-point formats can represent only numbers with a
specific number of significant digits. If the difference between the smallest
and largest exponent is greater than the number of significant digits in the
mantissa (and it usually is), then the floating-point format cannot exactly
represent all the integers between the smallest and largest values in the
floating-point representation.

To see the impact of limited-precision arithmetic, we’ll adopt a simpli-
fied decimal floating-point format for our examples. Our floating-point for-
mat will use a mantissa with three significant digits and a decimal exponent
with two digits. The mantissa and exponents are both signed values, as
shown in Figure 4-1.

e ±±
Figure 4-1: Simple floating-point format

Floating-Point Representation 63

This particular floating-point representation can approximate all the
values between 0.00 and 9.99 × 1099. However, this format cannot represent
all (integer) values in this range (that would take 100 digits of precision!).
A value like 9,876,543,210 would be approximated with 9.88 × 109 (or 9.88e+9
in programming language notation, which this book will generally use).

You cannot exactly represent as many different values with a floating-
point format as with an integer format because the floating-point format
encodes multiple representations (that is, different bit patterns) for the
same value. In the simplified decimal floating-point format shown in Figure
4-1, for example, 1.00e + 1 and 0.10e + 2 are different representations of the
same value. Because the number of different possible representations is
finite, whenever a single value has two possible representations, that’s one
less unique value the format can represent.

Furthermore, the floating-point format, a form of scientific notation,
complicates arithmetic somewhat. When adding and subtracting two num-
bers in scientific notation, you must adjust the two values so that their expo-
nents are the same. For example, when adding 1.23e1 and 4.56e0, you could
convert 4.56e0 to 0.456e1 and then add them. The result, 1.686e1, does not
fit into the three significant digits of our current format, so we must either
round or truncate the result to three significant digits. Rounding generally
produces the most accurate result, so let’s round the result to obtain 1.69e1.
The lack of precision (the number of digits or bits maintained in a computa-
tion) affects the accuracy (the correctness of the computation).

In the previous example, we were able to round the result because we
maintained four significant digits during the calculation. If our floating-point
calculation were limited to three significant digits during computation, we
would have had to truncate (throw away) the last digit of the smaller number,
obtaining 1.68e1, which is even less correct. Therefore, to improve the accu-
racy, we use extra digits during the calculation. These extra digits are known
as guard digits (or guard bits in the case of a binary format). They greatly
enhance accuracy during a long chain of computations.

The accuracy lost during a single computation usually isn’t bad. However,
the error can accumulate over a sequence of floating-point operations and
greatly affect the computation itself. For example, suppose we add 1.23e3
and 1.00e0. Adjusting the numbers so their exponents are the same before
the addition produces 1.23e3 + 0.001e3. The sum of these two values, even
after rounding, is 1.23e3. This might seem perfectly reasonable to you: if we
can maintain only three significant digits, adding in a small value shouldn’t
affect the result. However, suppose we add 1.00e0 to 1.23e3 10 times. The first
time we add 1.00e0 to 1.23e3, we get 1.23e3. Likewise, we get this same result
the second, third, fourth . . . and tenth time. Had we added 1.00e0 to itself
10 times, then added the result (1.00e1) to 1.23e3, we would obtain a differ-
ent result, 1.24e3. This is an important rule of limited-precision arithmetic:

The order of evaluation can affect the accuracy of the result.

Adding or subtracting numbers with relative magnitudes (that is, the
sizes of the exponents) that are similar produces better results. If you’re
performing a chain calculation involving addition and subtraction, you

64 Chapter 4

should group the operations so that you can add or subtract values whose
magnitudes are close to one another before adding or subtracting values
whose magnitudes are not as close.

Another problem with addition and subtraction is false precision.
Consider the computation 1.23e0 - 1.22e0. This produces 0.01e0. Although
this is mathematically equivalent to 1.00e – 2, this latter form suggests that
the last two digits (in the thousandths and ten-thousandths place) are both
exactly 0. Unfortunately, we only have a single significant digit after this
computation, which is in the hundredths place, and some FPUs or floating-
point software packages might actually insert random digits (or bits) into
the LO positions. This brings up a second important rule:

Whenever subtracting two numbers with the same signs or adding
two numbers with different signs, the accuracy of the result may be
less than the precision available in the floating-point format.

Multiplication and division do not suffer from these problems, because
you don’t have to adjust the exponents before the operation; all you need to
do is add the exponents and multiply the mantissas (or subtract the expo-
nents and divide the mantissas). By themselves, multiplication and division
do not produce particularly poor results. However, they exacerbate any
accuracy error that already exists in a value. For example, if you multiply
1.23e0 by 2, when you should be multiplying 1.24e0 by 2, the result is even
less accurate than it was. This brings up a third important rule:

When performing a chain of calculations involving addition, sub-
traction, multiplication, and division, perform the multiplication
and division operations first.

Often, by applying normal algebraic transformations, you can arrange
a calculation so the multiplication and division operations occur first. For
example, suppose you want to compute the following:

x × (y + z)

Normally, you would add y and z together and multiply their sum by x.
However, you’ll get a little more accuracy if you first transform the expres-
sion to the following:

x × y + x × z

Now you can compute the result by performing the multiplications first.1

Multiplication and division have other problems as well. When you mul-
tiply two very large or very small numbers, overflow or underflow may occur.
The same situation occurs when you divide a small number by a large num-
ber, or a large number by a small number. This brings up a fourth rule:

When multiplying and dividing sets of numbers, try to multiply
and divide numbers that have the same relative magnitudes.

1. Of course, the drawback is that you must now perform two multiplications rather than one,
so the result may be slower.

Floating-Point Representation 65

Comparing floating-point numbers is very dangerous. Given the inac-
curacies inherent in any computation (including converting an input string
to a floating-point value), you should never compare two floating-point val-
ues to see if they are equal. Different computations that produce the same
(mathematical) result may differ in their least significant bits. For example,
adding 1.31e0 and 1.69e0 should produce 3.00e0. Likewise, adding 1.50e0
and 1.50e0 should produce 3.00e0. However, were you to compare (1.31e0 +
1.69e0) to (1.50e0 + 1.50e0), you might find that these sums are not equal.
Because two seemingly equivalent floating-point computations will not nec-
essarily produce exactly equal results, a straight comparison for equality—
which succeeds if and only if all bits (or digits) in the two operands are the
same—may fail.

To test for equality between floating-point numbers, determine how
much error (or tolerance) you’ll allow in a comparison, and then check to
see if one value is within this error range of the other, like so:

if((Value1 >= (Value2 – error)) and (Value1 <= (Value2 + error)) then . . .

More efficient is to use a statement of the form:

if(abs(Value1 – Value2) <= error) then . . .

The value for error should be slightly greater than the largest amount
of error that will creep into your computations. The exact value depends
upon the particular floating-point format you use and the magnitudes of
the values you are comparing. So, the final rule is this:

When comparing two floating-point numbers for equality, always
compare the values to see if the difference between two values is
less than some small error value.

Checking two floating-point numbers for equality is a very famous prob-
lem, one that almost every introductory programming text discusses. The
same problems with comparing for less than or greater than, however, are
not as well known. Suppose that a sequence of floating-point calculations
produces a result that is accurate only to within ±error, even though the
floating-point representation provides better accuracy than error suggests. If
you compare such a result against some other calculation computed with less
accumulated error, and those two values are very close to each other, then
comparing them for less than or greater than may produce incorrect results.

For example, suppose that some chain of calculations in our simplified
decimal representation produces 1.25, which is accurate only to ±0.05 (that
is, the real value could be somewhere between 1.20 and 1.30), and a second
chain of calculations produces 1.27, which is accurate to the full precision of
our floating-point representation (that is, the actual value, before rounding,
is somewhere between 1.265 and 1.275). Comparing the result of the first
calculation (1.25) to the result of the second calculation (1.27) finds that the
first result is less than the second. Unfortunately, given the inaccuracy of the

66 Chapter 4

first calculation, this might not be true—for example, if the correct result of
the first computation is in the range 1.27 to 1.30 (exclusive).

About the only reasonable test is to see if the two values are within the
error tolerance of each other. If so, treat the values as equal (neither is con-
sidered less than or greater than the other). If the values are not equal within
the desired error tolerance, you can compare them to see if one value is less
than or greater than the other. This is known as a miserly approach; that is, we
try to find as few values that are less than or greater than as possible.

The other possibility is to use an eager approach, which attempts to make
the result of the comparison true as often as possible. Given two values to
compare and an error tolerance, here’s how you’d eagerly compare the two
values for less than or greater than:

if(A < (B + error)) then Eager_A_lessthan_B;
if(A > (B – error)) then Eager_A_greaterthan_B;

Don’t forget that calculations like (B + error) are subject to their own
inaccuracies, depending on the relative magnitudes of the values B and
error, and the inaccuracy of this calculation may affect the final result of
the comparison.

N O T E 	 Due to space limitations, this book merely touches on some major problems that can
occur when you’re using floating-point values and why you can’t treat floating-point
arithmetic like real arithmetic. For further details, consult a good text on numerical
analysis or even scientific computing. If you’re going to be working with floating-point
arithmetic, in any language, take some time to study the effects of limited-precision
arithmetic on your computations.

4.2  IEEE Floating-Point Formats
When Intel planned to introduce a floating-point unit (FPU) for its origi-
nal 8086 microprocessor, the company was smart enough to realize that
the electrical engineers and solid-state physicists who design chips prob-
ably didn’t have the necessary numerical analysis background to design a
good floating-point representation. So, Intel went out and hired the best
numerical analyst it could find to design a floating-point format for its
8087 FPU. That person then hired two other experts in the field, and the
three of them (Kahan, Coonen, and Stone) designed the KCS Floating-Point
Standard. They did such a good job that the IEEE organization used this
format as the basis for the IEEE Std 754 floating-point format.

To handle a wide range of performance and accuracy requirements,
Intel actually introduced three floating-point formats: single precision,
double precision, and extended precision. The single- and double-precision
formats corresponded to C’s float and double types or FORTRAN’s real and
double precision types. Extended precision contains 16 extra bits that long
chains of computations can use as guard bits before rounding down to a
double-precision value when storing the result.

Floating-Point Representation 67

4.2.1  Single-Precision Floating-Point Format
The single-precision format uses a 24-bit mantissa and an 8-bit exponent. The
mantissa represents a value between 1.0 and just less than 2.0. The HO bit
of the mantissa is always 1 and represents a value just to the left of the binary
point. The remaining 23 mantissa bits appear to the right of the binary point
and represent the value:

1.mmmmmmm mmmmmmmm mmmmmmmm

The mantissa is always greater than or equal to 1 because of the
implied 1 bit. Even if the other mantissa bits are all 0, the implied 1 bit
always gives us the value 1. Each position to the right of the binary point
represents a value (0 or 1) times a successive negative power of 2, but even if
we had an almost infinite number of 1 bits after the binary point, they still
would not add up to 2. So, the mantissa can represent values in the range
1.0 to just less than 2.0.

Some examples would probably be useful here. Consider the decimal
value 1.7997. Here are the steps we could go through to compute the binary
mantissa for this value:

1.	 Subtract 20 from 1.7997 to produce 0.7997 and
%1.00000000000000000000000.

2.	 Subtract 2–1 (1/2) from 0.7997 to produce 0.2997 and
%1.10000000000000000000000.

3.	 Subtract 2–2 (1/4) from 0.2997 to produce 0.0497 and
%1.11000000000000000000000.

4.	 Subtract 2–5 (1/32) from 0.0497 to produce 0.0185 and
%1.11001000000000000000000.

5.	 Subtract 2–6 (1/64) from 0.0185 to produce 0.00284 and
%1.11001100000000000000000.

6.	 Subtract 2−9 (1/512) from 0.00284 to produce 0.000871 and
%1.11001100100000000000000.

7.	 Subtract 2-10 (1/1,024) from 0.000871 to (approximately) produce 0 and
%1.11001100110000000000000.

Although there is an infinite number of values between 1 and 2, we can
represent only 8 million (223 ) of them because we use a 23-bit mantissa
(the 24th bit is always 1), and therefore have only 23 bits of precision.

The mantissa uses a one’s complement format rather than two’s comple-
ment. This means that the 24-bit value of the mantissa is simply an
unsigned binary number, and the sign bit, in bit position 31, determines
whether that value is positive or negative. One’s complement has the
unusual property that there are two representations for 0 (with the sign bit
set or clear). Generally, this is important only to the person designing the
floating-point software or hardware system. We’ll assume that the value 0
always has the sign bit clear.

68 Chapter 4

The single-precision floating-point format is shown in Figure 4-2.

Mantissa bitsExponent bitsSign
bit

1

The 24th mantissa bit is implied and is always 1

31 23 15 7 0

Figure 4-2: Single-precision (32-bit) floating-point format

We represent values outside the range of the mantissa by raising 2 to
the power specified by the exponent and then multiplying the result by the
mantissa. The exponent is 8 bits and uses an excess-127 format (sometimes
called bias-127 exponents). In excess-127 format, the exponent 20 is repre-
sented by the value 127 ($7f). To convert an exponent to excess-127 format,
add 127 to the exponent value. For example, the single-precision represen-
tation for 1.0 is $3f800000. The mantissa is 1.0 (including the implied bit)
and the exponent is 20, encoded as 127 ($7f). The representation for 2.0 is
$40000000, with the exponent 21 encoded as 128 ($80).

The excess-127 exponent makes it easy to compare two floating-point
numbers for less than or greater than as though they were unsigned inte-
gers, as long as we handle the sign bit (bit 31) separately. If the signs of the
two values are not equal, then the positive value (the one with bit 31 set
to 0) is greater than the value that has the HO bit set to 1.2 If the sign bits
are both 0, we use a straight unsigned binary comparison. If the signs are
both 1, we do an unsigned comparison but invert the result (that is, we treat
less than as greater than and vice versa). On some CPUs, where a 32-bit
unsigned comparison is much faster than a 32-bit floating-point compari-
son, it’s probably worthwhile to do the comparison using integer arithmetic
rather than floating-point arithmetic.

A 24-bit mantissa provides approximately 6½ decimal digits of preci-
sion (one-half digit of precision means that the first six digits can be in the
range 0..9, but the seventh digit can only be in the range 0 through x where
x < 9 and is generally close to 5). With an 8-bit excess-127 exponent, the
dynamic range of single-precision floating-point numbers is approximately
2±128 or about 10±38.

Although single-precision floating-point numbers are perfectly suitable
for many applications, the dynamic range is unsuitable for many financial,
scientific, and other applications. Furthermore, during long chains of com-
putations, the limited accuracy may introduce significant error. For serious
calculations, we need a floating-point format with more precision.

2. Actually, there are a couple of exceptions. The floating-point format has two represen-
tations for 0—one with the sign bit set and one with the sign bit clear; a floating-point
comparison should treat these two values as equal. Likewise, there are a couple of special
floating-point values that are incomparable, and the comparison operation must consider
those values as well.

Floating-Point Representation 69

4.2.2  Double-Precision Floating-Point Format
The double-precision format helps overcome the problems of the single-
precision floating-point. Using twice the space, the double-precision format
has an 11-bit excess-1,023 exponent, a 53-bit mantissa (including an implied
HO bit of 1), and a sign bit. This provides a dynamic range of about 10±308
and 15 to 16+ digits of precision, which is sufficient for most applications.
Double-precision floating-point values take the form shown in Figure 4-3.

Mantissa bitsExponent bitsSign
bit

1

The 53rd mantissa bit is implied and is always 1

63 0753
... ...

Figure 4-3: Double-precision (64-bit) floating-point format

4.2.3  Extended-Precision Floating-Point Format
To ensure accuracy during long chains of computations involving double-
precision floating-point numbers, Intel designed the extended-precision
format. The extended-precision format uses 80 bits: a 64-bit mantissa, a
15-bit excess-16,383 exponent, and a 1-bit sign. The mantissa does not have
an implied HO bit that is always 1. The format for the extended-precision
floating-point value appears in Figure 4-4.

79 0764

Mantissa bitsExponent bitsSign
bit

... ...

Figure 4-4: Extended-precision (80-bit) floating-point format

On the 80x86 FPUs, all computations use the extended-precision form.
Whenever you load a single- or double-precision value, the FPU automatically
converts it to an extended-precision value. Likewise, when you store a single-
or double-precision value to memory, the FPU automatically rounds the
value down to the appropriate size before storing it. The extended-precision
format guarantees the inclusion of a large number of guard bits in 32- and
64-bit computations, which helps ensure (but not guarantee) that you’ll get
full 32- or 64-bit accuracy in your computations. Some error will inevitably
creep into the LO bits because the FPUs provide no guard bits for 80-bit com-
putations (the FPU uses only 64 mantissa bits during 80-bit computations).
While you can’t assume that you’ll get an accurate 80-bit computation, you
can usually do better than 64 bits when using the extended-precision format.

Non-Intel CPUs that support floating-point arithmetic generally pro-
vide only the 32-bit and 64-bit formats. Therefore, calculations on those
CPUs may produce less accurate results than the equivalent string of cal-
culations on the 80x86 using 80-bit calculations. Also note that modern
x86-64 CPUs have additional floating-point hardware as part of the SSE

70 Chapter 4

extensions; however, those SSE extensions support only 64- and 32-bit
floating-point calculations.

4.2.4  Quad-Precision Floating-Point Format
The original 80-bit extended-precision floating-point format was a stopgap
measure. From a “types should be consistent” point of view, the proper
extension to the 64-bit floating-point format should have been a 128-bit
floating-point format. Alas, when Intel was working on floating-point for-
mats in the late 1970s, a quad-precision (128-bit) floating-point format was
too expensive to implement in hardware, so the 80-bit extended-precision
format became the interim compromise. Today, a few CPUs (such as IBM’s
POWER9 and later-version ARMs) are capable of quad-precision floating-
point arithmetic.

The IEEE Std 754 quad-precision floating-point format uses a single
sign bit, a 15-bit excess-16,383 biased exponent, and a 112-bit (with implied
113th bit) mantissa (see Figure 4-5). This provides 36 decimal digits of pre-
cision and exponents in the approximate range 10±4932.

127 07112

Mantissa bits (112)Exponent bits (15)Sign
bit

... ...

Figure 4-5: Extended-precision (80-bit) floating-point format

4.3  Normalization and Denormalized Values
To maintain maximum precision during floating-point computations, most
computations use normalized values. A normalized floating-point value is
one whose HO mantissa bit contains 1. A floating-point computation will
be more accurate if it involves only normalized values because the mantissa
has that many fewer bits of precision available for computation if several
HO bits of the mantissa are all 0.

You can normalize almost any unnormalized value by shifting the man-
tissa bits to the left and decrementing the exponent until a 1 appears in the
mantissa’s HO bit.3 Remember, the exponent is a binary exponent. Each
time you increment the exponent, you multiply the floating-point value by
2. Likewise, whenever you decrement the exponent, you divide the floating-
point value by 2. By the same token, shifting the mantissa to the left one bit
position multiplies the floating-point value by 2, and shifting it to the right
divides the floating-point value by 2. Therefore, shifting the mantissa to the
left one position and decrementing the exponent does not change the value

3. In the rare case where you wind up with more than one bit to the left of the binary point,
you can normalize the mantissa by shifting its bits to the right one position and incrementing
the exponent.

Floating-Point Representation 71

of the floating-point number (this is why, as you saw earlier, there are mul-
tiple representations for certain numbers in the floating-point format).

Here’s an example of an unnormalized value:

0.100000 × 21

Shift the mantissa to the left one position and decrement the exponent
to normalize it:

1.000000 × 20

There are two important cases in which a floating-point number cannot
be normalized. First, 0 cannot be normalized because the floating-point
representation contains all 0 bits in the exponent and mantissa fields. This,
however, is not a problem, because we can exactly represent 0 with a single 0
bit, and extra bits of precision are unnecessary.

We also cannot normalize a floating-point number when we have some
HO bits in the mantissa that are 0 but the biased exponent4 is also 0 (and
we can’t decrement it to normalize the mantissa). Rather than prohibiting
certain small values whose HO mantissa bits and biased exponent are 0
(the most negative exponent possible), the IEEE standard permits special
denormalized values in these cases.5 Although the use of denormalized values
enables IEEE floating-point computations to produce better results than if
underflow occurred, denormalized values offer fewer bits of precision.

4.4  Rounding
During a calculation, floating-point arithmetic functions may produce
a result with greater precision than the floating-point format supports
(the guard bits in the calculation maintain this extra precision). When the
calculation is complete and the code needs to store the result back into a
floating-point variable, something must be done about those extra bits of
precision. How the system uses guard bits to affect the remaining bits is
known as rounding, and how rounding is done can affect the accuracy of the
computation. Traditionally, floating-point software and hardware use one
of four different ways to round values: truncation, rounding up, rounding
down, or rounding to nearest.

Truncation is easy, but it generates the least accurate results in a chain
of computations. Few modern floating-point systems use truncation except
as a means for converting floating-point values to integers (truncation is the
standard conversion for coercing a floating-point value to an integer).

4. “Biased” means to add an offset to the value—for example, an excess-127 exponent has a
bias of 127.

5. The alternative would be to underflow the values to 0.

72 Chapter 4

Rounding up leaves the value alone if the guard bits are all 0, but if
the current mantissa does not exactly fit into the destination bits, then
rounding up sets the mantissa to the smallest possible larger value in the
floating-point format. Like truncation, this is not a normal rounding mode.
It is, however, useful for implementing functions like ceil(), which rounds a
floating-point value to the smallest possible larger integer.

Rounding down is just like rounding up, except it rounds the result
to the largest possible smaller value. This may sound like truncation, but
there’s a subtle difference: truncation always rounds toward 0. For positive
numbers, truncation and rounding down do the same thing. For negative
values, truncation simply uses the existing bits in the mantissa, whereas
rounding down will add a 1 bit to the LO position if the result was negative.
This is also not a normal rounding mode, but it’s useful for implementing
functions like floor(), which rounds a floating-point value to the largest
possible smaller integer.

Rounding to nearest is the most intuitive way to process the guard bits.
If the value of the guard bits is less than half the value of the mantissa’s LO
bit, then rounding to nearest truncates the result to the largest possible
smaller value (ignoring the sign). If the guard bits represent some value
that is greater than half of the value of the LO mantissa bit, then round-
ing to nearest rounds the mantissa to the smallest possible greater value
(ignoring the sign). If the guard bits represent a value that is exactly half
the value of the mantissa’s LO bit, then the IEEE floating-point standard
says that half the time it should round up and half the time it should round
down. You do this by rounding the mantissa to the value that has a 0 in the
LO bit position. That is, if the current mantissa already has a 0 in its LO bit,
you use the current mantissa; if the current mantissa has a 1 in its LO bit,
then you add 1 to round it up to the smallest possible larger value with a 0
in the LO bit. This scheme, mandated by the IEEE floating-point standard,
produces the best possible result when loss of precision occurs.

Here are some examples of rounding, using 24-bit mantissas, with 4
guard bits (that is, these examples round 28-bit numbers to 24-bit numbers
using the rounding to nearest algorithm):

1.000_0100_1010_0100_1001_0101_0001 -> 1.000_0100_1010_0100_1001_0101
1.000_0100_1010_0100_1001_0101_1100 -> 1.000_0100_1010_0100_1001_0110
1.000_0100_1010_0100_1001_0101_1000 -> 1.000_0100_1010_0100_1001_0110

1.000_0100_1010_0100_1001_0100_0001 -> 1.000_0100_1010_0100_1001_0100
1.000_0100_1010_0100_1001_0100_1100 -> 1.000_0100_1010_0100_1001_0101
1.000_0100_1010_0100_1001_0100_1000 -> 1.000_0100_1010_0100_1001_0100

Floating-Point Representation 73

4.5  Special Floating-Point Values
The IEEE floating-point format provides a special encoding for several spe-
cial values. In this section, we’ll look these special values, their purpose and
meaning, and their representation in the floating-point format.

Under normal circumstances, the exponent bits of a floating-point
number do not contain all 0s or all 1s. An exponent containing all 1 or 0 bits
indicates a special value.

If the exponent contains all 1s and the mantissa is nonzero (discount-
ing the implied bit), then the HO bit of the mantissa (again discounting the
implied bit) determines whether the value represents a quiet not-a-number
(QNaN) or a signaling not-a-number (SNaN) (see Table 4-1). These not-a-
number (NaN) results tell the system that some serious miscalculation has
taken place and that the result of the calculation is completely undefined.
QNaNs represent indeterminate results, while SNaNs specify that an invalid
operation has taken place. Any calculation involving a NaN produces a NaN
result, regardless of the values of any other operand(s). Note that the sign
bit is irrelevant for NaNs. The binary representations of NaNs are shown in
Table 4-1.

Table 4-1: Binary Representations for NaN

NaN FP format Value

SNaN 32 bits %s_11111111_0xxxx...xx
(The value of s is irrelevant—at least one of the x bits must
be nonzero.)

SNaN 64 bits %s_1111111111_0xxxxx...x
(The value of s is irrelevant—at least one of the x bits must
be nonzero.)

SNaN 80 bits %s_1111111111_0xxxxx...x
(The value of s is irrelevant—at least one of the x bits must
be nonzero.)

QNaN 32 bits %s_11111111_1xxxx...xx
(The value of s is irrelevant.)

QNaN 64 bits %s_1111111111_1xxxxx...x
(The value of s is irrelevant.)

QNaN 80 bits %s_1111111111_1xxxxx...x
(The value of s is irrelevant.)

Two other special values are represented when the exponent contains
all 1 bits, and the mantissa contains all 0s. In such a case, the sign bit
determines whether the result is the representation for +infinity or –infinity.
Whenever a calculation involves infinity as one of the operands, the result
will be one of the (well-defined) values found in Table 4-2.

74 Chapter 4

Table 4-2: Operations Involving Infinity

Operation Result

n / ±infinity 0

±infinity × ±infinity ±infinity

±nonzero / 0 ±infinity

infinity + infinity infinity

n + infinity infinity

n - infinity -infinity

±0 / ±0 NaN

infinity - infinity NaN

±infinity / ±infinity NaN

±infinity × 0 NaN

Finally, if the exponent bits are all 0, the sign bit indicates which of the
two special values, –0 or +0, the floating-point number represents. Because
the floating-point format uses a one’s complement notation, there are two
separate representations for 0. Note that with respect to comparisons, arith-
metic, and other operations, +0 is equal to –0.

4.6  Floating-Point Exceptions
The IEEE floating-point standard defines certain degenerate conditions
under which the floating-point processor (or software-implemented floating-
point code) should notify the application software. These exceptional con-
ditions include the following:

•	 Invalid operation

•	 Division by zero

USING MULT IPL E R E PR E SE N TAT IONS OF Z E RO

The IEEE floating-point format supports both +0 and –0 (depending on the
value of the sign bit), which are treated as equivalent by arithmetic calculations
and comparisons—the sign bit is ignored. Software operating on floating-point
values that represent 0 can use the sign bit as a flag to indicate different things.
For example, you could use the sign bit to indicate that the value is exactly 0
(with the sign bit clear) or to indicate that it is nonzero but too small to repre-
sent with the current format (with the sign bit set). Intel recommends using the
sign bit to indicate that 0 was produced via underflow of a negative value
(with the sign bit set) or underflow of a positive number (with the sign bit clear).
Presumably, their FPUs set the sign bit according to their recommendations
when the FPUs produce a 0 result.

Floating-Point Representation 75

•	 Denormalized operand

•	 Numeric overflow

•	 Numeric underflow

•	 Inexact result

Of these, inexact result is the least serious, because most floating-point
calculations will produce an inexact result. A denormalized operand also
isn’t too serious (though this exception indicates that your calculation may
be less accurate as a result of less available precision). The other exceptions
indicate a more serious problem, and you shouldn’t ignore them.

How the computer system notifies your application of these exceptions
depends on the CPU/FPU, operating system, and programming language,
so we can’t really go into how you might handle these exceptions. Generally,
though, you can use the exception handling facilities in your programming
language to trap these conditions as they occur. Note that most computer
systems won’t notify you when one of the exceptional conditions exists
unless you explicitly set up a notification.

4.7  Floating-Point Operations
Although most modern CPUs support an FPU that does floating-point
arithmetic in hardware, it’s worthwhile to develop a set of software floating-
point arithmetic routines to get a solid feel for what’s involved. Generally,
you’d use assembly language to write the math functions because speed is
a primary design goal for a floating-point package. However, because here
we’re writing a floating-point package simply to get a clearer picture of the
process, we’ll opt for code that is easy to write, read, and understand.

As it turns out, floating-point addition and subtraction are easy to do
in a high-level language like C/C++ or Pascal, so we’ll implement these
functions in these languages. Floating-point multiplication and division
are easier to do in assembly language than in a high-level language, so we’ll
write those routines using High-Level Assembly (HLA).

4.7.1  Floating-Point Representation
This section will use the IEEE 32-bit single-precision floating-point format
(shown earlier in Figure 4-2), which uses a one’s complement representa-
tion for signed values. This means that the sign bit (bit 31) contains a 1 if
the number is negative and a 0 if the number is positive. The exponent is an
8-bit excess-127 exponent sitting in bits 23 through 30, and the mantissa is
a 24-bit value with an implied HO bit of 1. Because of the implied HO bit,
this format does not support denormalized values.

4.7.2  Floating-Point Addition and Subtraction
Addition and subtraction use essentially the same code. After all, com-
puting X - Y is equivalent to computing X + (- Y). If we can add a negative
number to some other value, then we can also perform subtraction by first

76 Chapter 4

negating some number and then adding it to another value. And because
the IEEE floating-point format uses the one’s complement representation,
negating a value is trivial—we just invert the sign bit.

Because we’re using the standard IEEE 32-bit single-precision floating-
point format, we could theoretically get away with using the C/C++ float
data type (assuming the underlying C/C++ compiler also uses this format,
as most do on modern machines). However, you’ll soon see that when doing
floating-point calculations in software, we need to manipulate various fields
within the floating-point format as bit strings and integer values. Therefore,
it’s more convenient to use a 32-bit unsigned integer type to hold the bit rep-
resentation for our floating-point values. To avoid confusing our real values
with actual integer values in a program, we’ll define the following real data
type, which assumes that unsigned longs are 32-bit values in your implementa-
tion of C/C++ (this section assumes the uint32_t type achieves that, which
is something like typedef unsigned long uint32_t), and declare all our real
variables using this type:

typedef uint32_t real;

One advantage of using the same floating-point format that C/C++
uses for float values is that we can assign floating-point literal constants to
our real variables, and we can perform other floating-point operations such
as input and output using existing library routines. However, one potential
problem is that C/C++ will attempt to automatically convert between inte-
ger and floating-point formats if we use a real variable in a floating-point
expression (remember, as far as C/C++ is concerned, real is just an unsigned
long integer value). This means that we need to tell the compiler to treat the
bit patterns found in our real variables as though they were float objects.

A simple type coercion like (float) realVariable won’t work. The C/C++
compiler will emit code to convert the integer it believes realVariable contains
into the equivalent floating-point value. However, we want the C/C++ com-
piler to treat the bit pattern it finds in realVariable as a float without doing
any conversion. The following C/C++ macro is a sneaky way to do this:

#define asreal(x) (*((float *) &x))

This macro requires a single parameter that must be a real variable.
The result is a variable that the compiler believes is a float variable.

Now that we have our float variable, we’ll develop two C/C++ functions
to compute floating-point addition and subtraction: fpadd() and fpsub().
These two functions each take three parameters: the left and right oper-
ands of the operator and a pointer to a destination where these functions
will store their result. The prototypes for these functions are the following:

void fpadd(real left, real right, real *dest);
void fpsub(real left, real right, real *dest);

Floating-Point Representation 77

The fpsub() function negates the right operand and calls the fpadd()
function. Here’s the code for the fpsub() function:

void fpsub(real left, real right, real *dest)
{
 right = right ^ 0x80000000; // Invert the sign bit of the right operand.
 fpadd(left, right, dest); // Let fpadd do the real work.
}

The fpadd() function is where all the real work is done. To make fpadd() a
little easier to understand and maintain, we’ll decompose it into several dif-
ferent functions that help with various tasks. In an actual software floating-
point library routine, you wouldn’t do this decomposition, because the extra
subroutine calls would be a little slower; however, we’re developing fpadd() for
educational purposes, and besides, if you need high-performance floating-
point addition, you’ll probably use a hardware FPU rather than a software
implementation.

The IEEE floating-point formats are good examples of packed data
types. As you’ve seen in previous chapters, packed data types are great for
reducing storage requirements for a data type, but not so much when you
need to use the packed fields in actual calculations. Therefore, one of the
first things our floating-point functions will do is unpack the sign, expo-
nent, and mantissa fields from the floating-point representation.

The first unpacking function, extractSign(), extracts the sign bit (bit 31)
from our packed floating-point representation and returns the value 0 (for
positive numbers) or 1 (for negative numbers).

inline int extractSign(real from)
{
 return(from >> 31);
}

This code could have also extracted the sign bit using this (possibly
more efficient) expression:

(from & 0x80000000) != 0

However, shifting bit 31 down to bit 0 is, arguably, easier to understand.
The next utility function, extractExponent(), unpacks the exponent from

bits 23 through 30 in the packed real format. It does this by shifting the real
value to the right by 23 bits, masking out the sign bit, and converting the
excess-127 exponent to a two’s complement format (by subtracting 127).

inline int extractExponent(real from)
{
 return ((from >> 23) & 0xff) - 127;
}

78 Chapter 4

Next is the extractMantissa() function, which extracts the mantissa from
the real value. To extract the mantissa, we must mask out the exponent and
sign bits and then insert the implied HO bit of 1. The only catch is that we
must return 0 if the entire value is 0.

inline int extractMantissa(real from)
{
 if((from & 0x7fffffff) == 0) return 0;
 return ((from & 0x7FFFFF) | 0x800000);
}

As you learned earlier, whenever adding or subtracting two values using
scientific notation (which the IEEE floating-point format uses), you must
first adjust the two values so that they have the same exponent. For exam-
ple, to add the two decimal (base-10) numbers 1.2345e3 and 8.7654e1, we
must first adjust one or the other so that their exponents are the same. We
can reduce the exponent of the first number by shifting the decimal point
to the right. For example, the following values are all equivalent to 1.2345e3:

12.345e2 123.45e1 1234.5 12345e-1

Likewise, we can increase the value of an exponent by shifting the deci-
mal point to the left. The following values are all equal to 8.7654e1:

0.87654e2 0.087654e3 0.0087654e4

For floating-point addition and subtraction involving binary numbers,
we can make the binary exponents the same by shifting the mantissa one
position to the left and decrementing the exponent, or by shifting the man-
tissa one position to the right and incrementing the exponent.

Shifting the mantissa bits to the right means that we reduce the preci-
sion of our number (because the bits wind up going off the LO end of the
mantissa). To maintain as much accuracy as possible in our calculations, we
shouldn’t truncate the bits we shift out of the mantissa, but rather round
the result to the nearest value we can represent with the remaining man-
tissa bits. These are the IEEE rules for rounding, in order:

1.	 Truncate the result if the last bit shifted out was a 0.

2.	 Increment the mantissa by 1 if the last bit shifted out was a 1 and there
was at least one bit set to 1 in all the other bits that were shifted out.6

3.	 If the last bit we shifted out was a 1, and all the other bits were 0s, then
round the resulting mantissa up by 1 if the mantissa’s LO bit contains a 1.

Shifting the mantissa and rounding it is a relatively complex opera-
tion, and it will occur a couple of times in the floating-point addition code.

6. If the algorithm shifts out only a single bit, you assume that “all the other bits” are 0s.

Floating-Point Representation 79

Therefore, it’s another candidate for a utility function. Here’s the C/C++
code that implements this function, shiftAndRound():

void shiftAndRound(uint32_t *valToShift, int bitsToShift)
{
 // Masks is used to mask out bits to check for a "sticky" bit.
 static unsigned masks[24] =
 {
 0, 1, 3, 7, 0xf, 0x1f, 0x3f, 0x7f,
 0xff, 0x1ff, 0x3ff, 0x7ff, 0xfff, 0x1fff, 0x3fff, 0x7fff,
 0xffff, 0x1ffff, 0x3ffff, 0x7ffff, 0xfffff, 0x1fffff, 0x3fffff,
 0x7fffff
 };

 // HOmasks: Masks out the HO bit of the value masked by the masks entry.
 static unsigned HOmasks[24] =
 {
 0,
 1, 2, 4, 0x8, 0x10, 0x20, 0x40, 0x80,
 0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000, 0x8000,
 0x10000, 0x20000, 0x40000, 0x80000, 0x100000, 0x200000, 0x400000
 };

 // shiftedOut: Holds the value that will be shifted out of a mantissa
 // during the denormalization operation (used to round a denormalized
 // value).
 int shiftedOut;

 assert(bitsToShift <= 23);

 // Okay, first grab the bits we're going to shift out (so we can determine
 // how to round this value after the shift).
 shiftedOut = *valToShift & masks[bitsToShift];

 // Shift the value to the right the specified number of bits.
 // Note: bit 31 is always 0, so it doesn't matter if the C
 // compiler does a logical shift right or an arithmetic shift right.
 *valToShift = *valToShift >> bitsToShift;

 // If necessary, round the value:

 if(shiftedOut > HOmasks[bitsToShift])
 {
 // If the bits we shifted out are greater than 1/2 the LO bit, then
 // round the value up by 1.

 *valToShift = *valToShift + 1;
 }
 else if(shiftedOut == HOmasks[bitsToShift])
 {
 // If the bits we shifted out are exactly 1/2 of the LO bit's value,
 // then round the value to the nearest number whose LO bit is 0.

 *valToShift = *valToShift + (*valToShift & 1);

80 Chapter 4

 }
 // else
 // We round the value down to the previous value. The current
 // value is already truncated (rounded down), so we don't have to do
 // anything.
}

The “trick” in this code is that it uses a couple of lookup tables, masks
and HOmasks, to extract those bits that the mantissa will use from the shift
right operation. The masks table entries contain 1 bits (set bits) in the posi-
tions that will be lost during the shift. The HOmasks table entries contain a
single set bit in the position specified by the index into the table; that is, the
entry at index 0 contains a 1 in bit position 0, the entry at index 1 contains a
1 in bit position 1, and so on. This code selects an entry from each of these
tables based on the number of mantissa bits it needs to shift to the right.

If the original mantissa value, logically ANDed with the appropriate
entry in masks, is greater than the corresponding entry in HOmasks, then the
shiftAndRound() function rounds the shifted mantissa to the next greater
value. If the ANDed mantissa value is equal to the corresponding HOmasks
element, this code rounds the shifted mantissa value according to its LO bit
(note that the expression (*valToShift & 1) produces 1 if the mantissa’s LO
bit is 1, and it produces 0 otherwise). Finally, if the ANDed mantissa value is
less than the entry from the HOmasks table, then this code doesn’t have to do
anything because the mantissa is already rounded down.

Once we’ve adjusted one of the values so that the exponents of both
operands are the same, the next step in the addition algorithm is to com-
pare the signs of the values. If the signs of the two operands are the same,
we add their mantissas (using a standard integer add operation). If the
signs differ, we have to subtract, rather than add, the mantissas. Because
floating-point values use one’s complement representation, and standard
integer arithmetic uses two’s complement, we cannot simply subtract the
negative value from the positive value. Instead, we have to subtract the
smaller value from the larger value and determine the sign of the result
based on the signs and magnitudes of the original operands. Table 4-3
describes how to accomplish this.

Table 4-3: Dealing with Operands That Have Different Signs

Left sign Right sign Left mantissa >
right mantissa?

Compute mantissa as Result
sign is

– + Yes LeftMantissa - RightMantissa –

+ – Yes LeftMantissa - RightMantissa +

– + No RightMantissa - LeftMantissa +

+ – No RightMantissa - LeftMantissa –

Whenever you’re adding or subtracting two 24-bit numbers, it’s pos-
sible to produce a result that requires 25 bits (in fact, this is common when
you’re dealing with normalized values). Immediately after an addition or

Floating-Point Representation 81

subtraction, the floating-point code has to check the result to see if over-
flow has occurred. If so, it needs to shift the mantissa right by 1 bit, round
the result, and then increment the exponent. After completing this step,
all that remains is to pack the resulting sign, exponent, and mantissa fields
into the 32-bit IEEE floating-point format. The following packFP() function
is responsible for packing the sign, exponent, and mantissa fields into the
32-bit floating-point format:

inline real packFP(int sign, int exponent, int mantissa)
{
 return
 (real)
 (
 (sign << 31)
 | ((exponent + 127) << 23)
 | (mantissa & 0x7fffff)
);
}

Note that this function works for normalized values, denormalized val-
ues, and zero, but does not work for NaNs and infinities.

With the utility routines out of the way, take a look at the fpadd() func-
tion, which adds two floating-point values, producing a 32-bit real result:

void fpadd(real left, real right, real *dest)
{
 // The following variables hold the fields associated with the
 // left operand:
 int Lexponent;
 uint32_t Lmantissa;
 int Lsign;

 // The following variables hold the fields associated with the
 // right operand:
 int Rexponent;
 uint32_t Rmantissa;
 int Rsign;

 // The following variables hold the separate fields of the result:
 int Dexponent;
 uint32_t Dmantissa;
 int Dsign;

 // Extract the fields so that they're easy to work with:
 Lexponent = extractExponent(left);
 Lmantissa = extractMantissa(left);
 Lsign = extractSign(left);

 Rexponent = extractExponent(right);
 Rmantissa = extractMantissa(right);
 Rsign = extractSign(right);

82 Chapter 4

 // Code to handle special operands (infinity and NaNs):

 if(Lexponent == 127)
 {
 if(Lmantissa == 0)
 {
 // If the left operand is infinity, then the result
 // depends upon the value of the right operand.

 if(Rexponent == 127)
 {
 // If the exponent is all 1 bits (127 after unbiasing)
 // then the mantissa determines if we have an infinity value
 // (zero mantissa), a QNaN (mantissa = 0x800000), or a SNaN
 // (nonzero mantissa not equal to 0x800000).

 if(Rmantissa == 0) // Do we have infinity?
 {
 // infinity + infinity = infinity
 // -infinity - infinity = -infinity
 // -infinity + infinity = NaN
 // infinity - infinity = NaN

 if(Lsign == Rsign)
 {
 *dest = right;
 }
 else
 {
 *dest = 0x7fC00000; // +QNaN
 }
 }
 else // Rmantissa is nonzero, so it's a NaN
 {
 *dest = right; // Right is a NaN, propagate it.
 }
 }

 }
 else // Lmantissa is nonzero, Lexponent is all 1s.
 {
 // If the left operand is some NaN, then the result will
 // also be the same NaN.

 *dest = left;
 }

 // We've already calculated the result, so just return.
 return;

 }
 else if(Rexponent == 127)
 {
 // Two case: right is either a NaN (in which case we need to
 // propagate the NaN regardless of left's value) or it is

Floating-Point Representation 83

 // +/− infinity. Because left is a "normal" number, we'll also
 // wind up propagating the infinity because any normal number
 // plus infinity is infinity.

 *dest = right; // Right is a NaN, so propagate it.
 return;
 }

 // Okay, we've got two actual floating-point values. Let's add them
 // together. First, we have to "denormalize" one of the operands if
 // their exponents aren't the same (when adding or subtracting values,
 // the exponents must be the same).
 //
 // Algorithm: choose the value with the smaller exponent. Shift its
 // mantissa to the right the number of bits specified by the difference
 // between the two exponents.

 Dexponent = Rexponent;
 if(Rexponent > Lexponent)
 {
 shiftAndRound(&Lmantissa, (Rexponent - Lexponent));
 }
 else if(Rexponent < Lexponent)
 {
 shiftAndRound(&Rmantissa, (Lexponent - Rexponent));
 Dexponent = Lexponent;
 }

 // Okay, add the mantissas. There is one catch: if the signs are opposite
 // then we've actually got to subtract one value from the other (because
 // the FP format is one's complement, we'll subtract the larger mantissa
 // from the smaller and set the destination sign according to a
 // combination of the original sign values and the largest mantissa).

 if(Rsign ^ Lsign)
 {
 // Signs are different, so we must subtract one value from the other.

 if(Lmantissa > Rmantissa)
 {
 // The left value is greater, so the result inherits the
 // sign of the left operand.

 Dmantissa = Lmantissa - Rmantissa;
 Dsign = Lsign;
 }
 else
 {
 // The right value is greater, so the result inherits the
 // sign of the right operand.

 Dmantissa = Rmantissa - Lmantissa;
 Dsign = Rsign;
 }

84 Chapter 4

 }
 else
 {
 // Signs are the same, so add the values:

 Dsign = Lsign;
 Dmantissa = Lmantissa + Rmantissa;
 }

 // Normalize the result here.
 //
 // Note that during addition/subtraction, overflow of 1 bit is possible.
 // Deal with that possibility here (if overflow occurred, shift the
 // mantissa to the right one position and adjust for this by incrementing
 // the exponent). Note that this code returns infinity if overflow occurs
 // when incrementing the exponent (infinity is a value with an exponent
 // of $FF);

 if(Dmantissa >= 0x1000000)
 {
 // Never more than 1 extra bit when doing addition/subtraction.
 // Note that by virtue of the floating-point format we're using,
 // the maximum value we can produce via addition or subtraction is
 // a mantissa value of 0x1fffffe. Therefore, when we round this
 // value it will not produce an overflow into the 25th bit.

 shiftAndRound(&Dmantissa, 1); // Move result into 24 bits.
 ++Dexponent; // Shift operation did a div by 2,
 // this counteracts the effect of
 // the shift (incrementing exponent
 // multiplies the value by 2).
 }
 else
 {
 // If the HO bit is clear, normalize the result
 // by shifting bits up and simultaneously decrementing
 // the exponent. We will treat 0 as a special case
 // because it's a common enough result.

 if(Dmantissa != 0)
 {

 // The while loop multiplies the mantissa by 2 (via a shift
 // left) and then divides the whole number by 2 (by
 // decrementing the exponent. This continues until the HO bit of
 // Dmantissa is set or the exponent becomes -127 (0 in the
 // biased-127 form). If Dexponent drops down to -128, then we've
 // got a denormalized number and we can stop.

 while((Dmantissa < 0x800000) && (Dexponent > -127))
 {
 Dmantissa = Dmantissa << 1;
 --Dexponent;
 }

Floating-Point Representation 85

 }
 else
 {
 // If the mantissa went to 0, clear everything else, too.

 Dsign = 0;
 Dexponent = 0;
 }
 }

 // Reconstruct the result and store it away:

 *dest = packFP(Dsign, Dexponent, Dmantissa);

}

To conclude this discussion of the software implementation of the fpadd()
and fsub() functions, here’s a C main() function demonstrating their use:

// A simple main program that does some trivial tests on fpadd and fpsub.

int main(int argc, char **argv)
{
 real l, r, d;

 asreal(l) = 1.0;

 asreal(r) = 2.0;

 fpadd(l, r, &d);
 printf("dest = %x\n", d);
 printf("dest = %12E\n", asreal(d));

 l = d;
 asreal(r) = 4.0;
 fpsub(l, r, &d);
 printf("dest2 = %x\n", d);
 printf("dest2 = %12E\n", asreal(d));
}

Here’s the output produced by compiling with Microsoft Visual C++
(and defining uint32_t as an unsigned long):

l = 3f800000
l = 1.000000E+00
r = 40000000
r = 2.000000E+00
dest = 40400000
dest = 3.000000E+00
dest2 = bf800000
dest2 = -1.000000E+00

86 Chapter 4

4.7.3  Floating-Point Multiplication and Division
Most software floating-point libraries are actually written in hand-optimized
assembly language, not in a high-level language (HLL). As the previous
section shows, it’s possible to write floating-point routines in an HLL and,
particularly in the case of single-precision floating-point addition and
subtraction, you could write the code efficiently. Given the right library
routines, you could also write the floating-point multiplication and division
routines in an HLL. However, because their implementation is actually eas-
ier in assembly language, this section presents an HLA implementation of
the single-precision floating-point multiplication and division algorithms.

The HLA code in this section implements two functions, fpmul() and
fpdiv(), that have the following prototypes:

procedure fpmul(left:real32; right:real32); @returns("eax");
procedure fpdiv(left:real32; right:real32); @returns("eax");

Beyond the fact that this code is written in assembly language rather
than C, it differs in two main ways from the code in the previous section.
First, it uses the built-in real32 data type rather than creating a new data
type for the real values, because we can easily coerce any 32-bit memory
object to real32 or dword in assembly language. Second, these prototypes
support only two parameters; there is no destination parameter. These
functions simply return the real32 result in the EAX register.7

4.7.3.1  Floating-Point Multiplication

Whenever you multiply two values in scientific notation, you compute the
result sign, exponent, and mantissa as follows:

•	 The result sign is the exclusive-OR of the operand signs. That is, the
result is positive if both operand signs were the same, and the result
sign is negative if the operand signs were different.

•	 The result exponent is the sum of the operands’ exponents.

•	 The result mantissa is the integer (fixed-point) product of the two
operand mantissas.

There are a few additional rules that affect the floating-point multipli-
cation algorithm that are a direct result of the IEEE floating-point format:

•	 If either, or both, of the operands are 0, the result is 0 (this is a special
case because the representation for 0 is special).

7. Those who know a little 80x86 assembly language may wonder if it’s legal to return a
floating-point value in an integer register. Indeed, it is! EAX can hold any 32-bit value, not
just integers. Presumably, if you’re writing a software-based floating-point package, you don’t
have floating-point hardware available and, therefore, you can’t pass floating-point values
around in the floating-point registers.

Floating-Point Representation 87

•	 If either operand is infinity, the result is infinity.

•	 If either operand is a NaN, the result is that same NaN.

The fpmul() procedure begins by checking if either of the operands is
0. If so, the function immediately returns 0.0 to the caller. Next, the fpmul()
code checks for NaN or infinity values in the left and right operands. If it
finds one of these values, it returns that same value to the caller.

If both of the fpmul() operands are reasonable floating-point values,
then the fpmul() code extracts the sign, exponent, and mantissa fields of the
packed floating-point value. Actually, extract isn’t the correct term here; iso-
late is a better description. Here’s the code that isolates the sign bits of the
two operands and computes the result sign:

mov((type dword left), ebx); // Result sign is the XOR of the
xor((type dword right), ebx); // operand signs.
and($8000_0000, ebx); // Keep only the sign bit.

This code exclusive-ORs the two operands and then masks out bits 0
through 30, leaving only the result sign value in bit 31 of the EBX register.
This procedure doesn’t bother moving the sign bit down to bit 0 (as you’d
normally do when unpacking data), because it would just have to move this
bit back to bit 31 when it repacks the floating-point value later.

To process the exponent, fpmul() isolates bits 23 through 30 and oper-
ates on the exponent in place. When multiplying two values using scientific
notation, you must add the values of the exponents together. However, you
must subtract 127 from the exponent’s sum, since adding excess-127 expo-
nents ends up adding the bias twice. The following code isolates the expo-
nent bits, adjusts for the extra bias, and adds the exponents together:

mov((type dword left), ecx); // Exponent goes into bits 23..30
and($7f80_0000, ecx); // of ECX; mask these bits.
sub(126 << 23, ecx); // Eliminate the bias of 127 and multiply by 2

mov((type dword right), eax);
and($7f80_0000, eax);

// For multiplication, we need to add the exponents:

add(eax, ecx); // Exponent value is now in bits
 // 23..30 of ECX.

First, notice that this code subtracts 126 rather than 127. The reason is
that later we’ll need to double the result of the multiplication of the mantis-
sas. Subtracting 126 rather than 127 does this multiplication by 2 implicitly
(saving an instruction later on).

If the sum of the exponents with add(eax, ecx) in the preceding code
is too large to fit into 8 bits, there will be a carry out of bit 30 into bit 31 of
ECX, which will set the 80x86 overflow flag. If overflow occurs on a multi-
plication, our code will return infinity as the result.

88 Chapter 4

If overflow does not occur, then the fpmul() procedure needs to set the
implied HO bit of the two mantissa values. The following code handles this
chore, strips out all the exponent and sign bits from the mantissas, and left-
justifies the mantissa bits up against bit position 31 in EAX and EDX.

mov((type dword left), eax);
mov((type dword right), edx);

// If we don't have a 0 value, then set the implied HO bit of the mantissa:

if(eax <> 0) then

 or($80_0000, eax); // Set the implied bit to 1.

endif;
shl(8, eax); // Moves mantissa to bits 8..31 and removes sign/exp.

// Repeat this for the right operand.

if(edx <> 0) then

 or($80_0000, edx);

endif;
shl(8, edx);

Once the mantissas are shifted to bit 31 in EAX and EDX, we multiply
using the 80x86 mul() instruction:

mul(edx);

This instruction computes the 64-bit product of EAX and EDX, leav-
ing the result in EDX:EAX (the HO double word is in EDX, and the LO
double word is in EAX). Because the product of any two n-bit integers
could require as many as 2×n bits, the mul() instruction computes EDX:EAX
= EAX×EDX. Left-justifying the mantissas in EAX and EDX before doing
the multiplication ensures the mantissa of the product winds up in bits 7
through 30 of EDX. We actually need them in bit positions 8 through 31
of EDX—that’s why earlier this code subtracted only 126, rather than 127,
when adjusting for the excess-127 value (this multiplies the result by 2,
which is equivalent to shifting the bits left one position). As these numbers
were normalized prior to the multiplication, bit 30 of EDX will contain a 1
after the multiplication unless the result is 0. The 32-bit IEEE real format
does not support denormalized values, so we don’t have to worry about this
case when using 32-bit floating-point values.

Because the mantissas are 24 bits each, the product of the mantissas
could have as many as 48 significant bits. Our result mantissa can hold only
24 bits, so we need to round the value to produce a 24-bit result (using the

Floating-Point Representation 89

IEEE rounding algorithm — see “Rounding” on page 71). Here’s the
code that rounds the value in EDX to 24 significant bits (in positions 8..31):

test($80, edx); // Clears zero flag if bit 7 of EDX = 1.
if(@nz) then

 add($FFFF_FFFF, eax); // Sets carry if EAX <> 0.
 adc($7f, dl); // Sets carry if DL:EAX > $80_0000_0000.
 if(@c) then

 // If DL:EAX > $80_0000_0000 then round the mantissa
 // up by adding 1 to bit position 8:

 add(1 << 8, edx);

 else // DL:EAX = $80_0000_0000

 // We need to round to the value that has a 0
 // in bit position 0 of the mantissa (bit #8 of EDX):

 test(8, edx); // Clears zero flag if bit #8 contains a 1.
 if(@nz) then

 add(1 << 8, edx); // Adds a 1 starting at bit position 8.

 // If there was an overflow, renormalize:

 if(@c) then

 rcr(1, edx); // Shift overflow (in carry) back into EDX.
 inc(ecx); // Shift did a divide by 2. Fix that.

 endif;

 endif;

 endif;

endif;

The number may need to be renormalized after rounding. If the man-
tissa contains all 1 bits and needs to be rounded up, this will produce an
overflow out of the HO bit of the mantissa. The rcr() and inc() instructions
at the end of this code sequence put the overflow bit back into the mantissa
if overflow occurs.

The only thing left to do after this is pack the destination sign, exponent,
and mantissa into the 32-bit EAX register. The following code does this:

shr(8, edx); // Move mantissa into bits 0..23.
and($7f_ffff, edx); // Clear the implied bit.
lea(eax, [edx+ecx]); // Merge mantissa and exponent into EAX.
or(ebx, eax); // Merge in the sign.

90 Chapter 4

The only tricky thing in this code is the use of the lea() (load effective
address) instruction to compute the sum of EDX (the mantissa) and ECX
(the exponent) and move the result to EAX all with a single instruction.

4.7.3.2  Floating-Point Division

Floating-point division is a little bit more involved than multiplication
because the IEEE floating-point standard says many things about degener-
ate conditions that can occur during division. We’re not going to discuss all
the code that handles those conditions here. Instead, see the discussion of the
conditions for fpmul() earlier, and check out the complete code listing for
fdiv() later in this section.

Assuming we have reasonable numbers to divide, the division algo-
rithm first computes the result sign using the same algorithm (and code) as
for multiplying. When dividing two values using scientific notation, we have
to subtract their exponents. In contrast to the multiplication algorithm,
here it’s more convenient to truly unpack the exponents for the two divi-
sion operands and convert them from excess-127 to two’s complement form.
Here’s the code that does this:

mov((type dword left), ecx); // Exponent comes from bits 23..30.
shr(23, ecx);
and($ff, ecx); // Mask out the sign bit (in bit 8).

mov((type dword right), eax);
shr(23, eax);
and($ff, eax);

// Eliminate the bias from the exponents:

sub(127, ecx);
sub(127, eax);

// For division, we need to subtract the exponents:

sub(eax, ecx); // Leaves result exponent in ECX.

The 80x86 div() instruction absolutely, positively requires the quotient
to fit into 32 bits. If this condition is not true, the CPU may abort the opera-
tion with a divide exception. As long as the HO bit of the divisor contains a 1
and the HO 2 bits of the dividend contain %01, we won’t get a division error.
Here’s the code that prepares the operands prior to the division operation:

mov (type dword left), edx);
if(edx <> 0) then

 or($80_0000, edx); // Set the implied bit to 1 in the left operand.
 shl(8, edx);

endif;
mov((type dword right), edi);

Floating-Point Representation 91

if(edi <> 0) then

 or($80_0000, edi); // Set the implied bit to 1 in the right operand.
 shl(8, edi);

else

 // Division by zero error, here.

endif;

The next step is to actually do the division. As noted earlier, in order to
prevent a division error, we have to shift the dividend 1 bit to the right (to
set the HO 2 bits to %01), as follows:

xor(eax, eax); // EAX := 0;
shr(1, edx); // Shift EDX:EAX to the right 1 bit to
rcr(1, eax); // prevent a division error.
div(edi); // Compute EAX = EDX:EAX / EDI.

Once the div() instruction executes, the quotient is sitting in the HO 24
bits of EAX, and the remainder is in AL:EDX. We now need to normalize
and round the result. Rounding is a little easier because AL:EDX contains
the remainder after the division; if we need to round down, it will contain
a value less than $80:0000_0000 (that is, the 80x86 AL register contains $80
and EDX contains 0); if we need to round up, it will contain a value greater
than $80:0000_; and if we need to round to the nearest value, it will contain
exactly $80:0000_0000.

Here’s the code that does this:

test($80, al); // See if the bit just below the LO bit of the
if(@nz) then // mantissa contains a 0 or 1.

 // Okay, the bit just below the LO bit of our mantissa contains a 1.
 // If all other bits below the mantissa and this bit contain 0s,
 // we have to round to the nearest mantissa value whose LO bit is 0.

 test($7f, al); // Clears zero flag if bits 0..6 <> 0.
 if(@nz || edx <> 0) then // If bits 0..6 in AL are 0 and EDX
 // is 0.

 // We need to round up:

 add($100, eax); // Mantissa starts in bit #8);
 if(@c) then // Carry set if mantissa overflows.

 // If there was an overflow, renormalize.

 rcr(1, eax);
 inc(ecx);

 endif;

92 Chapter 4

 else

 // The bits below the mantissa are exactly 1/2 the value
 // of the LO mantissa bit. So we need to round to the value
 // that has a LO mantissa bit of 0:

 test($100, eax);
 if(@nz) then

 add($100, eax);
 if(@c) then

 // If there was an overflow, renormalize.

 rcr(1, eax); // Put overflow bit back into EAX.
 inc(ecx); // Adjust exponent accordingly.

 endif;

 endif;

 endif;

endif;

The last step in fpdiv is to add the bias back into the exponent (and
verify that overflow doesn’t occur) and then pack the quotient’s sign, expo-
nent, and mantissa fields into the 32-bit floating-point format. Here’s the
code that does this:

if((type int32 ecx) > 127) then

 mov($ff-127, ecx); // Set exponent value for infinity
 xor(eax, eax); // because we just had overflow.

elseif((type int32 ecx) < -128) then

 mov(-127, ecx); // Return 0 for underflow (note that
 xor(eax, eax); // next we add 127 to ECX).

endif;
add(127, ecx); // Add the bias back in.
shl(23, ecx); // Move the exponent to bits 23..30.

// Okay, assemble the final real32 value:

shr(8, eax); // Move mantissa into bits 0..23.
and($7f_ffff, eax); // Clear the implied bit.
or(ecx, eax); // Merge mantissa and exponent into EAX.
or(ebx, eax); // Merge in the sign.

Floating-Point Representation 93

Whew! This has been a lot of code. However, going through all of it just
to see how floating-point operations work has hopefully given you an appre-
ciation of exactly what an FPU does for you.

4.8  For More Information
Hyde, Randall. The Art of Assembly Language. 2nd ed. San Francisco: No

Starch Press, 2010.

———. “Webster: The Place on the Internet to Learn Assembly.” http://
plantation-productions.com/Webster/index.html.

Knuth, Donald E. The Art of Computer Programming, Volume 2: Seminumerical
Algorithms. 3rd ed. Boston: Addison-Wesley, 1998.

5
C H A R A C T E R R E P R E S E N T A T I O N

Although computers are famous for their
“number-crunching” capabilities, the truth

is that most computer systems process char-
acter data far more often than numbers. The

term character refers to a human- or machine-readable
symbol that is typically a non-numeric entity.
In general, a character is any symbol that you can type on a keyboard or
show on a video display. In addition to alphabetic characters, character data
includes punctuation marks, numeric digits, spaces, tabs, carriage returns
(the enter key), other control characters, and other special symbols.

This chapter looks at how to represent characters, strings, and charac-
ter sets within a computer system. It also discusses various operations on
these data types.

96 Chapter 5

5.1  Character Data
Most computer systems use a 1-byte or multibyte binary sequence to encode
the various characters. Windows, macOS, and Linux fall into this category,
using the ASCII or Unicode character sets, whose members can all be rep-
resented with 1- or multibyte binary sequences. The EBCDIC character
set, in use on IBM mainframes and minicomputers, is another example
of a single-byte character code.

This chapter will discuss all three of these character sets and their
internal representations, as well as how to create your own character sets.

5.1.1  The ASCII Character Set
The ASCII (American Standard Code for Information Interchange) char-
acter set maps 128 characters to the unsigned integer values 0 through 127
($0 through $7F). Although the exact mapping of characters to numeric values
is arbitrary and unimportant, a standardized mapping allows you to com-
municate between programs and peripheral devices. The standard ASCII
codes are useful because nearly everyone uses them. If you use the ASCII code
65 to represent the character A, for example, you can be confident that
some peripheral device (such as a printer) will correctly interpret this value
as an A.

Because the ASCII character set provides only 128 different characters,
you might be wondering: “What do we do with the additional 128 values
($80..$FF) that we can represent with a byte?” One option is to ignore those
extra values, and that’s the primary approach of this book. Another pos-
sibility is to extend the ASCII character set by an additional 128 characters.
Of course, unless you can get everyone to agree upon a particular extension
of the character set1 (a difficult task indeed), the whole purpose of having a
standardized character set will be defeated.

Despite some major shortcomings, such as the inability to represent all
characters and alphabets in use today, ASCII data is the standard for data
interchange across computer systems and programs. Most programs can
accept ASCII data, and most programs can produce it. Because you’ll prob-
ably be dealing with ASCII characters in your programs, it would be wise to
study the layout of the character set and memorize a few key ASCII codes
(such as those for 0, A, and a).

N O T E 	 Table A-1 in Appendix A lists all the characters in the standard ASCII character set.

The ASCII character set is divided into four groups of 32 characters.
The first 32 characters, ASCII codes $0 through $1F (0 through 31), form
a special set of nonprinting characters called the control characters. As their
name implies, these characters perform various printer and display control
operations rather than displaying symbols. Examples of control characters

1. Back before Windows became popular, IBM supported an extended 256-element charac-
ter set on its text displays. Though this character set is “standard” even on modern PCs, few
applications or peripheral devices continue to use it.

Character Representation 97

include the carriage return, which positions the cursor at the beginning of
the current line of characters;2 line feed, which moves the cursor down one
line on the output device; and backspace, which moves the cursor back one
position to the left. Unfortunately, because there’s very little standardiza-
tion among output devices, different control characters perform different
operations on different output devices. To find out exactly how a particular
control character affects a certain device, consult the device’s manual.

The second group of 32 ASCII character codes comprises various
punctuation symbols, special characters, and the numeric digits. The most
notable characters in this group include the space character (ASCII code
$20) and the numeric digits (ASCII codes $30..$39).

The third group of 32 ASCII characters contains the uppercase alpha-
betic characters. The ASCII codes for the characters A through Z lie in the
range $41 through $5A. Because there are only 26 different alphabetic char-
acters, the remaining six codes hold various special symbols.

The fourth and final group of 32 ASCII character codes represents the
lowercase alphabetic symbols, five additional special symbols, and another
control character (delete). The lowercase character symbols use the ASCII
codes $61 through $7A. If you convert the codes for the upper- and lowercase
characters to binary, you’ll notice that the uppercase symbols differ from
their lowercase equivalents in exactly one bit position. For example, con-
sider the character codes for E and e in Figure 5-1.

7 6 5 4 3 2

E

e

1 0

0 1 0 0 0 1 0 1

7 6 5 4 3 2 1 0

0 1 1 0 0 1 0 1

Figure 5-1: ASCII codes for E and e

These two codes differ only in bit 5. Uppercase alphabetic characters
always contain a 0 in bit 5; lowercase alphabetic characters always contain
a 1 in bit 5. To quickly convert an alphabetic character between upper- and
lowercase, simply invert bit 5. To force an uppercase character to lowercase,
set bit 5 to 1. Likewise, you can force a lowercase character to uppercase
by setting bit 5 to 0.

Bits 5 and 6 determine the character’s group (see Table 5-1). Therefore,
you can convert any upper- or lowercase (or special) character to its cor-
responding control character by setting bits 5 and 6 to 0 (for example, A
becomes ctrl-A when you set bits 5 and 6 to 0; that is, 0x41 becomes 0x01).

2. Historically, carriage return refers to the paper carriage used on typewriters. A carriage
return consisted of physically moving the carriage all the way to the right so that the next
character typed would appear at the left-hand side of the paper.

98 Chapter 5

Table 5-1: ASCII Character Groups Determined by Bits 5 and 6

Bit 6 Bit 5 Group

0 0 Control characters
0 1 Digits and punctuation
1 0 Uppercase and special
1 1 Lowercase and special

Bits 5 and 6 aren’t the only bits that encode useful information.
Consider, for a moment, the ASCII codes of the numeric digit characters in
Table 5-2. The decimal representations of these ASCII codes are not very
enlightening. However, the hexadecimal representation reveals something
very important—the LO nibble is the binary equivalent of the represented
number. By stripping away (setting to 0) the HO nibble of the ASCII code,
you obtain the binary representation of that digit. Conversely, you can con-
vert a binary value in the range 0 through 9 to its ASCII character represen-
tation by simply setting the HO nibble to %0011, or the decimal value 3. You
can use the logical AND operation to force the HO bits to 0; likewise, you can
use the logical OR operation to force the HO bits to %0011. For more infor-
mation on string-to-numeric conversions, see Chapter 2.

Table 5-2: ASCII Codes for the Numeric Digits

Character Decimal Hexadecimal

0 48 $30

1 49 $31

2 50 $32

3 51 $33

4 52 $34

5 53 $35

6 54 $36

7 55 $37

8 56 $38

9 57 $39

Despite the fact that it is a “standard,” simply encoding your data using
ASCII characters does not guarantee compatibility across systems. An A
on one machine is most likely an A on another system; but, of the 32 con-
trol codes in the first group of ASCII codes, plus the delete code in the last
group, only 4 control codes are commonly supported by most devices and
applications—backspace (BS), tab, carriage return (CR), and line feed (LF).
Worse still, different machines often use these “supported” control codes in
different ways. End-of-line is a particularly troublesome example. Windows,
MS-DOS, CP/M, and other systems mark end-of-line by the two-character
sequence CR/LF. The original Apple Macintosh OS and many other systems

Character Representation 99

mark end-of-line by a single CR character. Linux, BeOS, macOS, and other
Unix systems mark end-of-line with a single LF character.

Exchanging simple text files between different systems can be an exer-
cise in frustration. Even if you use standard ASCII characters in all your
files, you still need to convert the data when exchanging files between
systems. Fortunately, many text editors automatically handle files with dif-
ferent line endings (many available freeware utilities will also do this con-
version for you). If you have to do this in your own software, simply copy all
characters except the end-of-line sequence from one file to another, and
then emit the new end-of-line sequence whenever you encounter an old
end-of-line sequence in the input file.

5.1.2  The EBCDIC Character Set
Although the ASCII character set is, unquestionably, the most popular
character representation, it’s certainly not the only one available. For
example, IBM uses the EBCDIC code on many of its mainframe and mini-
computer lines. However, you’ll rarely encounter it on personal computer
systems, so we’ll consider it only briefly in this book.

EBCDIC (pronounced “Eb-suh-dic”) stands for Extended Binary Coded
Decimal Interchange Code. If you’re wondering whether there was an unex-
tended version of this character code, the answer is yes. Earlier IBM systems
and keypunch machines used BCDIC (Binary Coded Decimal Interchange Code),
a character set based on punched cards and decimal representation (for
IBM’s older decimal machines).

BCDIC existed long before modern digital computers; it was born on
old-fashioned IBM keypunches and tabulator machines. EBCDIC extended
that encoding to provide a character set for IBM’s computers. However,
EBCDIC inherited several traits from BCDIC that seem strange in the
context of modern computers. For example, the encodings of the alpha-
betic characters are not contiguous. Originally, the alphabetic characters
probably did have a sequential encoding; however, when IBM expanded the
character set, it used some binary combinations that aren’t present in the
BCD format (like %1010..%1111). These binary values appear between two
otherwise sequential BCD values, which explains why certain character
sequences (such as the alphabetic characters) aren’t contiguous in the
EBCDIC encoding.

EBCDIC is not a single character set; rather, it is a family of character
sets. While the EBCDIC character sets have a common core (for example,
the encodings for the alphabetic characters are usually the same), different
versions, known as code pages, have different encodings for punctuation and
special characters. Because of the limited number of encodings available in
a single byte, different code pages reuse some of the character encodings
for their own special set of characters. So, if you’re given a file that contains
EBCDIC characters and someone asks you to translate it to ASCII, you’ll
quickly discover that it’s not a trivial task.

Because of the weirdness of the EBCDIC character set, many com-
mon algorithms that work well on ASCII characters simply don’t work with

100 Chapter 5

EBCDIC. However, keep in mind that EBCDIC functional equivalents exist
for most ASCII characters. Check out the IBM literature for more details.

5.1.3  Double-Byte Character Sets
Because a byte can represent a maximum of 256 characters, some computer
systems use double-byte character sets (DBCSs) to represent more than 256 char-
acters. DBCSs do not encode every character using 16 bits; instead, they use
a single byte for most character encodings and use double-byte codes only
for certain characters.

A typical double-byte character set uses the standard ASCII character
set along with several additional characters in the range $80 through $FF.
Certain values in this range are used as extension codes that tell the soft-
ware that a second byte immediately follows. Each extension byte allows the
DBCS to support another 256 different character codes. With three exten-
sion values, for example, the DBCS can support up to 1,021 different char-
acters: 256 characters for each of the extension bytes, and 253 (256 – 3)
characters for the standard single-byte set (we subtract 3 because the three
extension byte values each consume one of the 256 combinations, and they
don’t count as characters).

Back in the days when terminals and computers used memory-mapped
character displays, double-byte character sets weren’t very practical. Hardware
character generators really want each character to be the same size, and they
want to process a limited number of characters. However, as bitmapped dis-
plays with software character generators became prevalent (such as Windows,
Macintosh, Unix/XWindows machines, tablets, and smartphones), it became
possible to process DBCSs.

Although DBCSs can compactly represent a large number of charac-
ters, more computing resources are required to process text in a DBCS
format. For example, determining the length of a zero-terminated string
containing DBCS characters (typical in the C/C++ languages) can be con-
siderable work. Some characters in the string consume 2 bytes, while most
others consume only 1 byte, so a string length function has to scan the
string byte-by-byte to locate any extension values indicating that a single
character consumes 2 bytes. This process more than doubles the time a
high-performance string length function takes to execute.

Worse still, many common algorithms used to manipulate string data
fail when applied to DBCSs. For example, a common C/C++ trick to step
through characters in a string is to either increment or decrement a pointer
to the string using expressions like ++ptrChar or --ptrChar. This won’t work
with DBCSs. While someone using a DBCS probably has a set of standard
C library routines that work on DBCSs, it’s also quite likely that other char-
acter functions they or others have written don’t work properly with the
extended characters.

The other big problem with DBCSs is the lack of consistent standard.
Different DBCSs use the same exact encoding for different characters. For
these reasons, if you need a standardized character set that supports more
than 256 characters, you’re far better off using the Unicode character set.

Character Representation 101

5.1.4  The Unicode Character Set
A few decades back, engineers at Aldus, NeXT, Sun, Apple Computer, IBM,
Microsoft, the Research Library Group, and Xerox realized that their new
computer systems with bitmaps and user-selectable fonts could display far
more than 256 different characters at one time. At the time, DBCSs were
the most common solution, but—as just noted—they had a couple of com-
patibility problems. So, the engineers sought a different route.

The solution they came up with was the Unicode character set. The
engineers who originally developed Unicode chose a 2-byte character size.
Like DBCSs, this approach still required special library code (existing
single-byte string functions would not always work with double-byte charac-
ters), but other than changing the size of a character, most existing string
algorithms would still work with 2-byte characters. The Unicode defini-
tion included all of the (known/living) character sets at the time, giving
each character a unique encoding, to avoid the consistency problems that
plagued differing DBCSs.

The original Unicode standard used a 16-bit word to represent each
character. Therefore, Unicode supported up to 65,536 different character
codes—a huge advance over the 256 possible codes that are representable
with an 8-bit byte. Furthermore, Unicode is upward compatible from ASCII.
If the HO 9 bits3 of a Unicode character’s binary representation contain 0,
then the LO 7 bits use the standard ASCII code. If the HO 9 bits contain
some nonzero value, then the 16 bits form an extended character code
(extended from ASCII, that is). If you’re wondering why so many different
character codes are necessary, note that, at the time, certain Asian character
sets contained 4,096 characters. The Unicode character set even provided
a set of codes you could use to create an application-defined character set.
Approximately half of the 65,536 possible character codes have been defined,
and the remaining character encodings are reserved for future expansion.

Today, Unicode is a universal character set, long replacing ASCII and
older DBCSs. All modern operating systems (including macOS, Windows,
Linux, iOS, Android, and Unix), web browsers, and most modern applica-
tions provide Unicode support. Unicode Consortium, a nonprofit corpo-
ration, maintains the Unicode standard. By maintaining the standard,
Unicode, Inc. (https://home.unicode.org/), helps guarantee that a character
you write on one system will display as you expect on a different system
or application.

5.1.5  Unicode Code Points
Alas, as well thought-out as the original Unicode standard was, it couldn’t
have anticipated the explosion in characters that would occur. Emojis,
astrological symbols, arrows, pointers, and a wide variety of symbols intro-
duced for the internet, mobile devices, and web browsers have greatly

3. ASCII is a 7-bit code. If the HO 9 bits of a 16-bit Unicode value are all 0, the remaining
7 bits are an ASCII encoding for a character.

102 Chapter 5

expanded the Unicode symbol repertoire (along with a desire to support
historic, obsolete, and rare scripts). In 1996, systems engineers discovered
that 65,536 symbols were insufficient. Rather than require 3 or 4 bytes for
each Unicode character, those in charge of the Unicode definition gave up
on trying to create a fixed-size representation of characters and allowed for
opaque (and multiple) encodings of Unicode characters. Today, Unicode
defines 1,112,064 code points, far exceeding the 2-byte capacity originally
set aside for Unicode characters.

A Unicode code point is simply an integer value that Unicode associ-
ates with a particular character symbol; you can think of it as the Unicode
equivalent of the ASCII code for a character. The convention for Unicode
code points is to specify the value in hexadecimal with a U+ prefix; for exam-
ple, U+0041 is the Unicode code point for the letter A.

N O T E 	 See https://en.wikipedia.org/wiki/Unicode#General_Category_property for
more details on code points.

5.1.6  Unicode Code Planes
Because of its history, blocks of 65,536 characters are special in Unicode—
they are known as a multilingual plane. The first multilingual plane, U+000000
to U+00FFFF, roughly corresponds to the original 16-bit Unicode definition;
the Unicode standard calls this the Basic Multilingual Plane (BMP). Planes 1
(U+010000 to U+01FFFF), 2 (U+020000 to U+02FFFF), and 14 (U+0E0000 to U+0EFFFF)
are supplementary planes. Unicode reserves planes 3 through 13 for future
expansion and planes 15 and 16 for user-defined character sets.

The Unicode standard defines code points in the range U+000000 to
U+10FFFF. Note that 0x10ffff is 1,114,111, which is where most of the 1,112,064
characters in the Unicode character set come from; the remaining 2,048
code points are reserved for use as surrogates, which are Unicode exten-
sions. Unicode scalar, another term you might hear, is a value from the set
of all Unicode code points except the 2,048 surrogate code points. The HO
two hexadecimal digits of the six-digit code point value specify the mul-
tilingual plane. Why 17 planes? The reason, as you’ll see in a moment, is
that Unicode uses special multiword entries to encode code points beyond
U+FFFF. Each of the two possible extensions encodes 10 bits, for a total of
20 bits; 20 bits gives you 16 multilingual planes, which, plus the original
BMP, produces 17 multilingual planes. This is also why code points fall in
the range U+000000 to U+10FFFF: it takes 21 bits to encode the 16 multilingual
planes plus the BMP.

5.1.7  Surrogate Code Points
As noted earlier, Unicode began life as a 16-bit (2-byte) character set encod-
ing. When it became apparent that 16 bits were insufficient to handle all
the possible characters that existed at the time, an expansion was necessary.
As of Unicode v2.0, the Unicode, Inc., organization extended the definition
of Unicode to include multiword characters. Now Unicode uses surrogate

Character Representation 103

code points (U+D800 through U+DFFF) to encode values larger than U+FFFF.
Figure 5-2 shows the encoding.

Unit 1

b
10

b
11

b
12

b
13

b
14

b
15

b
16

b
17

b
18

b
19

011011

Unit 2

b
0

b
1

b
2

b
3

b
4

b
5

b
6

b
7

b
8

b
9

111011

Figure 5-2: Surrogate code point encoding for Unicode planes 1–16

Note that the two words (unit 1/high surrogate and unit 2/low surro-
gate) always appear together. The unit 1 value (with HO bits %110110) speci-
fies the upper 10 bits (b10..b19) of the Unicode scalar, and the unit 2 value
(with HO bits %110111) specifies the lower 10 bits (b0..b9) of the Unicode
scalar. Therefore, the value of bits b16 through b19 plus 1 specifies Unicode
plane 1 through 16. Bits b0 through b15 specify the Unicode scalar value
within the plane.

Note that surrogate codes appear only in the BMP. None of the other
multilingual planes contain surrogate codes. Bits b0 through b19, extracted
from the unit 1 and 2 values, always specify a Unicode scalar value (even if
the values fall in the range U+D800 through U+DFFF).

5.1.8  Glyphs, Characters, and Grapheme Clusters
Each Unicode code point has a unique name. For example, U+0045 has the
name “LATIN CAPITAL LETTER A.” Note that the symbol A is not the name
of the character. A is a glyph—a series of strokes (one horizontal and two
slanted strokes) that a device draws in order to represent the character.

There are many different glyphs for the single Unicode character
“LATIN CAPITAL LETTER A.” For example, a Times Roman letter A and
a Times Roman Italic letter A have different glyphs, but Unicode doesn’t
differentiate between them (or between A characters in any two different
fonts). The character “LATIN CAPITAL LETTER A” remains U+0045 regard-
less of the font or style you use to draw it.

As an interesting side note, if you have access to the Swift programming
language, you can print the name of any Unicode character using the fol-
lowing code:

import Foundation
let charToPrintName :String = "A" // Print name of this character

let unicodeName =
 String(charToPrintName).applyingTransform(
 StringTransform(rawValue: "Any-Name"),
 reverse: false
)! // Forced unwrapping is legit here because it always succeeds.

104 Chapter 5

print(unicodeName)

Output from program:
\N{LATIN CAPITAL LETTER A}

So, what exactly is a character in Unicode? Unicode scalars are Unicode
characters, but there’s a difference between what you’d normally call a char-
acter and the definition of a scalar. For example, is é one character or two?
Consider the following Swift code:

import Foundation
let eAccent :String = "e\u{301}"
print(eAccent)
print("eAccent.count=\(eAccent.count)")
print("eAccent.utf16.count=\(eAccent.utf16.count)")

 "\u{301}" is the Swift syntax for specifying a Unicode scalar value
within a string; in this particular case 301 is the hexadecimal code for the
combining acute accent character.

The first print statement:

print(eAccent)

prints the character (producing é on the output, as we expect).
The second print statement prints the number of characters Swift deter-

mines are present in the string:

print("eAccent.count=\(eAccent.count)")

This prints 1 to the standard output.
The third print statement prints the number of elements (UTF-16 ele-

ments4) in the string:

print("eAccent.utf16.count=\(eAccent.utf16.count)")

This prints 2 on the standard output, because the string holds two words of
UTF-16 data.

So, again, is this one character or two? Internally (assuming UTF-16
encoding), the computer sets aside 4 bytes of memory for this single charac-
ter (two 16-bit Unicode scalar values).5 On the screen, however, the output
takes only one character position and looks like a single character to the
user. When this character appears within a text editor and the cursor is
immediately to the right of the character, the user expects that pressing the
backspace key will delete it. From the user’s perspective, then, this is a single
character (as Swift reports when you print the count attribute of the string).

4. See “Unicode Encodings” on page 107 for a discussion of UTF-16 encoding.

5. Swift 5 switches the preferred encoding of strings from UTF-16 to UTF-8; see
https://swift.org/blog/utf8-string/.

Character Representation 105

In Unicode, however, a character is largely equivalent to a code point.
This is not what people normally think of as a character. In Unicode ter-
minology, a grapheme cluster is what people commonly call a character—it’s
a sequence of one or more Unicode code points that combine to form a
single language element (that is, a single character). So, when we talk about
characters with respect to symbols that an application displays to an end
user, we’re really talking about grapheme clusters.

Grapheme clusters can make life miserable for software developers.
Consider the following Swift code (a modification of the earlier example):

import Foundation
let eAccent :String = "e\u{301}\u{301}"
print(eAccent)
print("eAccent.count=\(eAccent.count)")
print("eAccent.utf16.count=\(eAccent.utf16.count)")

This code produces the same é and 1 outputs from the first two print
statements. The following produces é:

print(eAccent)

and this print statement produces 1.

print("eAccent.count=\(eAccent.count)")

However, the third print statement:

print("eAccent.utf16.count=\(eAccent.utf16.count)")

displays 3 rather than 2 (as in the original example).
There are definitely three Unicode scalar values in this string (U+0065,

U+0301, and U+0301). When printing, the operating system combines the e
and the two acute accent combining characters to form the single charac-
ter é and then outputs the character to the standard output device. Swift is
smart enough to know that this combination creates a single output symbol
on the display, so printing the result of the count attribute continues to out-
put 1. However, there are (undeniably) three Unicode code points in this
string, so printing utf16.count produces 3 on output.

5.1.9  Unicode Normals and Canonical Equivalence
The Unicode character é actually existed on personal computers long before
Unicode came along. It’s part of the original IBM PC character set and also
part of the Latin-1 character set (used, for example, on old DEC terminals).
As it turns out, Unicode uses the Latin-1 character set for the code points
in the range U+00A0 to U+00FF, and U+00E9 just happens to correspond to the é
character. Therefore, we can modify the earlier program as follows:

import Foundation
let eAccent :String = "\u{E9}"

106 Chapter 5

print(eAccent)
print("eAccent.count=\(eAccent.count)")
print("eAccent.utf16.count=\(eAccent.utf16.count)")

The outputs from this program are:

é
1
1

Ouch! Three different strings all producing é but containing a differ-
ent number of code points. Imagine how this complicates programming
strings containing Unicode characters. For example, if you have the follow-
ing three strings (Swift syntax) and you try to compare them, what will the
result be?

let eAccent1 :String = "\u{E9}"
let eAccent2 :String = "e\u{301}"
let eAccent3 :String = "e\u{301}\u{301}"

To the user, all three strings look the same on the screen. However,
they clearly contain different values. If you compare them to see if they are
equal, will the result be true or false?

Ultimately, that depends upon whose string libraries you’re using. Most
current string libraries would return false if you compared these strings
for equality. Interestingly enough, Swift will claim that eAccent1 is equal to
eAccent2, but it isn’t smart enough to report that eAccent1 is equal to eAccent3
or that eAccent2 is equal to eAccent3—despite the fact that it displays the
same symbol for all three strings. Many languages’ string libraries simply
report that all three strings are unequal.

The three Unicode/Swift strings "\{E9}", "e\{301}", and "e\{301}\{301}"
all produce the same output on the display; therefore, they are canonically
equivalent according to the Unicode standard. Some string libraries won’t
report any of these strings as being equivalent, however. Others, like the
one for Swift, will handle small canonical equivalences (such as "\{E9}" ==
"e\{301}") but not arbitrary sequences that should be equivalent.6

Unicode defines normal forms for Unicode strings. One aspect of nor-
mal form is to replace canonically equivalent sequences with an equivalent
sequence—for example, replace "e\u{309}" by "\u{E9}" or replace "\u{E9}"
by "e\u{309}" (usually, the shorter form is preferable). Some Unicode
sequences allow multiple combining characters. Often, the order of the
combining characters is irrelevant to producing the desired grapheme
cluster. However, it’s easier to compare two such strings if the combining
characters are in a specified order. Normalizing Unicode strings may also
produce results whose combining characters always appear in a fixed order
(thereby improving efficiency of string comparisons).

6. This is probably a good balance of correctness versus efficiency; it can be computationally
expensive to handle all the weird cases that won’t normally happen, such as "e\{301}\{301}".

Character Representation 107

5.1.10  Unicode Encodings
As of Unicode v2.0, the standard supports a 21-bit character space capable
of handling over a million characters (though most of the code points
remain reserved for future use). Rather than use a fixed-size 3-byte (or
worse, 4-byte) encoding to allow the larger character set, Unicode, Inc.,
allows different encodings—UTF-32, UTF-16, and UTF-8—each with its
own advantages and disadvantages.7

UTF-32 uses 32-bit integers to hold Unicode scalars. The advantage to
this scheme is that a 32-bit integer can represent every Unicode scalar value
(which requires only 21 bits). Programs that require random access to char-
acters in strings—without having to search for surrogate pairs—and other
constant-time operations are (mostly) possible with UTF-32. The obvious
drawback to UTF-32 is that each Unicode scalar value requires 4 bytes of
storage—twice that of the original Unicode definition and four times that
of ASCII characters. It may seem that using two or four times as much stor-
age (over ASCII and the original Unicode) is a small price to pay. After all,
modern machines have several orders of magnitude more storage than they
did when Unicode first appeared. However, that extra storage has a huge
impact on performance, because those additional bytes quickly consume
cache storage. Furthermore, modern string processing libraries often oper-
ate on character strings 8 bytes at a time (on 64-bit machines). With ASCII
characters, that means a given string function can process up to eight char-
acters concurrently; with UTF-32, that same string function can operate on
only two characters concurrently. As a result, the UTF-32 version will run
four times slower than the ASCII version. Ultimately, even Unicode scalar
values are insufficient to represent all Unicode characters (that is, many
Unicode characters require a sequence of Unicode scalars), so using UTF-
32 doesn’t solve the problem.

The second encoding format the Unicode supports is UTF-16. As
the name suggests, UTF-16 uses 16-bit (unsigned) integers to represent
Unicode values. To handle scalar values greater than 0xFFFF, UTF-16 uses
the surrogate pair scheme to represent values in the range 0x010000 to
0x10FFFF (see “Surrogate Code Points” on page 102). Because the vast
majority of useful characters fit into 16 bits, most UTF-16 characters require
only 2 bytes. For those rare cases where surrogates are necessary, UTF-16
requires 2 words (32 bits) to represent the character.

The last encoding, and unquestionably the most popular, is UTF-8.
The UTF-8 encoding is forward compatible from the ASCII character set.
In particular, all ASCII characters have a single-byte representation (their
original ASCII code, where the HO bit of the byte containing the character
contains a 0 bit). If the UTF-8 HO bit is 1, then UTF-8 requires between 1
and 3 additional bytes to represent the Unicode code point. Table 5-3 pro-
vides the UTF-8 encoding schema.

7. UTF stands for “Unicode Transformational Format.”

108 Chapter 5

Table 5-3: UTF Encoding

Bytes Bits for
code point

First code
point

Last code
point

Byte 1 Byte 2 Byte 3 Byte 4

1 7 U+00 U+7F 0xxxxxxx

2 11 U+80 U+7FF 110xxxxx 10xxxxxx

3 16 U+800 U+FFFF 1110xxxx 10xxxxxx 10xxxxxx

4 21 U+10000 U+10FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

The “xxx . . .” bits are the Unicode code point bits. For multibyte sequences,
byte 1 contains the HO bits, byte 2 contains the next HO bits (LO bits com-
pared to byte 1), and so on. For example, the 2-byte sequence (%11011111,
%10000001) corresponds to the Unicode scalar %0000_0111_1100_0001 (U+07C1).

UTF-8 encoding is probably the most common encoding in use. Most
web pages use it. Most C standard library string functions will operate on
UTF-8 text without modification (although some C standard library func-
tions can produce malformed UTF-8 strings if the programmer isn’t careful
with them).

Different languages and operating systems use different encodings
as their default. For example, macOS and Windows tend to use UTF-16
encoding, whereas most Unix systems use UTF-8. Some variants of Python
use UTF-32 as their native character format. By and large, though, most
programming languages use UTF-8 because they can continue to use older
ASCII-based character processing libraries to process UTF-8 characters.
Apple’s Swift is one of the first programming languages that attempts to do
Unicode right (though there is a huge performance hit for doing so).

5.1.11  Unicode Combining Characters
Although UTF-8 and UTF-16 encodings are much more compact than UTF-
32, the CPU overhead and algorithmic complexities of dealing with multi-
byte (or multiword) characters sets complicates their use, introducing bugs
and performance issues. Despite the issues of wasting memory (especially
in the cache), why not simply define characters as 32-bit entities and be
done with it? This seems like it would simplify string processing algorithms,
improving performance and reducing the likelihood of defects in the code.

The problem with this theory is that you cannot represent all pos-
sible grapheme clusters with only 21 bits (or even 32 bits) of storage. Many
grapheme clusters consist of several concatenated Unicode code points.
Here’s an example from Chris Eidhof and Ole Begemann’s Advanced Swift
(CreateSpace, 2017):

let chars: [Character] = [
 "\u{1ECD}\u{300}",
 "\u{F2}\u{323}",
 "\u{6F}\u{323}\u{300}",
 "\u{6F}\u{300}\u{323}"
]

Character Representation 109

Each of these Unicode grapheme clusters produces an identical charac-
ter: an ó with a dot underneath the character (this is a character from the
Yoruba character set). The character sequence (U+1ECD, U+300) is an o with a
dot under it followed by a combining acute. The character sequence (U+F2,
U+323) is an ó followed by a combining dot. The character sequence (U+6F,
U+323, U+300) is an o followed by a combining dot, followed by a combining
acute. Finally, the character sequence (U+6F, U+300, U+323) is an o followed by
a combining acute, followed by a combining dot. All four strings produce
the same output. Indeed, the Swift string comparisons treat all four strings
as equal:

print("\u{1ECD} + \u{300} = \u{1ECD}\u{300}")
print("\u{F2} + \u{323} = \u{F2}\u{323}")
print("\u{6F} + \u{323} + \u{300} = \u{6F}\u{323}\u{300}")
print("\u{6F} + \u{300} + \u{323} = \u{6F}\u{300}\u{323}")
print(chars[0] == chars[1]) // Outputs true
print(chars[0] == chars[2]) // Outputs true
print(chars[0] == chars[3]) // Outputs true
print(chars[1] == chars[2]) // Outputs true
print(chars[1] == chars[3]) // Outputs true
print(chars[2] == chars[3]) // Outputs true

Note that there is not a single Unicode scalar value that will produce
this character. You must combine at least two Unicode scalars (or as many
as three) to produce this grapheme cluster on the output device. Even if
you used UTF-32 encoding, it would still require two (32-bit) scalars to pro-
duce this particular output.

Emojis present another challenge that can’t be solved using UTF-32.
Consider the Unicode scalar U+1F471. This prints an emoji of a person
with blond hair. If we add a skin color modifier to this, we obtain (U+1F471,
U+1F3FF), which produces a person with a dark skin tone (and blond hair).
In both cases we have a single character displaying on the screen. The
first example uses a single Unicode scalar value, but the second example
requires two. There is no way to encode this with a single UTF-32 value.

The bottom line is that certain Unicode grapheme clusters will require
multiple scalars, no matter how many bits we assign to the scalar (it’s pos-
sible to combine 30 or 40 scalars into a single grapheme cluster, for exam-
ple). That means we’re stuck dealing with multiword sequences to represent
a single “character” regardless of how hard we try to avoid it. This is why
UTF-32 has never really taken off. It doesn’t solve the problem of random
access into a string of Unicode characters. If you’ve got to deal with normal-
izing and combining Unicode scalars, it’s more efficient to use UTF-8 or
UTF-16 encodings.

Again, most languages and operating systems today support Unicode in
one form or another (typically using UTF-8 or UTF-16 encoding). Despite
the obvious problems with dealing with multibyte character sets, modern
programs need to deal with Unicode strings rather than simple ASCII
strings. Swift, which is almost “pure Unicode,” doesn’t even offer much
in the way of standard ASCII character support.

110 Chapter 5

5.2  Character Strings
After integers, character strings are probably the most common type in
use in modern programs. In general, a character string is a sequence of char-
acters with two main attributes: a length and the character data.

Character strings may also possess other attributes, such as the maximum
length allowable for that particular variable or a reference count specifying how
many different string variables refer to the same character string. We’ll look
at these attributes and how programs can use them in this section, which
describes various string formats and some of the possible string operations.

5.2.1  Character String Formats
Different languages use different data structures to represent strings. Some
string formats use less memory, others allow faster processing, some are
more convenient to use, and still others provide additional functionality for
the programmer and operating system. To help you better understand the
reasoning behind the design of character strings, let’s look at some com-
mon string representations popularized by various high-level languages.

5.2.1.1  Zero-Terminated Strings

Without question, zero-terminated strings are the most common string repre-
sentation in use today, because this is the native string format for C, C++,
and several other languages. In addition, you’ll find zero-terminated strings
in programs written in languages that don’t have a specific native string for-
mat, such as assembly language.

A zero-terminated ASCII string is a sequence containing zero or more
8-bit character codes ending with a byte containing 0 (or, in the case of
UTF-16, a sequence containing zero or more 16-bit character codes and
ending with a 16-bit word containing 0). For example, in C/C++, the ASCII
string "abc" requires 4 bytes: 1 byte for each of the three characters a, b,
and c, and a 0 byte.

Zero-terminated strings have a few advantages over other string formats:

•	 Zero-terminated strings can represent strings of any practical length
with only one byte of overhead (2 bytes in UTF-16, 4 in UTF-32).

•	 Given the popularity of the C/C++ programming languages, high-
performance string processing libraries are available that work well
with zero-terminated strings.

•	 Zero-terminated strings are easy to implement. As far as the C and C++
languages are concerned, strings are just arrays of characters. That’s
probably why C’s designers chose this format in the first place—so they
wouldn’t have to clutter up the language with string operators.

•	 You can easily represent zero-terminated strings in any language able
to create an array of characters.

Character Representation 111

However, zero-terminated strings also have disadvantages that mean
they are not always the best choice for representing character string data:

•	 String functions that need to know the length of a string before work-
ing on the string data often aren’t very efficient when operating on
zero-terminated strings. The only reasonable way to compute the
length of a zero-terminated string is to scan the string from the begin-
ning to the end. The longer your strings are, the slower this function
runs, so the zero-terminated string format isn’t the best choice if you
need to process long strings.

•	 Although it’s a minor problem, you cannot easily represent the charac-
ter code 0 (such as the NUL character in ASCII and Unicode) with the
zero-terminated string format.

•	 Zero-terminated strings don’t contain any information that tells you
how long the string can grow beyond the terminating 0 byte. Therefore,
some string functions, like concatenation, can only extend the length
of an existing string variable and check for overflow if the caller explic-
itly passes the maximum length.

5.2.1.2  Length-Prefixed Strings

A second string format, length-prefixed strings, overcomes some of the prob-
lems with zero-terminated strings. Length-prefixed strings are common in
languages like Pascal; they generally consist of a single byte that specifies
the length of the string, followed by zero or more 8-bit character codes.
In a length-prefixed scheme, the string "abc" consists of 4 bytes: the length
byte ($03), followed by a, b, and c.

Length-prefixed strings solve two of the problems associated with zero-
terminated strings: they allow you to represent the NUL character, and
string operations are more efficient. Another advantage to length-prefixed
strings is that the length is usually located at position 0 in the string (if we
view the string as an array of characters), so the first character of the string
begins at index 1 in the array representation of the string. For many string
functions, having a 1-based index into the character data is much more con-
venient than a 0-based index (which zero-terminated strings use).

The principal drawback of length-prefixed strings that they are limited
to a maximum of 255 characters in length (assuming a 1-byte length pre-
fix). You can remove this limitation by using a 2- or 4-byte length value, but
doing so increases the amount of overhead data from 1 to 2 or 4 bytes.

5.2.1.3  Seven-Bit Strings

The 7-bit string format is an interesting option that works for 7-bit encod-
ings like ASCII. It uses the (normally unused) higher-order bit of the
characters in the string to indicate the end of the string. All but the last
character code in the string has its HO bit clear, and the last character in
the string has its HO bit set.

112 Chapter 5

This 7-bit string format has several disadvantages:

•	 You have to scan the entire string in order to determine the length
of the string.

•	 You cannot have zero-length strings.

•	 Few languages provide literal string constants for 7-bit strings.

•	 You’re limited to a maximum of 128 character codes, though this is
fine when you’re using plain ASCII.

However, a big advantage of 7-bit strings is that they don’t require any
overhead bytes to encode the length. Assembly language (using a macro to
create literal string constants) is probably the best language to use when
dealing with 7-bit strings. Because the benefit of 7-bit strings is that they’re
compact and assembly language programmers tend to worry most about
compactness, this is a good match. Here’s an HLA macro that converts a
literal string constant to a 7-bit string:

#macro sbs(s);

 // Grab all but the last character of the string:

 (@substr(s, 0, @length(s) − 1) +

 // Concatenate the last character with its HO bit set:

 char(uns8(char(@substr(s, @length(s) − 1, 1))) | $80))

#endmacro
 . . .
byte sbs("Hello World");

5.2.1.4  HLA Strings

As long as you’re not too concerned about a few extra bytes of overhead
per string, you can create a string format that combines the advantages
of both length-prefixed and zero-terminated strings without their respec-
tive disadvantages. The High-Level Assembly language has done this with
its native string format.8

The biggest drawback to the HLA character string format is the
amount of overhead required for each string: 9 bytes per string,9 which can
be significant, percentage-wise, if you’re in a memory-constrained environ-
ment and you process many small strings.

The HLA string format uses a 4-byte length prefix, allowing character
strings to be just over four billion characters long (obviously, this is far

8. Note that HLA is an assembly language, so it’s perfectly possible—and easy—to support
any reasonable string format. HLA’s native string format is what it uses for literal string con-
stants, and what most of the routines in the HLA standard library support.

9. Actually, because of memory alignment restrictions, there can be up to 12 bytes of over-
head, depending on the string.

Character Representation 113

more than any practical HLA application will use). HLA also appends a 0
byte to the character string data. The additional 4 bytes of overhead contain
the maximum legal length for that string. Having this extra field allows HLA
string functions to check for string overflow, if necessary. In memory,
HLA strings take the form shown in Figure 5-3.

Max length Length #0S t r i n g

Figure 5-3: HLA string format

The 4 bytes immediately before the first character of the string contain
the current string length. The 4 bytes preceding the current string length
contain the maximum string length. Immediately following the character
data is a 0 byte. Finally, HLA always ensures that the string data structure’s
length is a multiple of 4 bytes long (for performance reasons), so there may
be up to 3 additional bytes of padding at the end of the object in memory.
(Note that the string in Figure 5-3 requires only 1 byte of padding to
ensure that the data structure is a multiple of 4 bytes in length.)

HLA string variables are pointers that contain the byte address of the
first character in the string. To access the length fields, you load the value
of the string pointer into a 32-bit register, then access the Length field at
offset −4 from the base register and the MaxLength field at offset −8 from the
base register. Here’s an example:

static
 s :string := "Hello World";
 . . .
 mov(s, esi); // Move the address of 'H' in "Hello World"
 // into esi.
 mov([esi-4], ecx); // Puts length of string (11 for "Hello World")
 // into ECX.
 . . .
 mov(s, esi);
 cmp(eax, [esi-8]); // See if value in EAX exceeds the maximum
 // string length.
 ja StringOverflow;

As read-only objects, HLA strings are compatible with zero-terminated
strings. For example, if you have a function written in C that’s expecting
you to pass it a zero-terminated string, you can call that function and pass it
an HLA string variable, like this:

someCFunc(hlaStringVar);

The only catch is that the C function must not make any changes to the
string that would affect its length (because the C code won’t update the Length
field of the HLA string). Of course, you can always call a C strlen() function
upon returning to update the length field yourself, but generally, it’s best not to
pass HLA strings to a function that modifies zero-terminated strings.

114 Chapter 5

5.2.1.5  Descriptor-Based Strings

The string formats we’ve considered up to this point have kept the attri-
bute information (that is, the lengths and terminating bytes) for a string
in memory along with the character data. A slightly more flexible scheme
is to maintain such information in a record structure, known as a descriptor,
that also contains a pointer to the character data. Consider the following
Pascal/Delphi data structure:

type
 dString :record
 curLength :integer;
 strData :^char;
 end;

Note that this data structure does not hold the actual character data.
Instead, the strData pointer contains the address of the first character of
the string. The curLength field specifies the current length of the string. You
could add any other fields you like to this record, like a maximum length
field, though a maximum length isn’t usually necessary because most string
formats employing a descriptor are dynamic (as the next section will discuss).
Most string formats employing a descriptor just maintain the Length field.

An interesting attribute of a descriptor-based string system is that the
actual character data associated with a string could be part of a larger
string. Because there are no length or terminating bytes within the actual
character data, it’s possible to have the character data for two strings over-
lap (see Figure 5-4).

H e l l o W o r l d

11 5

Descriptor #1 Descriptor #2

Figure 5-4: Overlapping strings using descriptors

In this example, there are two strings—"Hello World" and "World"—that
overlap. This can save memory and make certain functions, like substring(),
very efficient. Of course, when strings overlap like this, you can’t modify the
string data because that could wipe out part of some other string.

5.2.1.6  Java Strings

Java uses a descriptor-based string form. The actual String data type (that
is, the structure/class that defines the internal representation of a Java
string) is opaque, which means you really aren’t supposed to know about or
mess with it. It’s a very bad idea to attempt to manipulate Java strings other
than via the Java String API, because the Java standard has changed their
internal representation on a couple of occasions.

Character Representation 115

For example, Java originally defined the String type as a descriptor with
four items: a pointer to an array of 16-bit (original) Unicode characters
(no extension beyond 16 bits), a count field, an offset field, and a hash code
field. The offset and count fields allowed efficient substring operations,
since all substrings into a larger string would share the same array of char-
acters. Unfortunately, this format produced memory leaks in some degen-
erate cases, so Java’s designers changed the format and eliminated these
fields. If you had code that used the offset and count fields (again, a bad
idea), your code was broken by this change.

Java also switched from the original Unicode 2-byte definition to UTF-
16 encoding once it became apparent that 16-bit characters were insuffi-
cient. However, after a bit of research into a wide variety of Java programs
on the internet, Oracle (Java’s owner) discovered that most programs use
only the Latin-1 character set (basically, ASCII). In Oracle’s own words:

Data from different applications suggests that strings are a major
component of Java heap usage and that most java.lang.String
objects contain only Latin-1 characters. Such characters require
only one byte of storage. As a result, half of the space in the inter-
nal character arrays of java.lang.String objects are not used. The
compact strings feature, introduced in Java SE 9, reduces the
memory footprint, and reduces garbage collection activity.

This change was largely transparent to Java users and their programs.
Oracle added a new field to the String descriptor to specify whether the
encoding was UTF-16 or Latin-1. Once again, if your programs depended
on the internal representation, they broke.

Always assume that Java Strings are proper Unicode strings (typi-
cally using UTF-16 encoding). Java does not try to hide the ugliness of
multiword characters. As a Java programmer, you must be aware of the
difference between the number of characters, code points, and grapheme
clusters in a string. Java provides functions—for example, String.length(),
String.codePointCount(), and BreakIterator.getCharacterInstance()—to com-
pute all these values for you, but your code must explicitly call them.

5.2.1.7  Swift Strings

Like Java, the Swift programming language uses Unicode characters in its
strings. Swift 4.x and earlier used a UTF-16 encoding, which is native to
macOS (on which Apple developed Swift); with Swift v5.0, Apple switched
to UTF-8 as the native encoding for Swift strings. As with Java, Swift’s String
type is opaque, so you shouldn’t attempt to mess with (or otherwise use) its
internal representation.

5.2.1.8  C# Strings

The C# programming language uses UTF-16 encoding for characters in its
strings. As with Java and Swift, C#’s string type is opaque and you shouldn’t
attempt to mess with (or otherwise use) its internal representation. That

116 Chapter 5

being said, the Microsoft documentation does claim that C# strings are an
array of (Unicode) characters.

5.2.1.9  Python Strings

The Python programming language originally used UCS-2 (original 16-bit
Unicode, BMP-only) encoding for strings. Then Python was modified to
support UTF-16 or UTF-32 encodings (the language was compiled in “nar-
row” or “wide” versions for 16- or 32-bit characters). Today, modern versions
of Python use a special string format that tracks the characters in strings
and stores them as ASCII, UTF-8, UTF-16, or UTF-32, based on the most
compact representation. You can’t really access the internal string represen-
tation directly within Python, so the caveats of opaque types aren’t relevant.

5.2.2  Types of Strings: Static, Pseudo-Dynamic, and Dynamic
Based on the various string formats covered thus far, we can now define
three string types according to when the system allocates storage for the
string. There are static, pseudo-dynamic, and dynamic strings.

5.2.2.1  Static Strings

Pure static strings are those whose maximum size a programmer chooses
when writing the program. Pascal strings and Delphi “short” strings fall
into this category. Arrays of characters that you use to hold zero-terminated
strings in C/C++ also fall into this category. Consider the following declara-
tion in Pascal:

(* Pascal static string example *)

var pascalString :string(255); // Max length will always be 255 characters.

And here’s an example in C/C++:

// C/C++ static string example:

char cString[256]; // Max length will always be 255 characters
 // (plus 0 byte).

While the program is running, there’s no way to increase the maximum
sizes of these static strings. Nor is there any way to reduce the storage they
will use; these string objects will consume 256 bytes at runtime, period.
One advantage to pure static strings is that the compiler can determine
their maximum length at compile time and implicitly pass this information
to a string function so it can test for bounds violations at runtime.

5.2.2.2  Pseudo-Dynamic Strings

A pseudo-dynamic string is one whose length the system sets at runtime by
calling a memory management function like malloc() to allocate storage for
it. However, once the system allocates storage for the string, the maximum

Character Representation 117

length of the string is fixed. HLA strings generally fall into this category.10
An HLA programmer typically calls the stralloc() function to allocate stor-
age for a string variable, after which that particular string object has a fixed
length that cannot change.11

5.2.2.3  Dynamic Strings

Dynamic string systems, which typically use a descriptor-based format,
automatically allocate sufficient storage for a string object whenever you
create a new string or otherwise do something that affects an existing
string. Operations like string assignment and substring are relatively trivial
in dynamic string systems—generally they copy only the string descrip-
tor data, so these operations are fast. However, as noted in the section
“Descriptor-Based Strings” on page 114, when using strings this way, you
cannot store data back into a string object, because it could modify data
that is part of other string objects in the system.

The solution to this problem is to use the copy-on-write technique.
Whenever a string function needs to change characters in a dynamic string,
the function first makes a copy of the string and then makes the necessary
modifications to that copy. Research suggests that copy-on-write seman-
tics can improve the performance of many typical applications, because
operations like string assignment and substring extraction (which is just a
partial string assignment) are far more common than the modification of
character data within strings. The only drawback to this approach is that
after several modifications to string data in memory, there may be sections
of the string heap area that contain character data that’s no longer in use.
To avoid a memory leak, dynamic string systems employing copy on write usu-
ally provide garbage collection code, which scans the string heap area looking
for stale character data in order to recover that memory for other purposes.
Unfortunately, depending on the algorithms in use, garbage collection can
be quite slow.

5.2.3  Reference Counting for Strings
Consider the case where you have two string descriptors (or pointers) point-
ing at the same string data in memory. Clearly, you can’t deallocate (that
is, reuse for a different purpose) the storage associated with one pointer
while the program is still using the other pointer to access the same data.
One common solution is to make the programmer responsible for keeping
track of such details. Unfortunately, as applications become more complex,
this approach often leads to dangling pointers, memory leaks, and other
pointer-related problems in the software. A better solution is to allow the

10. Though, being assembly language, it’s possible to create static strings and pure dynamic
strings in HLA as well.

11. Actually, you could call strrealloc() to change the size of an HLA string, but dynamic
string systems generally do this automatically. Existing HLA string functions will not do this
for you if they detect a string overflow.

118 Chapter 5

programmer to deallocate the storage for the character data in the string
and to have the actual deallocation process hold off until the programmer
releases the last pointer referencing that data. To accomplish this, a string
system can use reference counters, which track the pointers and their asso-
ciated data.

A reference counter is an integer that counts the number of pointers that
reference a string’s character data in memory. Every time you assign the
address of the string to some pointer, you increment the reference coun-
ter by 1. Likewise, whenever you wish to deallocate the storage associated
with the character data for the string, you decrement the reference counter.
Deallocation of the storage for the character data doesn’t happen until the
reference counter decrements to 0.

Reference counting works great when the language handles the details
of string assignment automatically for you. If you try to implement reference
counting manually, you must be sure to always increment the reference coun-
ter when you assign a string pointer to some other pointer variable. The
best way to do this is to never assign pointers directly, but rather to handle
all string assignments via some function (or macro) call that updates the
reference counters in addition to copying the pointer data. If your code
fails to update the reference counter properly, you’ll wind up with dangling
pointers or memory leaks.

5.2.4  Delphi Strings
Although Delphi provides a “short string” format that is compatible with the
length-prefixed strings in earlier versions of Delphi, later versions of Delphi
(4.0 and later) use dynamic strings. While this string format is unpublished
(and, therefore, subject to change), indications are that Delphi’s string
format is very similar to HLA’s. Delphi uses a zero-terminated sequence
of characters with a leading string length and a reference counter (rather
than a maximum length as HLA uses). Figure 5-5 shows the layout of a
Delphi string in memory.

Ref count Length #0S t r i n g

Figure 5-5: Delphi string data format

As with HLA, Delphi string variables are pointers that point to the
first character of the actual string data. To access the length and reference
counter fields, the Delphi string routines use a negative offset of − 4 and −8
from the character data’s base address. However, because this string format
is not published, applications should never access the length or reference
counter fields directly. Delphi provides a length function that extracts the
string length for you, and there’s really no need for your applications to
access the reference counter field because the Delphi string functions main-
tain it automatically.

Character Representation 119

5.2.5  Custom String Formats
Typically, you’ll use the string format your language provides, unless you
have special requirements. If that’s the case, you’ll find that most languages
provide user-defined data-structuring capabilities that enable you to create
your own custom string formats.

Note that the language will probably insist on a single string format for
literal string constants. However, you can usually write a short conversion
function that will translate the literal strings in your language to whatever
format you choose.

5.3  Character Set Data Types
Like strings, character set data types (or just character sets) are a composite
data type built upon the character data type. A character set is a mathemati-
cal set of characters. Membership in a set is a binary relation: a character is
either in the set or not, and you can’t have multiple copies of the same char-
acter in a character set. Furthermore, the concept of sequence (whether one
character comes before another, as in a string) is foreign to a character set.
If two characters are members of a set, their order in the set is irrelevant.

Table 5-4 lists some common operations that applications perform on
character sets.

Table 5-4: Common Character Set Functions

Function/operator Description

Membership (in) Checks to see if a character is a member of a character set
(returns true/false).

Intersection Returns the intersection of two character sets (that is, the set of
characters that are members of both sets).

Union Returns the union of two character sets (that is, all the characters
that are members of either set or both sets).

Difference Returns the difference of two sets (that is, those characters in one
set that are not in the other).

Extraction Extracts a single character from a set.

Subset Returns true if one character set is a subset of another.

Proper subset Returns true if one character set is a proper subset of another.

Superset Returns true if one character set is a superset of another.

Proper superset Returns true if one character set is a proper superset of another.

Equality Returns true if one character set is equal to another.

Inequality Returns true if one character set is not equal to another.

5.3.1  Powerset Representation of Character Sets
There are many different ways to represent character sets. Several lan-
guages implement them using an array of Boolean values (one Boolean
value for each possible character code). Each Boolean value determines

120 Chapter 5

whether its corresponding character is (true) or is not (false) a member of
the character set. To conserve memory, most character set implementations
allocate only a single bit for each character in the set; therefore, they con-
sume 16 bytes (128 bits) of memory when supporting 128 characters, or 32
bytes (256 bits) when supporting up to 256 possible characters. This repre-
sentation of a character set is known as a powerset.

The HLA language uses an array of 16 bytes to represent the 128 possi-
ble ASCII characters, which is organized in memory as shown in Figure 5-6.

. . .

7 6 5 4 3 2 1127 126 125 124 123 122 121 120 0

Byte 0Byte 15

Figure 5-6: HLA character set representation

Bit 0 of byte 0 corresponds to ASCII code 0 (the NUL character). If this
bit is 1, then the character set contains the NUL character; if this bit is 0,
then the character set does not contain the NUL character. Likewise, bit 1
of byte 8 corresponds to ASCII code 65, an uppercase A. Bit 65 will contain
a 1 if A is a current member of the character set, and 0 if it is not.

Pascal (for example, Delphi) uses a similar scheme to represent char-
acter sets. Delphi allows up to 256 characters in a character set, so Delphi
character sets consume 256 bits (or 32 bytes) of memory.

While there are other ways to implement character sets, this bit vector
(array) implementation makes it very easy to perform set operations like
union, intersection, difference comparison, and membership tests.

5.3.2  List Representation of Character Sets
Sometimes a powerset bitmap just isn’t the right representation for a char-
acter set. For example, if your sets are always very small (no more than
three or four members), using 16 or 32 bytes to represent each of them
can be overkill. In this case, you’d be better off using a character string to
represent a list of characters.12 If you rarely have more than a few charac-
ters in a set, scanning through a string to locate a particular character is
probably efficient enough for most applications. Likewise, if your character
set has a large number of possible characters, then the powerset representa-
tion could become huge (for example, implementing the original Unicode
UCS-2 character set as a powerset would require 8,192 bytes of memory,
even if there was only a single character in the set). In this situation, a list or
character string representation could be more appropriate than a powerset,
as you don’t need to reserve memory for all possible members of the set
(only those that are actually present).

12. Though it is up to you to ensure that the character string maintains set semantics (that is,
you never allow duplicate characters in the string).

Character Representation 121

5.4  Designing Your Own Character Set
Very little is sacred about the ASCII, EBCDIC, and Unicode character sets.
Their primary advantage is that they are international standards to which
many systems adhere. If you stick with one of these standards, chances are
good you’ll be able to exchange information with other people, which is
what these codes were designed for.

However, they were not designed to make various character computa-
tions easy. ASCII and EBCDIC were developed with now-antiquated hard-
ware in mind—mechanical teletypewriters’ keyboards and punched-card
systems, respectively. Given that such equipment is found mainly in muse-
ums today, the layout of the codes in these character sets has almost no
benefit in modern computer systems. If we could design our own character
sets today, they’d be considerably different from ASCII or EBCDIC. They’d
probably be based on modern keyboards (so they’d include codes for com-
mon keys, like left arrow, right arrow, page up, and page down). They’d
also be laid out to make various common computations a whole lot easier.

Although the ASCII and EBCDIC character sets are not going away
any time soon, there’s nothing stopping you from defining your own
application-specific character set. Of course, such a set is, well, application-
specific, and you won’t be able to share text files containing characters
encoded in your custom character set with applications that are ignorant
of your private encoding. But it’s fairly easy to translate between different
character sets using a lookup table, so you can convert between your appli-
cation’s internal character set and an external character set (like ASCII)
when performing I/O operations. Assuming you pick a reasonable encod-
ing that makes your programs more efficient overall, the loss of efficiency
during I/O can be worthwhile. But how do you choose an encoding?

The first question you have to ask yourself is, “How many characters
do I want to support in my character set?” Obviously, the number of charac-
ters you choose will directly affect the size of your character data. An easy
choice is 256 possible characters, because bytes are the most common prim-
itive data type that software uses to represent character data. Keep in mind,
however, that if you don’t really need 256 characters, you probably shouldn’t
try to define that many in your character set. For example, if you can get
by with 128, or even 64, characters in your custom character set, then “text
files” you create with it will compress better. Likewise, data transmissions
using it will be faster if you only have to transmit 6 or 7 bits for each charac-
ter instead of 8. If you need more than 256 characters, you’ll have to weigh
the advantages and disadvantages of using multiple code pages, double-
byte character sets, or 16-bit characters. And keep in mind that Unicode
provides support for user-defined characters. So, if you need more than
256 characters in your character set, you might consider inserting it into
Unicode to remain “somewhat standard” with the rest of the world.

In this section, we’ll define a character set containing 128 characters
using an 8-bit byte. For the most part, we’ll simply rearrange the codes in
the ASCII character set to make them more convenient for several calcula-
tions, and we’ll rename a few of the control codes so they make sense on

122 Chapter 5

modern systems instead of the old mainframes and teletypes for which they
were created. We’ll also add a few new characters beyond those defined by
the ASCII standard. Again, the main purpose of this exercise is to make
various computations more efficient, not create new characters. We’ll call
this the HyCode character set.

N O T E 	 This point bears repeating: the use of HyCode in this chapter is not an attempt to cre-
ate some new character set standard. It’s simply a demonstration of how you can cre-
ate a custom, application-specific character set to improve your programs.

5.4.1  Designing an Efficient Character Set
We should think about several things when designing a new character set.
For example, do we need to be able to represent strings of characters using
an existing string format? This can influence the encoding of our strings—
if you want to use function libraries that operate on zero-terminated
strings, then you need to reserve encoding 0 in your custom character
set for use as an end-of-string marker. Keep in mind, however, that a fair
number of string functions won’t work with your new character set, no
matter what you do. Functions like stricmp() work only if you use the same
representation for alphabetic characters as ASCII (or some other common
character set). Therefore, you shouldn’t feel hampered by the requirements
of some particular string representation, because you’re going to have to
write many of your own string functions to process your custom characters
anyway. The HyCode character set doesn’t reserve code 0 for an end-of-
string marker, and that’s okay because zero-terminated strings are not very
efficient.

If you look at programs that use character functions, you’ll see that cer-
tain functions occur frequently, such as:

•	 Check a character to see if it is a digit.

•	 Convert a digit character to its numeric equivalent.

•	 Convert a numeric digit to its character equivalent.

•	 Check a character to see if it is alphabetic.

•	 Check a character to see if it is a lowercase character.

•	 Check a character to see if it is an uppercase character.

•	 Compare two characters (or strings) using a case-insensitive comparison.

•	 Sort a set of alphabetic strings (case-sensitive and case-insensitive sorting).

•	 Check a character to see if it is alphanumeric.

•	 Check a character to see if it is legal in an identifier.

•	 Check a character to see if it is a common arithmetic or logical operator.

•	 Check a character to see if it is a bracketing character (that is, one of
(,), [,], {, }, <, or >).

•	 Check a character to see if it is a punctuation character.

Character Representation 123

•	 Check a character to see if it is a whitespace character (such as a space,
tab, or newline).

•	 Check a character to see if it is a cursor control character.

•	 Check a character to see if it is a scroll control key (such as PgUp, PgDn,
home, and end).

•	 Check a character to see if it is a function key.

We’ll design the HyCode character set to make these types of operations
as efficient and easy as possible. One huge improvement we can make over
the ASCII character set is to assign contiguous character codes to characters
belonging to the same type, such as alphabetic characters and control char-
acters, so we can do any of the preceding tests by using a pair of compari-
sons. For example, it would be nice if we could determine that a particular
character is some sort of punctuation mark by comparing against two values
that represent upper and lower bounds of the entire range of such charac-
ters, which we can’t do in ASCII because the punctuation marks are spread
throughout the character set. While it’s not possible to satisfy every conceiv-
able range comparison this way, we can design our character set to accommo-
date the most common tests with as few comparisons as possible.

5.4.2  Grouping the Character Codes for Numeric Digits
We can achieve the first three functions in the previous list by reserving the
character codes 0 through 9 for the characters 0 through 9. First, by using
a single unsigned comparison to check if a character code is less than or
equal to 9, we can see if a character is a digit. Next, converting between
characters and their numeric representations is trivial, because the charac-
ter code and the numeric representation are one and the same.

5.4.3  Grouping Alphabetic Characters
The ASCII character set, though nowhere near as bad as EBCDIC, just isn’t
well designed for dealing with alphabetic character tests and operations.
Here are some problems with ASCII that we’ll solve with HyCode:

•	 The alphabetic characters lie in two disjoint ranges. Tests for an alpha-
betic character require four comparisons.

•	 The lowercase characters have ASCII codes that are greater than the
uppercase characters. If we’re going to do a case-sensitive comparison,
it’s more intuitive to treat lowercase characters as being less than upper-
case characters.

•	 All lowercase characters have a greater value than any individual upper-
case character. This leads to counterintuitive results, such as a being
greater than B.

HyCode solves these problems in a couple of interesting ways. First,
HyCode uses encodings $4C through $7F to represent the 52 alphabetic
characters. Because HyCode uses only 128 character codes ($00..$7F), the

124 Chapter 5

alphabetic codes consume the last 52 character codes. This means that we
can test a character to see if it is alphabetic by comparing whether the code
is greater than or equal to $4C. In a high-level language, you’d write the
comparison like this:

if(c >= 76) . . .

Or, if your compiler supports the HyCode character set, like this:

if(c >= 'a') . . .

In assembly language, you could use a pair of instructions like the
following:

 cmp(al, 76);
 jnae NotAlphabetic;

 // Execute these statements if it's alphabetic

NotAlphabetic:

HyCode interleaves the lowercase and uppercase characters (that is, the
sequential encodings are for the characters a, A, b, B, c, C, and so on). This
makes sorting and comparing strings very easy, regardless of whether you’re
doing a case-sensitive or case-insensitive search. The interleaving uses the
LO bit of the character code to determine whether the character code is
lowercase (LO bit is 0) or uppercase (LO bit is 1). HyCode uses the follow-
ing encodings for alphabetic characters:

a:76, A:77, b:78, B:79, c:80, C:81, . . . y:124, Y:125, z:126, Z:127

Checking for an uppercase or lowercase alphabetic using HyCode is
more work than checking whether a character is alphabetic, but in assembly
it’s still less work than the equivalent ASCII comparison. To test a character
to see if it’s a member of a single case, you need two comparisons—first to
see if it’s alphabetic, then to determine its case. In C/C++ you can use state-
ments like the following:

if((c >= 76) && (c & 1))
{
 // execute this code if it's an uppercase character
}

if((c >= 76) && !(c & 1))
{
 // execute this code if it's a lowercase character
}

Character Representation 125

The subexpression (c & 1) evaluates true (1) if the LO bit of c is 1,
meaning we have an uppercase character if c is alphabetic. Likewise, !(c &
1) evaluates true if the LO bit of c is 0, meaning we have a lowercase charac-
ter. If you’re working in 80x86 assembly language, you can test a character
to see if it’s uppercase or lowercase by using three machine instructions:

// Note: ROR(1, AL) maps lowercase to the range $26..$3F (38..63)
// and uppercase to $A6..$BF (166..191). Note that all other characters
// get mapped to smaller values within these ranges.

 ror(1, al);
 cmp(al, $26);
 jnae NotLower; // Note: must be an unsigned branch!

 // Code that deals with a lowercase character.

NotLower:

// For uppercase, note that the ROR creates codes in the range $A8..$BF which
// are negative (8-bit) values. They also happen to be the *most* negative
// numbers that ROR will produce from the HyCode character set.

 ror(1, al);
 cmp(al, $a6);
 jge NotUpper; // Note: must be a signed branch!

 // Code that deals with an uppercase character.

NotUpper:

Very few languages provide the equivalent of an ror() operation,
and only a few allow you to (easily) treat character values as signed and
unsigned within the same code sequence. Therefore, this sequence is prob-
ably limited to assembly language programs.

5.4.4  Comparing Alphabetic Characters
The HyCode grouping of alphabetic characters means that lexicographi-
cal ordering (“dictionary ordering”) is almost free. Sorting your strings
by comparing the HyCode character values gives you lexicographical
order, because HyCode defines the following relations on the alphabetic
characters:

a < A < b < B < c < C < d < D < . . . < w < W < x < X < y < Y < z < Z

This is exactly the relationship you want for lexicographical ordering,
and it’s also the one most people would intuitively expect. To do a case-
insensitive comparison, you simply mask out the LO bits (or force them
both to 1) of the alphabetic characters.

126 Chapter 5

To see the benefit of the HyCode character set when doing case-insensi-
tive comparisons, let’s first take a look at what the standard case-insensitive
character comparison would look like in C/C++ for two ASCII characters:

if(toupper(c) == toupper(d))
{
 // do code that handles c==d using a case-insensitive comparison.
}

This code doesn’t look too bad, but consider what the toupper() func-
tion (or, usually, macro) expands to:13

#define toupper(ch) ((ch >= 'a' && ch <= 'z') ? ch & 0x5f : ch)

With this macro, you wind up with the following once the C preproces-
sor expands the previous if statement:

if
(
 ((c >= 'a' && c <= 'z') ? c & 0x5f : c)
 == ((d >= 'a' && d <= 'z') ? d & 0x5f : d)
)
{
 // do code that handles c==d using a case-insensitive comparison.
}

This expands to 80x86 code similar to this:

 // assume c is in cl and d is in dl.

 cmp(cl, 'a'); // See if c is in the range 'a'..'z'
 jb NotLower;
 cmp(cl, 'z');
 ja NotLower;
 and($5f, cl); // Convert lowercase char in cl to uppercase.
NotLower:

 cmp(dl, 'a'); // See if d is in the range 'a'..'z'
 jb NotLower2;
 cmp(dl, 'z');
 ja NotLower2;
 and($5f, dl); // Convert lowercase char in dl to uppercase.
NotLower2:

 cmp(cl, dl); // Compare the (now uppercase if alphabetic)
 // chars.
 jne NotEqual; // Skip the code that handles c==d if they're
 // not equal.

13. Actually, it’s worse than this because most C standard libraries use lookup tables to map
ranges of characters, but we’ll ignore that issue here.

Character Representation 127

 // do code that handles c==d using a case-insensitive comparison.
NotEqual:

In HyCode, case-insensitive comparisons are much simpler. Here’s what
the HLA assembly code would look like:

// Check to see if CL is alphabetic. No need to check DL as the comparison
// will always fail if DL is nonalphabetic.

 cmp(cl, 76); // If CL < 76 ('a') then it's not alphabetic
 jb TestEqual; // and there is no way the two chars are equal
 // (even ignoring case).

 or(1, cl); // CL is alpha, force it to uppercase.
 or(1, dl); // DL may or may not be alpha. Force to
 // uppercase if it is.
TestEqual:
 cmp(cl, dl); // Compare the uppercase versions of the chars.
 jne NotEqual; // Bail out if they're not equal.

TheyreEqual:
 // do code that handles c==d using a case-insensitive comparison.

NotEqual:

As you can see, the HyCode sequence uses half the instructions for a
case-insensitive comparison of two characters.

5.4.5  Grouping Other Characters
Because alphabetic characters are at one end of the character code range
and numeric characters are at the other, it takes two comparisons to check
a character to see if it’s alphanumeric (which is still better than the four
comparisons necessary in ASCII). Here’s the Pascal/Delphi code you’d use
to see if a character is alphanumeric:

if(ch < chr(10) or ch >= chr(76)) then . . .

Several programs (beyond compilers) need to efficiently process strings
of characters that represent program identifiers. Most languages allow
alphanumeric characters in identifiers, and, as you just saw, we can check
a character to see if it’s alphanumeric using only two comparisons.

Many languages also allow underscores within identifiers, and some
languages, such as MASM, allow other characters like the “at” character (@)
and dollar sign ($) to appear within identifiers. Therefore, by assigning the
underscore character the value 75, and by assigning the $ and @ characters
the respective codes 73 and 74, we can still test for an identifier character
using only two comparisons.

For similar reasons, HyCode groups together the cursor control keys,
the whitespace characters, the bracketing characters (parentheses, brack-
ets, braces, and angle brackets), the arithmetic operators, the punctuation

128 Chapter 5

characters, and so on. Table 5-5 lists the complete HyCode character set.
If you study the numeric codes assigned to each character, you’ll see that
they allow for efficient computation of most of the character operations
described earlier.

Table 5-5: The HyCode Character Set

Binary Hex Decimal Character Binary Hex Decimal Character

0000_0000 00 0 0 0001_1110 1E 30 End
0000_0001 01 1 1 0001_1111 1F 31 Home
0000_0010 02 2 2 0010_0000 20 32 PgDn
0000_0011 03 3 3 0010_0001 21 33 PgUp
0000_0100 04 4 4 0010_0010 22 34 Left
0000_0101 05 5 5 0010_0011 23 35 Right
0000_0110 06 6 6 0010_0100 24 36 Up
0000_0111 07 7 7 0010_0101 25 37 Down/

linefeed
0000_1000 08 8 8 0010_0110 26 38 Nonbreaking

space
0000_1001 09 9 9 0010_0111 27 39 Paragraph
0000_1010 0A 10 Keypad 0010_1000 28 40 Carriage

return
0000_1011 0B 11 Cursor 0010_1001 29 41 Newline/

enter
0000_1100 0C 12 Function 0010_1010 2A 42 Tab
0000_1101 0D 13 Alt 0010_1011 2B 43 Space
0000_1110 0E 14 Control 0010_1100 2C 44 (

0000_1111 0F 15 Command 0010_1101 2D 45)

0001_0000 10 16 Len 0010_1110 2E 46 [

0001_0001 11 17 Len128 0010_1111 2F 47]

0001_0010 12 18 Bin128 0011_0000 30 48 {

0001_0011 13 19 Eos 0011_0001 31 49 }

0001_0100 14 20 Eof 0011_0010 32 50 <

0001_0101 15 21 Sentinel 0011_0011 33 51 >

0001_0110 16 22 Break/
interrupt

0011_0100 34 52 =

0001_0111 17 23 Escape/
cancel

0011_0101 35 53 ^

0001_1000 18 24 Pause 0011_0110 36 54 |

0001_1001 19 25 Bell 0011_0111 37 55 &

0001_1010 1A 26 Back tab 0011_1000 38 56 -

0001_1011 1B 27 Backspace 0011_1001 39 57 +

(continued)

Character Representation 129

Table 5-5: The HyCode Character Set (continued)
Binary Hex Decimal Character Binary Hex Decimal Character

0001_1100 1C 28 Delete
0001_1101 1D 29 Insert
0011_1010 3A 58 * 0101_1101 5D 93 I

0011_1011 3B 59 / 0101_1110 5E 94 j

0011_1100 3C 60 % 0101_1111 5F 95 J

0011_1101 3D 61 ~ 0110_0000 60 96 k

0011_1110 3E 62 ! 0110_0001 61 97 K

0011_1111 3F 63 ? 0110_0010 62 98 l

0100_0000 40 64 , 0110_0011 63 99 L

0100_0001 41 65 . 0110_0100 64 100 m

0100_0010 42 66 : 0110_0101 65 101 M

0100_0011 43 67 ; 0110_0110 66 102 n

0100_0100 44 68 " 0110_0111 67 103 N

0100_0101 45 69 ' 0110_1000 68 104 o

0100_0110 46 70 ` 0110_1001 69 105 O

0100_0111 47 71 \ 0110_1010 6A 106 p

0100_1000 48 72 # 0110_1011 6B 107 P

0100_1001 49 73 $ 0110_1100 6C 108 q

0100_1010 4A 74 @ 0110_1101 6D 109 Q

0100_1011 4B 75 _ 0110_1110 6E 110 r

0100_1100 4C 76 a 0110_1111 6F 111 R

0100_1101 4D 77 A 0111_0000 70 112 s

0100_1110 4E 78 b 0111_0001 71 113 S

0100_1111 4F 79 B 0111_0010 72 114 t

0101_0000 50 80 c 0111_0011 73 115 T

0101_0001 51 81 C 0111_0100 74 116 u

0101_0010 52 82 d 0111_0101 75 117 U

0101_0011 53 83 D 0111_0110 76 118 v

0101_0100 54 84 e 0111_0111 77 119 V

0101_0101 55 85 E 0111_1000 78 120 w

0101_0110 56 86 f 0111_1001 79 121 W

0101_0111 57 87 F 0111_1010 7A 122 x

0101_1000 58 88 g 0111_1011 7B 123 X

0101_1001 59 89 G 0111_1100 7C 124 y

0101_1010 5A 90 h 0111_1101 7D 125 Y

0101_1011 5B 91 H 0111_1110 7E 126 z

0101_1100 5C 92 i 0111_1111 7F 127 Z

130 Chapter 5

5.5  For More Information
Hyde, Randall. “HLA Standard Library Reference Manual.” n.d.

http://www.plantation-productions.com/Webster/HighLevelAsm/HLADoc/ or
https://bit.ly/2W5G1or.

IBM. “ASCII and EBCDIC Character Sets.” n.d. https://ibm.co/33aPn3t.

Unicode, Inc. “Unicode Technical Site.” Last updated March 4, 2020.
https://www.unicode.org/.

https://bit.ly/2W5G1or
https://ibm.co/33aPn3t

6
M E M O R Y O R G A N I Z A T I O N

A N D A C C E S S

This chapter describes the basic com-
ponents of a computer system: the CPU,

memory, I/O, and the bus that connects
them. We’ll begin by discussing bus organiza-

tion and memory organization. These two hardware
components may have as large a performance impact
on your software as the CPU’s speed. Understanding memory performance
characteristics, data locality, and cache operation can help you design soft-
ware that runs as fast as possible.

6.1  The Basic System Components
The basic operational design of a computer system is called its architecture.
John von Neumann, a pioneer in computer design, is credited with the
principal architecture in use today. For example, the 80x86 family uses the
von Neumann architecture (VNA). A typical VNA has three major components:
the central processing unit (CPU), memory, and input/output (I/O), as shown in
Figure 6-1.

132 Chapter 6

CPU

Memory

I/O devices

Figure 6-1: Typical von Neumann machine

In VNA machines, like the 80x86 systems, all computations occur within
the CPU. Data and machine instructions reside in memory until the CPU
requires them, at which point the system transfers the data into the CPU. To
the CPU, most I/O devices look like memory; the major difference between
them is that I/O devices are generally located in the outside world, whereas
memory is located within the same machine.

6.1.1  The System Bus
The system bus connects the various components of a VNA machine. A bus is
a collection of wires on which electrical signals pass between system compo-
nents. Most CPUs have three major buses: the data bus, the address bus, and
the control bus. These buses vary from processor to processor, but each bus
carries comparable information on most CPUs. For example, the data buses
on the Pentium and 80386 have different implementations, but both vari-
ants carry data between the processor, I/O, and memory.

6.1.1.1  The Data Bus

CPUs use the data bus to shuttle data between the various components in
a computer system. The size of this bus varies widely among CPUs. Indeed,
bus size (or width) is one of the main attributes that defines the “size” of
the processor.

Most modern, general-purpose CPUs (such as those in PCs) employ a
32-bit-wide or, more commonly, 64-bit-wide data bus. Some processors use
8-bit or 16-bit data buses, and there may well be some CPUs with 128-bit
data buses by the time you read this.

You’ll often hear the terms 8-, 16-, 32-, or 64-bit processor. Processor size
is determined by whichever value is smaller: the number of data lines on

Memory Organization and Access 133

the processor or the size of the largest general-purpose integer register.
For example, older Intel 80x86 CPUs all have 64-bit buses but only 32-bit
general-purpose integer registers, so they’re classified as 32-bit processors.
The AMD (and newer Intel) x86-64 processors support 64-bit integer regis-
ters and a 64-bit bus, so they’re 64-bit processors.

Although the 80x86 family members with 8-, 16-, 32-, and 64-bit data
buses can process data blocks up to the bit width of the bus, they can also
access smaller memory units of 8, 16, or 32 bits. Therefore, anything you
can do with a small data bus can be done with a larger data bus as well; the
larger data bus, however, may access memory faster and can access larger
chunks of data in one memory operation. You’ll read about the exact
nature of these memory accesses a little later in this chapter.

6.1.1.2  The Address Bus

The data bus on an 80x86 family processor transfers information between
a particular memory location or I/O device and the CPU. Which memory
location or I/O device is where the address bus comes in. The system
designer assigns each memory location and I/O device a unique memory
address. When the software wants to access a particular memory location
or I/O device, it places the corresponding address on the address bus.
Circuitry within the device checks the address and, if it matches, transfers
data. All other memory locations ignore the request on the address bus.

With a single address bus line, a processor can access exactly two
unique addresses: 0 and 1. With n address lines, the processor can access
2n unique addresses (because there are 2n unique values in an n-bit binary
number). The number of bits on the address bus determines the maximum
number of addressable memory and I/O locations. Early 80x86 processors,
for example, provided only 20 lines on the address bus. Therefore, they
could access only up to 1,048,576 (or 220) memory locations. Larger address
buses can access more memory (see Table 6-1).

Table 6-1: 80x86 Addressing Capabilities

Processor Address bus size Maximum addressable memory

8088, 8086, 80186, 80188 20 1,048,576 (1MB)

80286, 80386sx 24 16,777,216 (16MB)

80386dx 32 4,294,976,296 (4GB)

80486, Pentium 32 4,294,976,296 (4GB)

Pentium Pro, II, III, IV 36 68,719,476,736 (64GB)

Core, i3, i5, i7, i9 ≥ 40 ≥1,099,511,627,776 (≥1TB)

Newer processors will support larger address buses. Many other proces-
sors (such as ARM and IA-64) already provide much larger addresses buses
and, in fact, support addresses up to 64 bits in the software.

134 Chapter 6

A 64-bit address range is truly infinite as far as memory is concerned.
No one will ever put 264 bytes of memory into a computer system and feel
that they need more. Of course, people have made claims like this in the
past. A few years ago, no one ever thought a computer would need 1GB
of memory, yet computers with 64GB of memory (or more) are very com-
mon today. However, 264 is effectively infinity for one simple reason—it’s
physically impossible to build that much memory based on estimates of
the current size (about 286 different elementary particles) of the universe.
Unless you can attach 1 byte of memory to every elementary particle on the
planet, you won’t even come close to approaching 264 bytes of memory on a
given computer system. Then again, maybe we really will use whole planets
as computer systems one day, as Douglas Adams predicted in The Hitchhiker’s
Guide to the Galaxy. Who knows?

While the newer 64-bit processors have an internal 64-bit address space,
they rarely bring out 64 address lines on the chip. This is because pins are a
precious commodity on large CPUs, and it doesn’t make sense to bring out
extra address pins that will never be used. Currently, 40- to 52-bit address buses
are the upper limit. In the distant future, this may expand a bit, but it’s hard to
imagine the need for, or even possibility of, a physical 64-bit address bus.

On modern processors, CPU manufacturers are building memory con-
trollers directly onto the CPU. Instead of having a traditional address and
data bus to which you connect arbitrary memory devices, newer CPUs con-
tain specialized buses intended to talk to very specific dynamic random-access
memory (DRAM) modules. A typical CPU’s memory controller connects to
only a certain number of DRAM modules; thus, the maximum DRAM you
can easily connect to a CPU is a function of the memory control built into
the CPU rather than the size of the external address bus. This is why some
older laptops have a 16MB or 32MB maximum memory limitation even
though they have 64-bit CPUs.1

6.1.1.3  The Control Bus

The control bus is an eclectic collection of signals that control how the
processor communicates with the rest of the system. To understand its
importance, consider the data bus for a moment. The CPU uses the data
bus to move data between itself and memory. The system uses two lines on
the control bus, read and write, to determine the data flow direction (CPU
to memory, or memory to CPU). So, when the CPU wants to write data to
memory, it asserts (places a signal on) the write control line. When the CPU
wants to read data from memory, it asserts the read control line.

Although the exact composition of the control bus varies among pro-
cessors, some control lines—like the system clock lines, interrupt lines,
status lines, and byte enable lines—are common to all processors. The byte

1. Technically, the laptop manufacturer could add a lot of external circuitry, including an
external (to the CPU) memory controller, to overcome this limitation. However, such designs
are expensive, so you rarely see them.

Memory Organization and Access 135

enable lines appear on the control bus of some CPUs that support byte-
addressable memory. These control lines allow 16-, 32-, and 64-bit proces-
sors to deal with smaller chunks of data by communicating the size of the
accompanying data. Additional details appear in the sections “16-Bit Data
Buses” on page 138 and “32-Bit Data Buses” on page 140.

On the 80x86 family of processors, the control bus also contains a sig-
nal that helps distinguish between address spaces. The 80x86 family, unlike
many other processors, provides two distinct address spaces: one for mem-
ory and one for I/O. However, it has only one physical address bus, shared
between I/O and memory, so additional control lines decide which com-
ponent the address is intended for. When these signals are active, the I/O
devices use the address on the LO 16 bits of the address bus. When they’re
inactive, the I/O devices ignore them, and the memory subsystem takes
over at that point.

6.2  Physical Organization of Memory
A typical CPU addresses a maximum of 2n different memory locations,
where n is the number of bits on the address bus (most computer systems
built around 80x86 family CPUs do not include the maximum addressable
amount of memory). But what exactly is a memory location? The 80x86, as
an example, supports byte-addressable memory. Therefore, the basic memory
unit is a byte. With address buses containing 20, 24, 32, 36, or 40 address
lines, the 80x86 processors can address 1MB, 16MB, 4GB, 64GB, or 1TB of
memory, respectively. Some CPU families do not provide byte-addressable
memory; instead, they commonly address memory only in double-word or
even quad-word chunks. However, because of the vast amount of software
that assumes memory is byte-addressable (such as all those C/C++ programs
out there), even CPUs that don’t support byte-addressable memory in hard-
ware still use byte addresses and simulate byte addressing in software. We’ll
return to this topic shortly.

Think of memory as an array of bytes. The address of the first byte is
0 and the address of the last byte is 2n – 1. For a CPU with a 20-bit address
bus, the following pseudo-Pascal array declaration is a good approximation
of memory:

Memory: array [0..1048575] of byte; // 1MB address space (20 bits)

To execute the equivalent of the Pascal statement Memory [125] := 0; the
CPU places the value 0 on the data bus, places the address 125 on the address
bus, and asserts the write line on the control bus, as shown in Figure 6-2.

136 Chapter 6

CPU

MemoryAddress = 125

Data = 0

Write = asserted

Location
125

Figure 6-2: Memory write operation

To execute the equivalent of CPU := Memory [125]; the CPU places the
address 125 on the address bus, asserts the read line on the control bus, and
then reads the resulting data from the data bus (see Figure 6-3).

CPU

Memory
Address = 125

Data = Memory[125]

Read = asserted

Location
125

Figure 6-3: Memory read operation

This discussion applies only when the processor is accessing a single
byte in memory. What happens when it accesses a word or a double word?
Because memory consists of an array of bytes, how can we possibly deal with
values larger than 8 bits?

Different computer systems have different solutions to this problem.
The 80x86 family stores the LO byte of a word at the address specified and
the HO byte at the next location. Therefore, a word consumes two con-
secutive memory addresses (as you would expect, because a word consists
of 2 bytes). Similarly, a double word consumes four consecutive memory
locations.

The address for a word or a double word is the address of its LO byte.
The remaining bytes follow this LO byte, with the HO byte appearing at
the address of the word plus 1 or the address of the double word plus 3
(see Figure 6-4).

It is quite possible for byte, word, and double-word values to overlap
in memory. For example, in Figure 6-4, you could have a word variable

Memory Organization and Access 137

beginning at address 193, a byte variable at address 194, and a double-word
value beginning at address 192. Bytes, words, and double words may begin
at any valid address in memory. We’ll soon see, however, that starting larger
objects at an arbitrary address is not a good idea.

195

194

193

192

191

190

189

188

187

186

Double word
at address
192

Word at
address 188

Byte at
address 186

Address

Figure 6-4: Byte, word, and double-word storage in memory (on an 80x86)

6.2.1  8-Bit Data Buses
A processor with an 8-bit bus (like the old 8088 CPU) can transfer 8 bits of
data at a time. Because each memory address corresponds to an 8-bit byte,
an 8-bit bus turns out to be the most convenient architecture (from the
hardware perspective), as Figure 6-5 shows.

CPU

Address

Data

Data comes from memory
8 bits at a time

Figure 6-5: An 8-bit CPU <–> memory interface

138 Chapter 6

The term byte-addressable memory array means that the CPU can address
memory in chunks as small as a single byte. It also means that this is the
smallest unit of memory you can access at once with the processor. That
is, if the processor wants to access a 4-bit value, it must read 8 bits and
then ignore the extra 4 bits.

Byte addressability does not imply that the CPU can access 8 bits starting
at any arbitrary bit boundary. When you specify address 125 in memory, you
get the entire 8 bits at that address—nothing less, nothing more. Addresses
are integers; you cannot specify, for example, address 125.5 to fetch fewer
than 8 bits or to fetch a byte straddling two byte addresses.

Although CPUs with an 8-bit data bus conveniently manipulate byte
values, they can also manipulate word and double-word values. However,
this requires multiple memory operations, because these processors can
move only 8 bits of data at once. Loading a word requires two memory
operations; loading a double word requires four memory operations.

6.2.2  16-Bit Data Buses
Some CPUs (such as the 8086, the 80286, and variants of the ARM proces-
sor family) have a 16-bit data bus. This allows these processors to access
twice as much memory in the same amount of time as their 8-bit counter-
parts. These processors organize memory into two banks: an “even” bank
and an “odd” bank (see Figure 6-6).

0 1

2 3

4 5

6 7Word 3

Word 2

Word 1

Word 0

Numbers in cells
represent the
byte addresses

Even Odd

Figure 6-6: Byte addressing in word memory

Figure 6-7 illustrates the data bus connection to the CPU. In this fig-
ure, the data bus lines D0 through D7 transfer the LO byte of the word,
while bus lines D8 through D15 transfer the HO byte of the word.

The 16-bit members of the 80x86 family can load a word from any arbi-
trary address. As mentioned earlier, the processor fetches the LO byte of
the value from the address specified and the HO byte from the next consec-
utive address. However, this creates a subtle problem. What happens when
you access a word that begins on an odd address? Suppose you want to read
a word from location 125. The LO byte of the word comes from location
125 and the HO byte of the word comes from location 126. It turns out that
there are actually two problems with this approach.

Memory Organization and Access 139

CPU

Address

Data

D0–D7

D8–D15

Even Odd

Figure 6-7: A 16-bit processor memory organization

As you can see in Figure 6-7, data bus lines 8 through 15 (the HO byte)
connect to the odd bank, and data bus lines 0 through 7 (the LO byte) con-
nect to the even bank. Accessing memory location 125 will transfer data
to the CPU on lines D8 through D15 of the data bus, placing the data in
the HO byte, yet we need this in the LO byte! Fortunately, the 80x86 CPUs
automatically recognize and handle this situation.

The second problem is even more obscure. When accessing words,
we’re really accessing two separate bytes, each of which has its own byte
address. So, what address appears on the address bus? The 16-bit 80x86
CPUs always place even addresses on the bus. Bytes at even addresses always
appear on data lines D0 through D7, and bytes at odd addresses always appear
on data lines D8 through D15. If you access a word at an even address,
the CPU can bring in the entire 16-bit chunk in one memory operation.
Likewise, if you access a single byte, the CPU activates the appropriate
bank (using a byte-enable control line) and transfers that byte on the
appropriate data lines for its address.

But what happens when the CPU accesses a word at an odd address, like
the example given earlier? The CPU can’t place address 125 on the address
bus and read the 16 bits from memory. There are no odd addresses com-
ing out of a 16-bit 80x86 CPU—they’re always even. Therefore, if you try to
put 125 on the address bus, 124 is what will actually appear there. Were you
to read the 16 bits at this address, you would get the word at addresses 124
(LO byte) and 125 (HO byte)—not what you’d expect. Accessing a word at
an odd address requires two memory operations (just as with the 8-bit bus
on the 8088/80188). First, the CPU must read the byte at address 125, and
then the byte at address 126. Second, it needs to swap the positions of these
bytes internally because both entered the CPU on the wrong half of the
data bus.

140 Chapter 6

Fortunately, the 16-bit 80x86 CPUs hide these details from you. Your
programs can access words at any address and the CPU will properly access
and swap (if necessary) the data in memory. However, because of the two
operations it requires, accessing words at odd addresses on a 16-bit proces-
sor is slower than accessing words at even addresses. By carefully arrang-
ing how you use memory, you can improve the speed of your programs
on these CPUs.

6.2.3  32-Bit Data Buses
Accessing 32-bit quantities always takes at least two memory operations on
the 16-bit processors. To access a 32-bit quantity at an odd address, a 16-bit
processor may require three memory operations.

The 80x86 processors with a 32-bit data bus, such as the Pentium and
Core processors, use four banks of memory connected to the 32-bit data
bus (see Figure 6-8).

CPU

Address

Data

D0–D7

D8–D15

D16–D23

D24–D31

Byte 0 1 2 3

Figure 6-8: 32-bit processor memory interface

With a 32-bit memory interface, the 80x86 CPU can access any single
byte with one memory operation. With a 16-bit memory interface, the
address placed on the address bus is always an even number; and with a
32-bit memory interface, it’s always some multiple of 4. Using various byte-
enable control lines, the CPU can select which of the 4 bytes at that address
the software wants to access. As with the 16-bit processor, the CPU will auto-
matically rearrange bytes as necessary.

A 32-bit CPU can also access a word at most memory addresses using
a single memory operation, though word accesses at certain addresses will
take two memory operations (see Figure 6-9). This is the same problem we
encountered with the 16-bit processor attempting to retrieve a word with an

Memory Organization and Access 141

odd address, except it occurs half as often—only when the address divided
by 4 leaves a remainder of 3.

HO byte (2nd access)

LO byte (1st access)

Figure 6-9: Accessing a word on a 32-bit processor at (address mod 4) = 3

A 32-bit CPU can access a double word in a single memory operation
only if the address of that value is evenly divisible by 4. If not, the CPU may
require two memory operations.

Once again, the 80x86 CPU handles all this automatically. However,
there’s a performance benefit to proper data alignment. Generally, the
LO byte of word values should always be placed at even addresses, and
the LO byte of double-word values should always be placed at addresses
that are evenly divisible by 4.

6.2.4  64-Bit Data Buses
The Pentium and later processors, like Intel i-Series, provide a 64-bit data
bus and special cache memory that reduces the impact of nonaligned
data access. Although there may still be a penalty for accessing data at an
inappropriate address, modern x86 CPUs suffer from the problem less fre-
quently than the earlier CPUs. We’ll look at the details in “Cache Memory”
on page 151.

6.2.5  Small Accesses on Non-80x86 Processors
Although the 80x86 processor is not the only processor that will let you
access a byte, word, or double-word object at an arbitrary byte address,
most processors created in the past 30 years do not allow it. For example,
the 68000 processor found in the original Apple Macintosh system would
allow you to access a byte at any address, but raised an exception if you
attempted to access a word at an odd address.2 Many processors require
that you access an object at an address that is a multiple of the object’s size,
or they’ll raise an exception.

Most RISC processors, including those found in modern smartphones
and tablets (typically ARM processors), do not allow you to access byte and
word objects at all. Most RISC CPUs require that all data accesses be the
same size as the data bus (or general-purpose integer register size, which-
ever is smaller). This is generally a double-word (32-bit) or quad-word
(64-bit) access. If you want to access bytes or words on such a machine, you
have to treat them as packed fields and use the shift and mask techniques to

2. 680x0 series processors starting with the 68020, found in later Macintosh systems, cor-
rected this issue and allowed data access of words and double words at arbitrary addresses.

142 Chapter 6

extract or insert byte and word data in a double word. Although it’s nearly
impossible to avoid byte accesses in software that does any character and
string processing, if you expect your software to run efficiently on various
modern RISC CPUs, you should avoid word data types (and the perfor-
mance penalty for accessing them) in favor of double words.

6.3  Big-Endian vs. Little-Endian Organization
Earlier, you read that the 80x86 CPU family stores the LO byte of a word or
double-word value at a particular address in memory and the successive HO
bytes at successively higher addresses. Now we’ll look in more depth at how
different processors store multibyte objects in byte-addressable memory.

Almost every CPU whose “bit size” is some power of 2 (8, 16, 32, 64,
and so on) numbers the bits and nibbles as shown in the previous chapters.
There are some exceptions, but they are rare, and most of the time they
represent a notational change, not a functional change (meaning you can
safely ignore the difference). Once you start dealing with objects larger
than 8 bits, however, things become more complicated. Different CPUs
organize the bytes in a multibyte object differently.

Consider the layout of the bytes in a double word on an 80x86 CPU
(see Figure 6-10). The LO byte, which contributes the smallest component
of a binary number, sits in bit positions 0 through 7 and appears at the low-
est address in memory. It seems reasonable that the bits that contribute the
least would be located at the lowest address in memory.

Base address + 3 Base address + 2 Base address + 1 Base address

31 23 15 7 0

HO byte Byte #2 Byte #1 LO byte

Figure 6-10: Byte layout in a double word on the 80x86 processor

This is not the only possible organization, however. Some CPUs reverse
the memory addresses of all the bytes in a double word, using the organiza-
tion shown in Figure 6-11.

Base address Base address + 1 Base address + 2 Base address + 3

31 23 15 7 0

HO byte Byte #2 Byte #1 LO byte

Figure 6-11: Alternate byte layout in a double word

The original Apple Macintosh (68000 and PowerPC) and most non-
80x86 Unix boxes use the data organization shown in Figure 6-11. Even
on 80x86 systems, certain protocols (such as network transmissions)
specify this data organization. Therefore, this isn’t some rare and esoteric

Memory Organization and Access 143

convention; it’s quite common, and not something you can ignore if you
work on PCs.

The byte organization that Intel uses is whimsically known as the
little-endian byte organization. The alternate form is known as big-endian
byte organization.

N O T E 	 These terms come from Jonathan Swift’s Gulliver’s Travels; the Lilliputians were
arguing over whether one should open an egg by cracking it on the little end or the big
end—a parody of the arguments the Catholics and Protestants were having over their
respective doctrines when Swift was writing.

The time for arguing over which format is superior was back before
there were several different CPUs created using different endianness. Today,
that argument is irrelevant. Regardless of which format is better or worse,
we have to deal with the fact that different CPUs sport different endianness,
and we have to take care when writing software if we want our programs to
run on both types of processors.

We encounter the big-endian versus little-endian problem when we try
to pass binary data between two computers. For example, the double-word
binary representation of 256 on a little-endian machine has the following
byte values:

LO byte: 0
Byte #1: 1
Byte #2: 0
HO byte: 0

If you assemble these 4 bytes on a little-endian machine, their layout
takes this form:

Byte: 3 2 1 0
256: 0 0 1 0 (each digit represents an 8-bit value)

On a big-endian machine, however, the layout takes the following form:

Byte: 3 2 1 0
256: 0 1 0 0 (each digit represents an 8-bit value)

This means that if you take a 32-bit value from one of these machines
and attempt to use it on the other machine (with a different endianness),
you won’t get correct results. For example, if you take a big-endian version
of the value 256 and interpret it as little-endian, you’ll discover that it has a
1 in bit position 16, and a little-endian machine will think that the value is
actually 65,536 (that is, %1_0000_0000_0000_0000).

When you’re exchanging data between two different machines, the
best solution is to convert your values to some canonical form and then
convert the canonical form back to the local format if the local and canoni-
cal formats are not the same. Exactly what constitutes a “canonical” format
depends, usually, on the transmission medium. For example, when you are

144 Chapter 6

transmitting data across networks, the canonical form is usually big-endian
because TCP/IP and some other network protocols use the big-endian for-
mat. When you’re transmitting data across the Universal Serial Bus (USB),
the canonical format is little-endian. Of course, if you control the software
on both ends, the choice of canonical form is arbitrary; still, you should
attempt to use the appropriate form for the transmission medium to avoid
confusion down the road.

To convert between the endian forms, you must do a mirror-image swap
of the bytes in the object: first swap the bytes at opposite ends of the binary
number, and then work your way toward the middle of the object, swapping
pairs of bytes as you go along. For example, to convert between the big-
endian and little-endian format within a double word, you’d first swap bytes
0 and 3, then you’d swap bytes 1 and 2 (see Figure 6-12).

HO byte Byte #2 Byte #1 LO byte

31 23 15 7 0

Figure 6-12: Endian conversion in a double word

For word values, all you need to do is swap the HO and LO bytes to change
the endianness. For quad-word values, you need to swap bytes 0 and 7, 1
and 6, 2 and 5, and 3 and 4. Because very little software deals with 128-bit
integers, you probably won’t need to worry about long-word endianness con-
version, but the concept is the same if you do.

Note that the endianness conversion process is reflexive ; that is, the
same algorithm that converts big-endian to little-endian also converts little-
endian to big-endian. If you run the algorithm twice, you wind up with the
data in the original format.

Even if you’re not writing software that exchanges data between two
computers, the issue of endianness may arise. Some programs assemble
larger objects from discrete bytes by assigning those bytes to specific posi-
tions within the larger value. If the software puts the LO byte into bit
positions 0 through 7 (little-endian format) on a big-endian machine,
the program will not produce correct results. Therefore, if the software
needs to run on different CPUs that have different byte organizations, it
will have to determine the endianness of the machine it’s running on and
adjust how it assembles larger objects from bytes accordingly.

To illustrate how to build larger objects from discrete bytes, we’ll
start with a short example that demonstrates how you could assemble a
32-bit object from 4 individual bytes. The most common way to do this is

Memory Organization and Access 145

to create a discriminant union structure that contains a 32-bit object and a
4-byte array.

N O T E 	 Many languages, but not all, support the discriminant union data type. For exam-
ple, in Pascal, you would instead use a case variant record. See your language refer-
ence manual for details.

Unions are similar to records or structures except the compiler allocates
the storage for each field of the union at the same address in memory.
Consider the following two declarations from the C programming language:

struct
{
 short unsigned i; // Assume shorts require 16 bits.
 short unsigned u;
 long unsigned r; // Assume longs require 32 bits.
} RECORDvar;

union
{
 short unsigned i;
 short unsigned u;
 long unsigned r;
} UNIONvar;

As Figure 6-13 shows, the RECORDvar object consumes 8 bytes in memory,
and the fields do not share their memory with any other fields (that is, each
field starts at a different offset from the base address of the record). The
UNIONvar object, on the other hand, overlays all the fields in the union in
the same memory locations. Therefore, writing a value to the i field of the
union also overwrites the value of the u field as well as 2 bytes of the r field
(whether they are the LO or HO bytes depends entirely on the endianness
of the CPU).

i u r

r

i, u

Base + 0 Base + 4 Base + 8

UNIONvar

RECORDvar

Figure 6-13: Layout of a union versus a record (struct) in memory

146 Chapter 6

In the C programming language, you can use this behavior to access
the individual bytes of a 32-bit object. Consider the following union decla-
ration in C:

union
{
 unsigned long bits32; /* This assumes that C uses 32 bits for
 unsigned long */
 unsigned char bytes[4];
} theValue;

This creates the data type shown in Figure 6-14 on a little-endian
machine, and the structure shown in Figure 6-15 on a big-endian machine.

bytes[3] bytes[2] bytes[1] bytes[0]

bits32
31 23 15 07

Figure 6-14: A C union on a little-endian machine

bytes[0] bytes[1] bytes[2] bytes[3]

bits32
31 23 15 07

Figure 6-15: A C union on a big-endian machine

To assemble a 32-bit object from 4 discrete bytes on a little-endian
machine, you’d use code like the following:

theValue.bytes[0] = byte0;
theValue.bytes[1] = byte1;
theValue.bytes[2] = byte2;
theValue.bytes[3] = byte3;

This code functions properly because C allocates the first byte of an
array at the lowest address in memory (corresponding to bits 0..7 in the
theValue.bits32 object on a little-endian machine); the second byte of the
array follows (bits 8..15), then the third (bits 16..23), and finally the HO byte
(occupying the highest address in memory, corresponding to bits 24..31).

However, on a big-endian machine, this code won’t work properly
because theValue.bytes[0] corresponds to bits 24 through 31 of the 32-bit
value rather than bits 0 through 7. To assemble this 32-bit value properly on
a big-endian system, you’d need to use code like the following:

theValue.bytes[0] = byte3;
theValue.bytes[1] = byte2;
theValue.bytes[2] = byte1;
theValue.bytes[3] = byte0;

Memory Organization and Access 147

But how do you determine if your code is running on a little-endian or
big-endian machine? This is actually a simple task. Consider the following
C code:

theValue.bytes[0] = 0;
theValue.bytes[1] = 1;
theValue.bytes[2] = 0;
theValue.bytes[3] = 0;
isLittleEndian = theValue.bits32 == 256;

On a big-endian machine, this code sequence will store the value 1 into
bit 16, producing a 32-bit value that is definitely not equal to 256, whereas
on a little-endian machine this code will store the value 1 into bit 8, produc-
ing a 32-bit value equal to 256. Therefore, you can test the isLittleEndian
variable to determine whether the current machine is little-endian (true) or
big-endian (false).

6.4  The System Clock
Although modern computers are quite fast and getting faster all the time, they
still require time to accomplish even the smallest tasks. On von Neumann
machines, most operations are serialized, which means that the computer
executes commands in a prescribed order.3 It wouldn’t do, in the following
code sequence, to execute the Pascal statement I := I * 5 + 2; before the
statement I := J; finishes:

I := J;
I := I * 5 + 2;

These operations do not occur instantaneously. Moving a copy of J into
I takes a certain amount of time. Likewise, multiplying I by 5 and then add-
ing 2 and storing the result back into I takes time.

To execute statements in the proper order, the processor relies on
the system clock, which serves as the timing standard within the system.
To understand why certain operations take longer than others, you must
first understand how the system clock functions.

The system clock is an electrical signal on the control bus that alter-
nates between 0 and 1 periodically (see Figure 6-16). All activity within the
CPU is synchronized with the edges (rising or falling) of this clock signal.

3. Note that modern CPUs support out-of-order execution whereby the CPU starts the execution
of later instructions before earlier instructions finish execution. However, the CPUs usually
attempt to retain the same semantics as in-order execution.

148 Chapter 6

1

0

Time

One clock period

Figure 6-16: The system clock

The rate at which the system clock alternates between 0 and 1 is the
system clock frequency, and the time it takes for the system clock to switch
from 0 to 1 and back to 0 is the clock period or clock cycle. On most modern
systems, the system clock frequency exceeds several billion cycles per sec-
ond. A typical Pentium IV chip, circa 2004, runs at speeds of three billion
cycles per second or faster. Hertz (Hz) is the unit corresponding to one cycle
per second, so the aforementioned Pentium chip runs at between 3,000 and
4,000 million hertz, or 3,000 to 4,000 megahertz (MHz), or 3 to 4 gigahertz
(GHz, or one billion cycles per second). Typical frequencies for 80x86 parts
range from 5 MHz up to several gigahertz and beyond.

The clock period is the reciprocal of the clock frequency. For example,
a 1 MHz (MHz or one million cycles per second) clock would have a clock
period of 1 microsecond (one millionth of a second, µs4). A CPU running
at 1 GHz would have a clock period of one nanosecond (ns), or one bil-
lionth of a second. Clock periods are usually expressed in microseconds
or nanoseconds.

To ensure synchronization, most CPUs start an operation on either the
falling edge (when the clock goes from 1 to 0) or the rising edge (when the
clock goes from 0 to 1). The system clock spends most of its time at either
0 or 1 and very little time switching between the two. Therefore, a clock
edge is the perfect synchronization point.

Because all CPU operations are synchronized with the clock, the CPU
cannot perform tasks any faster than the clock runs. However, just because
a CPU is running at some clock frequency doesn’t mean that it executes
that many operations each second. Many operations take multiple clock
cycles to complete, so the CPU often performs operations at a significantly
slower rate.

6.4.1  Memory Access and the System Clock
Memory access is an operation that is synchronized with the system clock;
that is, memory access occurs no more than once every clock cycle. On
some older processors, it takes several clock cycles to access a memory
location. The memory access time is the number of clock cycles between a

4. Often written as us when the Greek mu character is not available.

Memory Organization and Access 149

memory request (read or write) and when the memory operation com-
pletes. This is an important value, because longer memory access times
result in lower performance.

Modern CPUs are much faster than memory devices, so systems
built around these CPUs often use a second clock, the bus clock, which is
some fraction of the CPU speed. For example, typical processors in the
100 MHz to 4 GHz range can use 1600 MHz, 800 MHz, 500 MHz, 400
MHz, 133 MHz, 100 MHz, or 66 MHz bus clocks (a given CPU generally
supports several different bus speeds, and the exact range it supports
depends upon that CPU).

When reading from memory, the memory access time is the time
between when the CPU places an address on the address bus and the time
when the CPU takes the data off the data bus. On typical 80x86 CPUs with
a one-cycle memory access time, the timing of a read operation looks some-
thing like Figure 6-17. The timing of writing data to memory is similar (see
Figure 6-18).

The memory system must
decode the address and
place the data on the data
bus during this time period.

data from the data
bus during this time
period.

The CPU places
the address on the
address bus during
this time period.

The CPU reads the

Figure 6-17: A typical memory read cycle

the address and
data onto the bus
at this time.

Sometime before the end
of the clock period the
memory subsystem must
grab and store the specified
value.

The CPU places

Figure 6-18: A typical memory write cycle

The CPU doesn’t wait for memory. The access time is specified by the
bus clock frequency. If the memory subsystem doesn’t work fast enough to
keep up with the CPU’s expected access time, the CPU will read garbage
data on a memory read operation and will not properly store the data on a
memory write. This will surely cause the system to fail.

150 Chapter 6

Memory devices have various ratings, but the two major ones are capac-
ity and speed. Typical dynamic RAM (random access memory) devices have
capacities of 16GB (or more) and speeds of 0.1 to 100 ns. A typical 4 GHz
Intel system uses 1600 MHz (1.6 GHz, or 0.625 ns) memory devices.

Now, I just said that the memory speed must match the bus speed or
the system will fail. At 4 GHz the clock period is roughly 0.25 ns. So how
can a system designer get away with using 0.625 ns memory? The answer
is wait states.

6.4.2  Wait States
A wait state is an extra clock cycle that gives a device additional time to
respond to the CPU. For example, a 100 MHz Pentium system has a 10 ns
clock period, implying that you need 10 ns memory. In fact, you need even
faster memory devices because in many computer systems there’s additional
decoding and buffering logic between the CPU and memory, and this cir-
cuitry introduces its own delays. In Figure 6-19, you can see that buffering
and decoding costs the system an additional 10 ns. If the CPU needs the
data back in 10 ns, the memory must respond in 0 ns (which is impossible).

CPU

Address

Data

5 ns delay
through
decoder

5 ns delay
through buffer

Buffer

D
ecoder

Figure 6-19: Decoding and buffer delays

If cost-effective memory won’t work with a fast processor, how do com-
panies manage to sell fast PCs? One part of the answer is the wait state. For
example, if you have a 100 MHz processor with a memory cycle time of 10
ns and you lose 2 ns to buffering and decoding, you’ll need 8 ns memory.
What if your system can only support 20 ns memory, though? By adding
wait states to extend the memory cycle to 20 ns, you can solve this problem.

Almost every general-purpose CPU in existence provides a pin (whose
signal appears on the control bus) that allows you to insert wait states.
If necessary, the memory address decoding circuitry asserts this signal to
give the memory sufficient access time (see Figure 6-20).

Memory Organization and Access 151

The memory system must
decode the address and
place the data on the data
bus during this time period;
since one clock cycle is insufficient,
the system adds a second clock cycle,
a wait state.

data from the data
bus during this time
period.The CPU places the

address on the address
bus during this time
period.

The CPU reads the

Figure 6-20: Inserting a wait state into a memory read operation

From the system performance point of view, wait states are not a good
thing. As long as the CPU is waiting for data from memory, it can’t operate
on that data. Adding a wait state typically doubles (or worse, on some sys-
tems) the amount of time required to access memory. Running with a wait
state on every memory access is almost like cutting the processor clock fre-
quency in half. You’ll get less work done in the same amount of time.

However, we’re not doomed to slow execution because of added wait
states. There are several tricks hardware designers can employ to achieve
zero wait states most of the time. The most common is the use of cache (pro-
nounced “cash”) memory.

6.4.3  Cache Memory
A typical program tends to access the same memory locations repeatedly
(known as temporal locality of reference), and to access adjacent memory loca-
tions (spatial locality of reference). Both forms of locality occur in the follow-
ing Pascal code segment:

for i := 0 to 10 do
 A [i] := 0;

There are two occurrences each of spatial and temporal locality of ref-
erence within this loop. Let’s consider the obvious ones first.

In this Pascal code, the program references the variable i several times.
The for loop compares i against 10 to see if the loop is complete. It also
increments i by 1 at the bottom of the loop. The assignment statement also
uses i as an array index. This shows temporal locality of reference in action.

The loop itself zeros out the elements of array A by writing a 0 to the first
location in A, then to the second location in A, and so on. Because Pascal
stores the elements of A in consecutive memory locations, each loop iteration
accesses adjacent memory locations. This shows spatial locality of reference.

152 Chapter 6

What about the second occurrences of temporal and spatial locality?
Machine instructions also reside in memory, and the CPU fetches these
instructions sequentially from memory and executes them repeatedly, once
for each loop iteration.

If you look at the execution profile of a typical program, you’ll prob-
ably discover that the program executes less than half the statements.
Generally, a program might use only 10 to 20 percent of the memory allot-
ted to it. At any given time, a 1MB program might access only 4KB to 8KB
of data and code. So, if you paid an outrageous sum of money for expensive
zero-wait-state RAM, you’d be using only a tiny fraction of it at any given
time. Wouldn’t it be nice if you could buy a small amount of fast RAM and
dynamically reassign its addresses as the program executes? This is exactly
what cache memory does for you.

Cache memory is a small amount of very fast memory that sits between
the CPU and main memory. Unlike in normal memory, the bytes within a
cache do not have fixed addresses. Cache memory can dynamically reas-
sign addresses, which allows the system to keep recently accessed values in
the cache. Addresses that the CPU has never accessed, or hasn’t accessed in
some time, remain in main (slow) memory. Because most memory accesses
are to recently accessed variables (or to locations near a recently accessed
location), the data generally appears in cache memory.

A cache hit occurs whenever the CPU accesses memory and finds the
data in the cache. In such a case, the CPU can usually access data with
zero wait states. A cache miss occurs if the data cannot be found in the
cache. In that case, the CPU has to read the data from main memory,
incurring a performance loss. To take advantage of temporal locality of
reference, the CPU copies data into the cache whenever it accesses an
address that’s not present in the cache. Because the system will likely
access that address shortly, it can save wait states on future accesses by
having that data in the cache.

Cache memory does not eliminate the need for wait states. Although a
program may spend considerable time executing code in one area of mem-
ory, eventually it will call a procedure or wander off to some section of code
outside cache memory. When that happens, the CPU has to go to main
memory to fetch the data. Because main memory is slow, this will require
the insertion of wait states. However, once the CPU accesses the data, it will
be available in the cache for future use.

We’ve discussed how cache memory handles the temporal aspects of
memory access, but not the spatial aspects. Caching memory locations when
you access them won’t speed up the program if you constantly access con-
secutive locations that you’ve never accessed before. To solve this problem,
when a cache miss occurs, most caching systems will read several consecu-
tive bytes of main memory (which engineers call a cache line). For example,
80x86 CPUs read between 16 and 64 bytes upon a cache miss. Most memory
chips available today have special modes that let you quickly access several

Memory Organization and Access 153

consecutive memory locations on the chip. The cache exploits this capabil-
ity to reduce the average number of wait states needed to access sequential
memory locations. Although reading 16 bytes on each cache miss is expen-
sive if you access only a few bytes in the corresponding cache line, cache
memory systems work quite well in the average case.

The ratio of cache hits to misses increases with the size (in bytes) of
the cache memory subsystem. The 80486 CPU, for example, has 8,192
bytes of on-chip cache. Intel claims to get an 80 to 95 percent hit rate with
this cache (meaning 80 to 95 percent of the time the CPU finds the data
in the cache). This sounds very impressive, but let’s play around with the
numbers a little bit. Suppose we pick the 80 percent figure. This means
that one out of every five memory accesses, on average, will not be in the
cache. If you have a 50 MHz processor (20 ns period) and a 90 ns memory
access time, four out of five memory accesses require only 20 ns (one clock
cycle) because they are in the cache, and the fifth will require about four
wait states (20 ns for a normal memory access plus 80 additional ns, or
four wait states, to get at least 90 ns). However, the cache always reads 16
consecutive bytes (4 double words) from memory. Most 80486-era memory
subsystems let you read consecutive addresses in about 40 ns after access-
ing the first location. Therefore, the 80486 will require an additional six
clock cycles to read the remaining 3 double words, for a total of 220 ns.
This corresponds to 11 clock cycles (at 20 ns each), which is one normal
memory cycle plus 10 wait states.

Altogether, the system will require 15 clock cycles to access five memory
locations, or 3 clock cycles per access, on average. That’s equivalent to two
wait states added to every memory access. Doesn’t sound so impressive, does
it? It gets even worse as you move up to faster processors and the difference
in speed between the CPU and memory increases.

To improve the hit ratio, you can add more cache memory. Alas, you
can’t pull an Intel i9 chip apart and solder more cache onto the chip.
However, modern Intel CPUs have a significantly larger cache than the
80486 and operate with fewer average wait states. This improves the cache
hit ratio. For example, increasing the hit ratio from 80 percent to 90 per-
cent lets you access 10 memory locations in 20 cycles. This reduces the
average number of wait states per memory access to one wait state—a sub-
stantial improvement.

Another way to improve performance is to build a two-level (L2) cach-
ing system. Many Intel CPUs work in this fashion. The first level is the on-
chip 8,192-byte cache. The next level, between the on-chip cache and main
memory, is a secondary cache (see Figure 6-21). On newer processors, the
first- and second-level caches generally appear in the same packaging as the
CPU. This allows the CPU designers to build a higher-performance CPU/
memory interface, allowing the CPU to move data between caches and the
CPU (as well as main memory) much more rapidly.

154 Chapter 6

CPU

On-chip (primary)
cache Secondary cache

Main
memory

Figure 6-21: A two-level caching system

A typical on-CPU secondary cache contains anywhere from 32,768 bytes
to over 2MB of memory.

Secondary cache generally does not operate at zero wait states. The cir-
cuitry to support that much fast memory would be very expensive, so most
system designers use slower memory, which requires one or two wait states.
This is still much faster than main memory. Combined with the existing
on-chip L1 cache, you can get better performance from the system with a
L2 caching system.

Today, many CPUs incorporate a three-level (L3) cache. Though the per-
formance improvement afforded by an L3 cache is nowhere near what you
get with an L1 or L2 cache subsystem, L3 cache subsystems can be quite
large (usually several megabytes5) and work well for large systems with giga-
bytes of main memory. For programs that manipulate considerable data yet
exhibit locality of reference, an L3 caching subsystem can be very effective.

6.5  CPU Memory Access
Most CPUs have two or three different ways to access memory. The most
common memory addressing modes modern CPUs support are direct, indirect,
and indexed. A few CPUs (like the 80x86) support additional addressing
modes like scaled-index, while some RISC CPUs support only indirect access
to memory. Having additional memory addressing modes makes memory
access more flexible. Sometimes a particular addressing mode will allow
you to access data in a complex data structure with a single instruction,
where otherwise two or more instructions would be required.

RISC processors can often take three to five instructions to do what a
single 80x86 instruction does. However, this does not mean that an 80x86
program will run three to five times faster. Don’t forget that access to
memory is very slow, usually requiring wait states. Whereas the 80x86 fre-
quently accesses memory, RISC processors rarely do. Therefore, that RISC

5. Intel i7 CPUs in 2019, for example, support 8MB on-chip L3 caches.

Memory Organization and Access 155

processor can probably execute the first four instructions, which do not
access memory at all, while the single 80x86 instruction, which does access
memory, is spinning on some wait states. In the fifth instruction the RISC
CPU might access memory and incur wait states of its own. If both proces-
sors execute an average of one instruction per clock cycle and have to insert
30 wait states for a main memory access, we’re talking about 31 clock cycles
(80x86) versus 35 clock cycles (RISC), only about a 12 percent difference.

Choosing an appropriate addressing mode often enables an application
to compute the same result with fewer instructions and with fewer memory
accesses, thus improving performance. Therefore, if you want to write fast
and compact code, it’s important to understand how an application can use
the different addressing modes a CPU provides.

6.5.1  The Direct Memory Addressing Mode
The direct addressing mode encodes a variable’s memory address as part
of the actual machine instruction that accesses the variable. On the 80x86,
direct addresses are 32-bit values appended to the instruction’s encoding.
Generally, a program uses the direct addressing mode to access global static
variables. Here’s an example in HLA assembly language:

static
 i:dword;
 . . .
 mov(eax, i); // Store EAX's value into the i variable.

When you’re accessing variables whose memory address is known prior
to the program’s execution, the direct addressing mode is ideal. With a
single instruction, you can reference the memory location associated with
the variable. On those CPUs that don’t support a direct addressing mode,
you may need an extra instruction (or more) to load a register with the vari-
able’s memory address prior to accessing that variable.

6.5.2  The Indirect Addressing Mode
The indirect addressing mode typically uses a register to hold a memory
address (there are a few CPUs that use memory locations to hold the indi-
rect address, but this form of indirect addressing is rare in modern CPUs).

There are a couple of advantages of the indirect addressing mode over
the direct addressing mode. First, you can modify the value of an indirect
address (the value being held in a register) at runtime. Second, encoding
which register specifies the indirect address takes far fewer bits than encod-
ing a 32-bit (or 64-bit) direct address, so the instructions are smaller. One
disadvantage is that it may take one or more instructions to load a register
with an address before you can access that address.

The following HLA sequence uses an 80x86 indirect addressing mode
(brackets around the register name denote the use of indirect addressing):

static
 byteArray: byte[16];

156 Chapter 6

 . . .
 lea(ebx, byteArray); // Loads EBX register with the address
 // of byteArray.
 mov([ebx], al); // Loads byteArray[0] into AL.
 inc(ebx); // Point EBX at the next byte in memory
 // (byteArray[1]).
 mov([ebx], ah); // Loads byteArray[1] into AH.

The indirect addressing mode is useful for many operations, such as
accessing objects referenced by a pointer variable.

6.5.3  The Indexed Addressing Mode
The indexed addressing mode combines the direct and indirect addressing
modes. Specifically, the machine instructions using this addressing mode
encode both an offset (direct address) and a register in the bits that make
up the instruction. At runtime, the CPU computes the sum of these two
address components to create an effective address. This addressing mode is
great for accessing array elements and for indirect access to objects like
structures and records. Though the instruction encoding is usually larger
than for the indirect addressing mode, the indexed addressing mode has
the advantage that you can specify an address directly within an instruc-
tion without having to use a separate instruction to load the address into a
register.

Here’s a typical example of an HLA sequence that uses an 80x86
indexed addressing mode:

static
 byteArray: byte[16];
 . . .
 mov(0, ebx); // Initialize an index into the array.
 while(ebx < 16) do

 mov(0, byteArray[ebx]); // Zeros out byteArray[ebx].
 inc(ebx); // EBX := EBX +1, move on to the
 // next array element.

 endwhile;

The byteArray[ebx] instruction in this short program demonstrates
the indexed addressing mode. The effective address is the address of the
byteArray variable plus the current value in the EBX register.

To avoid wasting space encoding a 32-bit or 64-bit address into every
instruction that uses an indexed addressing mode, many CPUs provide a
shorter form that encodes an 8-bit or 16-bit offset as part of the instruction.
When using this smaller form, the register provides the base address of the
object in memory, and the offset provides a fixed displacement into that
data structure in memory. This is useful, for example, for accessing fields of
a record or structure in memory via a pointer to that structure. The earlier

Memory Organization and Access 157

HLA example encodes the address of byteArray using a 4-byte address.
Compare that with the following use of the indexed addressing mode:

lea(ebx, byteArray); // Loads the address of byteArray into EBX.
 . . .
mov(al, [ebx+2]); // Stores al into byteArray[2]

This last instruction encodes the displacement value using a single byte
(rather than 4 bytes); hence, the instruction is shorter and more efficient.

6.5.4  The Scaled-Index Addressing Modes
The scaled-index addressing mode, available on several CPUs, provides two
facilities above and beyond the indexed addressing mode:

•	 The ability to use two registers (plus an offset) to compute the
effective address

•	 The ability to multiply one of those two registers’ values by a constant
(typically 1, 2, 4, or 8) prior to computing the effective address.

This addressing mode is especially useful for accessing elements of
arrays whose element sizes match one of the scaling constants (see the dis-
cussion of arrays in Chapter 7 for the reasons).

The 80x86 provides a scaled-index addressing mode that takes one of
several forms, as shown in the following HLA statements:

mov([ebx+ecx*1], al); // EBX is base address, ecx is index.
mov(wordArray[ecx*2], ax); // wordArray is base address, ecx is index.
mov(dwordArray[ebx+ecx*4], eax); // Effective address is combination
 // of offset(dwordArray)+ebx+(ecx*4).

6.6  For More Information
Hennessy, John L., and David A. Patterson. Computer Architecture:

A Quantitative Approach. 5th ed. Waltham, MA: Elsevier, 2012.

Hyde, Randall. The Art of Assembly Language. 2nd ed. San Francisco:
No Starch Press, 2010.

Patterson, David A., and John L. Hennessy. Computer Organization and Design:
The Hardware/Software Interface. 5th ed. Waltham, MA: Elsevier, 2014.

N O T E 	 Chapter 11 in this book provides additional information about cache memory and
memory architecture.

7
C O M P O S I T E D A T A T Y P E S

A N D M E M O R Y O B J E C T S

Composite data types are composed of
other, more primitive, types. Examples

include pointers, arrays, records or struc-
tures, tuples, and unions. Many high-level lan-

guages (HLLs) provide syntactical abstractions for these
composite data types that make them easy to declare
and use, while hiding their underlying complexities.

Though the costs of using these composite data types are not terrible, a
programmer who doesn’t understand them can easily introduce inefficien-
cies into an application. This chapter provides an overview of those costs to
better enable you to write great code.

7.1  Pointer Types
A pointer is a variable whose value refers to some other object. High-level
languages like Pascal and C/C++ hide the simplicity of pointers behind a
wall of abstraction. This added complexity can be intimidating if you don’t

160 Chapter 7

understand what’s going on behind the scenes. However, a little knowledge
will go a long way toward easing your mind.

Let’s start with something simple: an array. Consider the following
array declaration in Pascal:

M: array [0..1023] of integer;

M is an array with 1,024 integers in it, indexed from M[0] to M[1023]. Each
array element can hold an integer value that is independent of the others.
In other words, this array gives you 1,024 different integer variables, each
of which you access via array index rather than by name.

The statement M[0]:=100 stores the value 100 into the first element of the
array M. Now consider the following two statements:

i := 0; (* assume i is an integer variable *)
M [i] := 100;

These two statements do the same thing as M[0]:=100;. You can use any
integer expression in the range 0 through 1023 as an index of this array.
The following statements still perform the same operation as the earlier
statement:

i := 5; (* assume all variables are integers*)
j := 10;
k := 50;
m [i * j - k] := 100;

But how about the following?

M [1] := 0;
M [M [1]] := 100;

Whoa! Now that takes a few moments to digest. However, if you take it
slowly, you’ll realize that these two instructions perform the same operation
as before. The first statement stores 0 into array element M[1]. The second
statement fetches the value of M[1], which is 0, and uses that value to deter-
mine where it stores the value 100.

If you’re willing to accept this example as reasonable—perhaps bizarre,
but usable nonetheless—then you’ll have no problems with pointers, because
M[1] is a pointer! Well, not really, but if you were to change M to “memory”
and treat each element of this array as a separate memory location, then
this meets the definition of a pointer—that is, a memory variable whose
value is the address of some other memory object.

7.1.1  Pointer Implementation
Although most languages implement pointers using memory addresses, a
pointer is actually an abstraction of a memory address. Therefore, a lan-
guage could define a pointer using any mechanism that maps the value

Composite Data Types and Memory Objects 161

of the pointer to the address of some object in memory. Some implementa-
tions of Pascal, for example, use offsets from some fixed memory address
as pointer values. Some languages (including dynamic languages like LISP)
implement pointers by using double indirection; that is, the pointer object
contains the address of some memory variable whose value is the address of
the object to be accessed. This approach may seem convoluted, but it offers
certain advantages in a complex memory management system. However, for
simplicity’s sake, this chapter will assume that, as defined earlier, a pointer
is a variable whose value is the address of some other object in memory.

As you’ve seen in examples from previous chapters, you can indirectly
access an object using a pointer with two 32-bit 80x86 machine instructions
(or with a similar sequence on other CPUs), as follows:

mov(PointerVariable, ebx); // Load the pointer variable into a register.
mov([ebx], eax); // Use register indirect mode to access data.

Access to data via double indirection is less efficient than the straight
pointer implementation because it takes an extra machine instruction to
fetch the data from memory. This isn’t obvious in an HLL like C/C++ or
Pascal, where you’d use double indirection as follows:

i = **cDblPtr; // C/C++
i := ^^pDblPtr; (* Pascal *)

This looks very similar to single indirection. In assembly language, how-
ever, you’ll see the extra work involved:

mov(hDblPtr, ebx); // Get the pointer to a pointer.
mov([ebx], ebx); // Get the pointer to the value.
mov([ebx], eax); // Get the value.

Contrast this with the two earlier assembly instructions needed
to access an object using single indirection. Because double indirection
requires 50 percent more code than single indirection, many languages
implement pointers using single indirection.

7.1.2  Pointers and Dynamic Memory Allocation
Pointers typically reference anonymous variables that you allocate on the heap
(a region in memory reserved for dynamic storage allocation) using memory
allocation/deallocation functions like malloc()/free() in C, new()/dispose() in
Pascal, and new()/delete() in C++ (note, however, that C++11 and later pre-
fer std::unique_ptr and std_shared_ptr for memory allocation, with automatic
memory deallocation). Java, Swift, C++11 (and later) and other more mod-
ern languages only provide a function equivalent to new(). These languages
handle deallocation automatically via garbage collection.

Objects you allocate on the heap are known as anonymous variables because
you refer to them by their address rather than by a name. And because
the allocation functions return the address of an object on the heap, you

162 Chapter 7

typically store the function’s return result into a pointer variable. While the
pointer variable may have a name, that name applies to the pointer’s data
(an address), not the object referenced by this address.

7.1.3  Pointer Operations and Pointer Arithmetic
Most languages that provide the pointer data type let you assign addresses
to pointer variables, compare pointer values for equality or inequality, and
indirectly reference an object via a pointer. Some languages allow addi-
tional operations, as you’ll see in this section.

Many languages enable you to do limited arithmetic with pointers. At
the very least, these languages provide the ability to add an integer constant
to, or subtract one from, a pointer. To understand the purpose of these
two arithmetic operations, note the syntax of the malloc() function in the C
standard library:

ptrVar = malloc(bytes_to_allocate);

The parameter you pass malloc() specifies the number of bytes of stor-
age to allocate. A good C programmer generally supplies an expression like
sizeof(int) as this parameter. The sizeof() function returns the number of
bytes needed by its single parameter. Therefore, sizeof(int) tells malloc() to
allocate at least enough storage for an int variable. Now consider the follow-
ing call to malloc():

ptrVar = malloc(sizeof(int) * 8);

If the size of an integer is 4 bytes, this call to malloc() will allocate stor-
age for 32 bytes, at consecutive addresses in memory (see Figure 7-1).

Low heap
addresses

High heap
addresses

Pointer (address) that malloc(sizeof(int) * 8) returns

32 bytes (8 ints)

Figure 7-1: Memory allocation with malloc(sizeof(int) * 8)

The pointer that malloc() returns contains the address of the first
integer in this set, so the C program can directly access only the very first
of these eight integers. To access the individual addresses of the other
seven integers, you need to add an integer offset to that base address. On
machines that support byte-addressable memory (such as the 80x86), the
address of each successive integer in memory is the address of the previ-
ous integer plus the integer’s size. For example, if a call to the C standard
library malloc() routine returns the memory address $0300_1000, then the
eight integers that malloc() allocates will reside at the memory addresses
shown in Table 7-1.

Composite Data Types and Memory Objects 163

Table 7-1: Integer Addresses Allocated for Base Address $0300_1000

Integer Memory addresses

0 $0300_1000..$0300_1003

1 $0300_1004..$0300_1007

2 $0300_1008..$0300_100b

3 $0300_100c..$0300_100f

4 $0300_1010..$0300_1013

5 $0300_1014..$0300_1017

6 $0300_1018..$0300_101b

7 $0300_101c..$0300_101f

7.1.3.1  Adding an Integer to a Pointer

Because these integers described in the preceding section are exactly 4 bytes
apart, we add 4 to the address of the first integer to obtain the address of the
second integer; add 4 to the address of the second integer to get the address
of the third integer; and so on. In assembly language, we could access these
eight integers using the following code:

malloc(@size(int32) * 8); // Returns storage for eight int32 objects.
 // EAX points at this storage.
mov(0, ecx);
mov(ecx, [eax]); // Zero out the 32 bytes (4 bytes
mov(ecx, [eax+4]); // at a time).
mov(ecx, [eax+8]);
mov(ecx, [eax+12]);
mov(ecx, [eax+16]);
mov(ecx, [eax+20]);
mov(ecx, [eax+24]);
mov(ecx, [eax+28]);

Notice the use of the 80x86 indexed addressing mode to access the
eight integers that malloc() allocates. The EAX register maintains the base
(first) address of the eight integers that this code allocates, and the con-
stant in the addressing mode of the mov() instructions selects the offset of
the specific integer from this base address.

Most CPUs use byte addresses for memory objects. Therefore, when
a program allocates multiple copies of some n-byte object in memory,
the objects won’t begin at consecutive memory addresses; instead, they’ll
appear in memory at addresses that are n bytes apart. Some machines,
however, don’t allow a program to access memory at an arbitrary address in
memory; rather, they require it to access data on address boundaries that
are a multiple of a word, a double word, or even a quad word. Any attempt
to access memory on some other boundary will raise an exception and
potentially halt the application. If an HLL supports pointer arithmetic, it
must account for this fact and provide a generic pointer arithmetic scheme
that’s portable across many different CPU architectures. The most common

164 Chapter 7

solution that HLLs use when adding an integer offset to a pointer is to mul-
tiply that offset by the size of the object that the pointer references. That
is, if you’ve got a pointer p to a 16-byte object in memory, then p + 1 points
16 bytes beyond the address where p points. Likewise, p + 2 points 32 bytes
beyond that address. As long as the size of the data object is a multiple of
the required alignment size (which the compiler can enforce by adding
padding bytes, if necessary), this scheme avoids problems on those architec-
tures that require aligned data access.

Note that the addition operator only makes sense between a pointer
and an integer value. For example, in C/C++ you can indirectly access
objects in memory using an expression like *(p + i) (where p is a pointer to
an object and i is an integer value). It doesn’t make sense to add two point-
ers together, or to add other data types to a pointer. For example, adding
a floating-point value to a pointer isn’t logical. (What would it mean to ref-
erence the data at some base address plus 1.5612?) Integers—signed and
unsigned—are the only reasonable values to add to a pointer.

On the other hand, not only can you add an integer to a pointer, but you
can also add a pointer to an integer and the result is still a pointer (both p + i
and i + p are legal). This is because addition is commutative—the order of the
operands does not affect the result.

7.1.3.2  Subtracting an Integer from a Pointer

Subtracting an integer from a pointer references a memory location imme-
diately before the address held in the pointer. However, subtraction is not
commutative, and subtracting a pointer from an integer is not a legal opera-
tion (p - i is legal, but i - p is not).

In C/C++ *(p - i) accesses the ith object immediately before the object
at which p points. In 80x86 assembly language, as in assembly on many
processors, you can also specify a negative constant offset when using an
indexed addressing mode. For example:

mov([ebx-4], eax);

Keep in mind that 80x86 assembly language uses byte offsets, not object
offsets (as C/C++ does). Therefore, this statement loads into EAX the double
word in memory immediately preceding the memory address in EBX.

7.1.3.3  Subtracting a Pointer from a Pointer

In contrast to addition, it makes sense to subtract the value of one pointer
variable from another. Consider the following C/C++ code, which proceeds
through a string of characters looking for the first e character that follows
the first a that it finds:

int distance;
char *aPtr;
char *ePtr;
 . . .

Composite Data Types and Memory Objects 165

aPtr = someString; // Get ptr to start of string in aPtr.

// While we're not at the end of the string and the current
// char isn't 'a':

while(*aPtr != '\0' && *aPtr != 'a')
{
 aPtr = aPtr + 1; // Move on to the next character pointed
 // at by aPtr.
}

// While we're not at the end of the string and the current
// character isn't 'e':
ePtr = aPtr; // Start at the 'a' char (or end of string
 // if no 'a').
while(*ePtr != '\0' && *ePtr != 'a')
{
 ePtr = ePtr + 1; // Move on to the next character pointed at by aPtr.
}

// Now compute the number of characters between the 'a' and the 'e'
// (counting the 'a' but not counting the 'e'):

distance = (ePtr - aPtr);

Subtracting one pointer from the other produces the number of data
objects that exist between them (in this case, ePtr and aPtr point at charac-
ters, so the subtraction result produces the number of characters, or bytes,
between the two pointers).

The subtraction of two pointer values makes sense only if they both ref-
erence the same data structure (for example, pointing at characters within
the same string, as in this C/C++ example) in memory. Although C/C++
(and certainly assembly language) will allow you to subtract two pointers
that point at completely different objects in memory, the result will prob-
ably have very little meaning.

For pointer subtraction in C/C++, the base types of the two pointers
must be identical (that is, the two pointers must contain the addresses
of two objects whose types are identical). This restriction exists because
pointer subtraction in C/C++ produces the number of objects, not the
number of bytes, between the two pointers. It wouldn’t make any sense to
compute the number of objects between a byte in memory and a double
word in memory; would you be counting the number of bytes or the num-
ber of double words? In assembly language you can get away with this (and
the result is always the number of bytes between the two pointers), but it
still doesn’t make much sense semantically.

The subtraction of two pointers could return a negative number if the
left pointer operand is at a lower memory address than the right pointer
operand. Depending on your language and its implementation, you may
need to take the absolute value of the result if you’re interested only in the
distance between the two pointers and you don’t care which pointer con-
tains the greater address.

166 Chapter 7

7.1.3.4  Comparing Pointers

Almost every language that supports pointers will let you compare two
pointers to see whether or not they are equal. Comparing two pointers will
tell you whether they reference the same object in memory. Some languages
(such as assembly and C/C++) will also let you compare two pointers to see
if one pointer is less than or greater than the other. Such a comparison only
makes sense, however, if both pointers have the same base type and contain
the address of some object within the same data structure (such as an array,
string, or record). If you find that one pointer is less than the other, this
tells you that it references an object within the data structure that appears
before the object referenced by the second pointer. The converse is true
for the greater-than comparison.

7.2  Arrays
After strings, arrays are probably the most common composite (or aggregate)
data type. Abstractly, an array is an aggregate data type whose members
(elements) are all of the same type. You select a member from the array by
specifying its array index with an integer (or with some value whose underly-
ing representation is an integer, such as character, enumerated, and Boolean
types). In this chapter, we’ll assume that the integer indices of an array are
numerically contiguous (though this is not required). That is, if both x and
y are valid indices of the array, and if x < y, then all i such that x < i < y are
also valid indices. We’ll also assume that array elements occupy contiguous
locations in memory. Therefore, an array with five elements will appear in
memory as shown in Figure 7-2.

Low memory
addresses

High memory
addressesBase address of A

A[0] A[2]A[1] A[3] A[4]

Figure 7-2: Array layout in memory

The base address of an array is the address of its first element and occu-
pies the lowest memory location. The second array element directly follows
the first in memory, the third element follows the second, and so on. There
is no requirement that the indices start at 0; they can start with any number
as long as they’re contiguous. However, we’ll begin arrays at index 0 unless
there’s a good reason to do otherwise.

Whenever you apply the indexing operator to an array, the result is the
array element specified by that index. For example, A[i] chooses the ith ele-
ment from array A.

Composite Data Types and Memory Objects 167

7.2.1  Array Declarations
Array declarations are very similar across many HLLs. C, C++, and Java all
let you declare an array by specifying the total number of elements in it.
The syntax for an array declaration in these languages is as follows:

data_type array_name [number_of_elements];

Here are some sample C/C++ array declarations:

char CharArray[128];
int intArray[8];
unsigned char ByteArray[10];
int *PtrArray[4];

If you declare these arrays as automatic variables, then C/C++ “initializes”
them with whatever bit patterns exist in memory. If, on the other hand, you
declare these arrays as static objects, then C/C++ zeros out each array ele-
ment. If you want to initialize an array yourself, you can use the following
C/C++ syntax:

data_type array_name[number_of_elements] = {element_list};

Here’s a typical example:

int intArray[8] = {0,1,2,3,4,5,6,7};

Swift array declarations are a bit different from other C-based languages.
Swift array declarations take one of the following two (equivalent) forms:

var array_name = Array<element_type>()
var array_name = [element_type]()

Unlike other languages, arrays in Swift are purely dynamic. You don’t
normally specify the number of elements when you first create the array;
instead, you add elements to the array as needed using functions like
append() or insert(). If you want to predeclare an array with some number
of elements, you use this special array constructor form:

var array_name = Array<element_type>(repeating: initial_value, count: elements)

In this example, initial_value is a value of type element_type and elements
is the number of array elements to create in the array. For example, the fol-
lowing Swift code creates two arrays of 100 Int values, each initialized to 0:

var intArray = Array<Int>(repeating: 0, count: 100)
var intArray2 = [Int](repeating: 0, count: 100)

168 Chapter 7

You can still extend the size of this array (for example, by using the
append() function); because Swift arrays are dynamic, their size can grow
or shrink at runtime.

Swift arrays can be created with initial values, as these examples
demonstrate:

var intArray = [1, 2, 3]
var strArray = ["str1", "str2", "str3"]

C# arrays are also dynamic objects; though their syntax is slightly dif-
ferent from Swift, the concept is the same:

type[] array_name = new type[elements];

Here, type is the data type (for example, double or int), array_name is the
array variable name, and elements is the number of elements to allocate in
the array.

You can also initialize C# arrays in a declaration as follows (other syn-
taxes are possible; this is just a simple example):

int[] intArray = {1, 2, 3};
string[] strArray = {"str1", "str2", "str3"};

The array declaration syntax in HLA (High-Level Assembly) takes the
following form, which is semantically equivalent to the C/C++ declaration:

array_name : data_type [number_of_elements];

Here are some examples of HLA array declarations that allocate stor-
age for uninitialized arrays (the second example assumes that you have
defined the integer data type in a type section of the HLA program):

static

 CharArray: char[128]; // Character array with elements
 // 0..127.
 IntArray: integer[8]; // Integer array with elements 0..7.
 ByteArray: byte[10]; // Byte array with elements 0..9.
 PtrArray: dword[4]; // Double-word array with elements 0..3.

You can also initialize the array elements using declarations like the
following:

RealArray: real32[8] := [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0];
IntegerAry: integer[8] := [8, 9, 10, 11, 12, 13, 14, 15];

Both of these definitions create arrays with eight elements. The first
definition initializes each 4-byte real32 array element with one of the values
in the range 0.0 through 7.0. The second declaration initializes each integer
array element with one of the values in the range 8 through 15.

Composite Data Types and Memory Objects 169

Pascal/Delphi uses the following syntax to declare an array:

array_name : array[lower_bound..upper_bound] of data_type;

As in the previous examples, array_name is the identifier, and data_type is
the type of each element in this array. Unlike C/C++, Java, Swift, and HLA,
in Free Pascal/Delphi you specify the upper and lower bounds of the array
rather than the array’s size. The following are typical array declarations
in Pascal:

type
 ptrToChar = ^char;
var
 CharArray: array[0..127] of char; // 128 elements
 IntArray: array[0..7] of integer; // 8 elements
 ByteArray: array[0..9] of char; // 10 elements
 PtrArray: array[0..3] of ptrToChar; // 4 elements

Although these Pascal examples start their indices at 0, Pascal does not
require it. The following Pascal array declaration is also perfectly valid:

var
 ProfitsByYear : array[1998..2039] of real; // 42 elements

The program that declares this array would use indices 1998 through
2039 when accessing elements of this array, not 0 through 41.

Many Pascal compilers provide a very useful feature to help you locate
defects in your programs. Whenever you access an element of an array, these
compilers automatically insert code that will verify that the array index is
within the bounds specified by the declaration. This extra code will stop
the program if the index is out of range. For example, if an index into Profits​
ByYear is outside the range 1998 through 2039, the program will abort with
an error.1

Generally, array indices are integer values, though some languages
allow other ordinal types (data types that use an underlying integer represen-
tation). For example, Pascal allows char and boolean array indices. In Pascal,
it’s perfectly reasonable and useful to declare an array as follows:

alphaCnt : array['A'..'Z'] of integer;

You access elements of alphaCnt using a character expression as the array
index. For example, consider the following Pascal code, which initializes each
element of alphaCnt to 0 (assuming ch:char appears in the var section):

for ch := 'A' to 'Z' do
 alphaCnt[ch] := 0;

1. Many Pascal compilers provide an option to turn off this bounds-checking feature once
your program is fully tested; doing so improves the efficiency of the resulting program.

170 Chapter 7

Assembly language and C/C++ treat most ordinal values as special
instances of integer values, so they are legal array indices. Most implemen-
tations of BASIC allow a floating-point number as an array index, though
BASIC always truncates the value to an integer before using it as an index.2

7.2.2  Array Representation in Memory
Abstractly, an array is a collection of variables that you access using an
index. Semantically, we can define an array any way we please, as long as
it maps distinct indices to distinct objects in memory and always maps the
same index to the same object. In practice, however, most languages use a
few common algorithms that provide efficient access to the array data.

The number of bytes of storage an array consumes is the product of
the number of elements multiplied by the number of bytes per element
in the array. Many languages also add a few bytes of padding at the end
of the array so that the total length of the array is an even multiple of a nice
value like 4 or 8 (on a 32- or 64-bit machine, a compiler may append bytes
to the array in order to extend its length to some multiple of the machine’s
word size). However, a program must not depend on these extra padding
bytes, because they may or may not be present. Some compilers always put
them in, some never do, and still others put them in depending on the type
of object that immediately follows the array in memory.

Many optimizing compilers attempt to start an array at a memory
address that is an even multiple of some common size like 2, 4, or 8 bytes.
Effectively, this adds padding bytes before the beginning of the array or, if
you prefer to think of it this way, after the previous object in memory (see
Figure 7-3).

Array of 8 double-word objects in memory

Single-byte object at an address that is a multiple of 4 in memory

Three bytes of padding the compiler adds to make sure
the array is aligned on a double-word boundary

}

Figure 7-3: Adding padding bytes before an array

On machines that do not support byte-addressable memory, compil-
ers that attempt to place the first element of an array on an easily accessed
boundary will allocate storage for an array on whatever boundary the

2. BASIC allows you to use floating-point values as array indices because the original BASIC
language did not provide support for integer expressions; it provided only real values and
string values.

Composite Data Types and Memory Objects 171

machine supports. If the size of each array element is less than the mini-
mum size memory object the CPU supports, the compiler implementer has
two options:

•	 Allocate the smallest accessible memory object for each element of
the array.

•	 Pack multiple array elements into a single memory cell.

The first option has the advantage of being fast, but it wastes memory
because each array element carries along some extra storage that it doesn’t
need. The second option is compact but slower, as it requires extra instruc-
tions to pack and unpack data when accessing array elements. Compilers on
such machines often let you specify whether you want the data packed or
unpacked so you can choose between space and speed.

If you’re working on a byte-addressable machine (like the 80x86), you
probably don’t have to worry about this issue. However, if you’re using an HLL
and your code might wind up running on a different machine in the future,
you should choose an array organization that is efficient on all machines.

7.2.3  Accessing Elements of an Array
If you allocate all the storage for an array in contiguous memory locations,
and the first index of the array is 0, then accessing an element of a one-
dimensional array is simple. You can compute the address of any given ele-
ment of an array using the following formula:

Element_Address = Base_Address + index * Element_Size

Element_Size is the number of bytes that each array element occupies.
Thus, if each array element is of type byte, the Element_Size field is 1 and
the computation is very simple. If each element is a word (or another 2-byte
type), then Element_Size is 2, and so on.

Consider the following Pascal array declaration:

var SixteenInts : array[0..15] of integer;

To access an element of the SixteenInts on a byte-addressable machine,
assuming 4-byte integers, you’d use this calculation:

Element_Address = AddressOf(SixteenInts) + index * 4

In assembly language (where you would actually have to do this calcu-
lation manually rather than having the compiler do it for you), you’d use
code like the following to access array element SixteenInts[index]:

mov(index, ebx);
mov(SixteenInts[ebx*4], eax);

172 Chapter 7

7.2.4  Multidimensional Arrays
Most CPUs can easily handle one-dimensional arrays. Unfortunately,
though, there’s no magic addressing mode that lets you easily access ele-
ments of multidimensional arrays. That takes some work and several
machine instructions.

Before discussing how to declare or access multidimensional arrays,
let’s look at how to implement them in memory. The first challenge is fig-
uring out how to store a multidimensional object in a one-dimensional
memory space.

Consider for a moment a Pascal array of the following form:

A:array[0..3,0..3] of char;

This array contains 16 bytes organized as four rows of four characters.
We need to map each of the 16 bytes in this array to each of the 16 contigu-
ous bytes in main memory. Figure 7-4 shows one way to do this.

0

1

2

3

Memory

0 1 2 3

Figure 7-4: Mapping a 4×4 array to sequential memory locations

The actual mapping is not important as long as it adheres to two rules:

•	 No two entries in the array can occupy the same memory location(s).

•	 Each element in the array must always map to the same memory location.

Therefore, you need a function with two input parameters—one for a
row and one for a column value—that produces an offset into a contigu-
ous block of 16 memory locations. Any function that satisfies these two
constraints will work fine. However, what you really want is a mapping
function that computes efficiently at runtime and works for arrays with any

Composite Data Types and Memory Objects 173

number of dimensions and any bounds on those dimensions. While there
are numerous functions that fit this bill, there are two categories that most
HLLs use: row-major ordering and column-major ordering.

Before I actually describe row- and column-major ordering, let’s go over
some terminology. The term row index describes a numeric index into a
row; that is, if a single row were treated as a one-dimensional array, the row
index would be the index into that array. Column index has a similar mean-
ing; if a single column were treated as a one-dimensional array, the column
index would be the index into that array. If you look back at Figure 7-4,
the numbers 0, 1, 2, and 3 above each column are the column numbers, and
those same values to the left of the rows are the row numbers. It’s easy to get
confused with this terminology because the column number is the same value
as the row index ; that is, the column number is equivalent to an index into
any one of the four rows. Similarly, a row number is the same value as a column
index. This book uses the terms row index and column index, but note that
other authors may use the terms row and column to mean row number and
column number.

7.2.4.1  Row-Major Ordering

Row-major ordering assigns array elements to successive memory locations
by moving across a row and then down the columns. Figure 7-5 demon-
strates this mapping.

0

1

2

3

Memory

15 A[3,3]
14 A[3,2]
13 A[3,1]
12 A[3,0]
11 A[2,3]
10 A[2,2]
9 A[2,1]
8 A[2,0]
7 A[1,3]
6 A[1,2]
5 A[1,1]
4 A[1,0]
3 A[0,3]
2 A[0,2]
1 A[0,1]
0 A[0,0]

A:array [0..3,0..3] of char;

0 1 2 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Figure 7-5: Row-major ordering

174 Chapter 7

Row-major ordering is the method employed by most high-level
programming languages, including Pascal, C/C++, Java, C#, Ada, and
Modula-2. This organization is very easy to implement and easy to use in
machine language. The conversion from a two-dimensional structure to
a linear sequence is very intuitive. Figure 7-6 provides another view of the
ordering of a 4×4 array.

Low addresses High addresses

0 1 2 3

0 1 2 3

4 5 6 7

4 5 6 7

8 9 10 11

8 9 10 11

12 13 14 15

12 13 14 15

Figure 7-6: Another view of row-major ordering for a 4×4 array

The function that converts the set of multidimensional array indices
into a single offset is a slight modification of the formula for computing the
address of an element of a one-dimensional array. The formula to compute
the offset for a 4×4 two-dimensional row-major-ordered array given an
access of this form:

A[colindex][rowindex]

is as follows:

Element_Address = Base_Address + (colindex * row_size + rowindex) * Element_Size

As usual, Base_Address is the address of the array’s first element (A[0][0]
in this case) and Element_Size is the size of an individual element of the array,
in bytes. row_size is the number of elements in one row of the array (4, in this
case, because each row has four elements). Assuming Element_Size is 1, this
formula computes the offsets shown in Table 7-2 from the base address.

Table 7-2: Offsets for Two-Dimensional Row-Major-Ordered Array

Column index Row index Offset into array

0 0 0

0 1 1

0 2 2

0 3 3

1 0 4

(continued)

Composite Data Types and Memory Objects 175

Table 7-2: Offsets for Two-Dimensional Row-Major-Ordered Array (continued)
Column index Row index Offset into array

1 1 5

1 2 6

1 3 7

2 0 8

2 1 9

2 2 10

2 3 11

3 0 12

3 1 13

3 2 14

3 3 15

The following C/C++ code access sequential memory locations in a
row-major-ordered array:

for(int col=0; col < 4; ++col)
{
 for(int row=0; row < 4; ++row)
 {
 A[col][row] = 0;
 }
}

For a three-dimensional array, the formula to compute the offset into
memory is only slightly more complex. Consider the following C/C++ array
declaration:

someType A[depth_size][col_size][row_size];

If you have an array access similar to A[depth_index][col_index][row_index],
then the computation that yields the offset into memory is:

Address =
Base + ((depth_index * col_size + col_index) * row_size + row_index) * Element_Size

Again, Element_Size is the size, in bytes, of a single array element.
If you’ve got an n-dimensional array declared in C/C++ as follows:

dataType A[bn-1][bn-2]...[b0];

and you wish to access the following element of this array:

A[an-1][an-2]...[a1][a0]

176 Chapter 7

then you can compute the address of a particular array element using the
following algorithm:

Address := an-1
for i := n-2 downto 0 do
 Address := Address * bi + ai
Address := Base_Address + Address * Element_Size

7.2.4.2  Column-Major Ordering

Column-major ordering, the other common array element address func-
tion, is used by FORTRAN and various dialects of BASIC (such as older ver-
sions of Microsoft BASIC) to index arrays. A column-major-ordered array is
organized as shown in Figure 7-7.

0

1

2

3

Memory

15 A[3,3]
14 A[2,3]
13 A[1,3]
12 A[0,3]
11 A[3,2]
10 A[2,2]
9 A[1,2]
8 A[0,2]
7 A[3,1]
6 A[2,1]
5 A[1,1]
4 A[0,1]
3 A[3,0]
2 A[2,0]
1 A[1,0]
0 A[0,0]

A:array [0..3,0..3] of char;

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 1 2 3

Figure 7-7: Column-major ordering

The formula for computing the address of an array element when
using column-major ordering is very similar to that for row-major order-
ing. The difference is that you reverse the order of the index and size vari-
ables in the computation. That is, rather than working from the leftmost
index to the rightmost, you operate from right to left.

For a two-dimensional column-major array, the formula is as follows:

Element_Address =
 Base_Address + (rowindex * col_size + colindex) * Element_Size

Composite Data Types and Memory Objects 177

For a three-dimensional column-major array, the formula is the following:

Element_Address =
 Base_Address +
 ((rowindex * col_size + colindex) * depth_size + depthindex) * Element_Size

And so on. Other than using these new formulas, accessing elements of
an array using column-major ordering is identical to accessing arrays using
row-major ordering.

7.2.4.3  Declaring Multidimensional Arrays

An “m × n” array has m × n elements and requires m × n × Element_Size bytes of
storage. To allocate storage for an array, you must reserve this amount of
memory. With one-dimensional arrays, the syntax is very similar among the
different HLLs. However, their syntax starts to diverge with multidimen-
sional arrays.

In C, C++, and Java, you use the following syntax to declare a multidi-
mensional array:

data_type array_name [dim1][dim2] . . . [dimn];

For example, here’s a three-dimensional array declaration in C/C++:

int threeDInts[4][2][8];

This example creates an array with 64 elements organized with a depth
of 4 by 2 rows by 8 columns. Assuming each int object requires 4 bytes, this
array consumes 256 bytes of storage.

Pascal’s syntax supports two equivalent ways of declaring multidimen-
sional arrays:

var
 threeDInts : array[0..3] of array[0..1] of array[0..7] of integer;
 threeDInts2 : array[0..3, 0..1, 0..7] of integer;

C# uses the following syntax to define multidimensional arrays:

type [,]array_name = new type [dim1,dim2] ;
type [,,]array_name = new type [dim1,dim2,dim3] ;
type [,,,] array_name = new type [dim1,dim2,dim3,dim4] ;
etc.

Semantically, there are only two major differences among different
languages. The first is whether the array declaration specifies the overall
size of each array dimension or the upper and lower bounds. The second is
whether the starting index is 0, 1, or a user-specified value.

178 Chapter 7

Swift doesn’t really support multidimensional arrays in the traditional
sense. It allows you to create arrays of arrays (of arrays . . .), which can provide
the same functionality as multidimensional arrays, but behave in subtly differ-
ent ways. See “Swift Array Implementation” on page 179 for more details.

7.2.4.4  Accessing Elements of a Multidimensional Array

It’s so easy to access an element of a multidimensional array in an HLL that
many programmers do so without considering the associated costs. In this
section, to give you a clearer picture of those costs, we’ll look at some of the
assembly language sequences you’ll need to access elements of a multidi-
mensional array.

Consider again the C/C++ declaration of the ThreeDInts array from the
previous section:

int ThreeDInts[4][2][8];

In C/C++, if you wanted to set element [i][j][k] of this array to n, you’d
probably use the following statement:

ThreeDInts[i][j][k] = n;

This statement, however, hides a great deal of complexity. Recall the
formula needed to access an element of a three-dimensional array:

Element_Address =
 Base_Address +
 ((rowindex * col_size + colindex) * depth_size + depthindex) *
 Element_Size

The ThreeDInts example does not avoid this calculation, it only hides it
from you. The machine code that the C/C++ compiler generates is similar
to the following:

intmul(2, i, ebx); // EBX = 2 * i
add(j, ebx); // EBX = 2 * i + j
intmul(8, ebx); // EBX = (2 * i + j) * 8
add(k, ebx); // EBX = (2 * i + j) * 8 + k
mov(n, eax);
mov(eax, ThreeDInts[ebx*4]); // ThreeDInts[i][j][k] = n

Actually, ThreeDInts is special. The sizes of all the array dimensions
are nice powers of 2. This means that the CPU can use shifts instead of
multiplication instructions to multiply EBX by 2 and by 4 in this example.
Because shifts are often faster than multiplication, a decent C/C++ com-
piler will generate the following code:

mov(i, ebx);
shl(1, ebx); // EBX = 2 * i
add(j, ebx); // EBX = 2 * i + j

Composite Data Types and Memory Objects 179

shl(3, ebx); // EBX = (2 * i + j) * 8
add(k, ebx); // EBX = (2 * i + j) * 8 + k
mov(n, eax);
mov(eax, ThreeDInts[ebx*4]); // ThreeDInts[i][j][k] = n

Note that a compiler can use this faster code only if an array dimension
is a power of 2; this is why many programmers attempt to declare arrays with
those dimensions. Of course, if you must declare extra elements in the array
to achieve this goal, you may wind up wasting space (especially with higher-
dimensional arrays) to achieve only a small increase in speed.

For example, if you need a 10×10 array and you’re using row-major
ordering, you could create a 10×16 array to allow the use of a shift (by 4)
instruction rather than a multiply (by 10) instruction. When using column-
major ordering, you’d probably want to declare a 16×10 array to achieve
the same effect, since row-major calculation doesn’t use the size of the first
dimension when calculating an offset into an array, and column-major cal-
culation doesn’t use the size of the second dimension when calculating an
offset. In either case, however, the array would wind up having 160 elements
instead of 100 elements. Only you can decide if this extra space is worth the
minor improvement in speed.

7.2.4.5  Swift Array Implementation

Swift arrays are different from those found in many other languages. First of
all, Swift arrays are an opaque type based on struct objects (rather than just
a collection of elements in memory). Swift doesn’t guarantee that array ele-
ments appear in continuous memory locations. However, the language pro-
vides the following ContiguousArray type specification, which guarantees they’ll
appear in contiguous memory locations (as in C/C++ and other languages):

var array_name = ContiguousArray<element_type>()

So far, so good. With contiguous arrays, the storage of the actual array
data matches other languages. However, when you start declaring multidi-
mensional arrays, the similarity ends. As noted earlier, Swift doesn’t actually
have multidimensional arrays; instead, it supports arrays of arrays.

For most programming languages, where an array object is strictly the
sequence of array elements in memory, an array of arrays and a multidi-
mensional array are the same thing. However, Swift uses descriptor (struct-
based) objects to specify an array. Like string descriptors, Swift arrays
consist of a data structure containing various fields (like the current num-
ber of array elements and one or more pointers to the actual array data).

When you create an array of arrays, you’re actually creating an array of
these descriptors, with each pointing at a subarray. Consider the following two
(equivalent) Swift array-of-arrays declarations (a1 and a2) and sample program:

import Foundation

var a1 = [[Int]]()

180 Chapter 7

var a2 = ContiguousArray<Array<Int>>()
a1.append([1,2,3])
a1.append([4,5,6])
a2.append([1,2,3])
a2.append([4,5,6])

print(a1)
print(a2)
print(a1[0])
print(a1[0][1])

Running this program produces the following output:

[[1, 2, 3], [4, 5, 6]]
[[1, 2, 3], [4, 5, 6]]
[1, 2, 3]
2

For two-dimensional arrays you would expect this type of output.
However, internally, a1 and a2 are one-dimensional arrays with two elements
each. Those two elements are array descriptors that themselves point at
arrays, each containing three elements.

It is unlikely that the six array elements associated with a2 will appear
in contiguous memory locations, even though a2 is a ContiguousArray type.
The two array descriptors held in a2 may appear in contiguous memory
locations, but that doesn’t necessarily carry over to the six data elements
at which they collectively point.

Because Swift allocates arrays dynamically, the rows in a two-dimensional
array could have differing element counts. Consider the following modifica-
tion to the previous Swift program:

import Foundation

var a2 = ContiguousArray<Array<Int>>()
a2.append([1,2,3])
a2.append([4,5])

print(a2)
print(a2[0])
print(a2[0][1])

Running this program produces the following output:

[[[1, 2, 3], [4, 5]]
[1, 2, 3]
2

The two rows in the a2 array have differing sizes. This could be useful
or a source of defects, depending on what you’re trying to accomplish.

Composite Data Types and Memory Objects 181

One way to get standard multidimensional array storage in Swift is to
declare a one-dimensional ContiguousArray with sufficient elements for all
the elements of the multidimensional array. Then use the row-major (or
column-major) functionality, without the element size operand, to compute
the index into the array.

7.3  Records/Structures
Another major composite data structure is the Pascal record or C/C++ struc-
ture. The Pascal terminology is probably better, as it avoids confusion with
the term data structure, so we’ll generally use record here.

An array is homogeneous, meaning that its elements are all of the same
type. A record, on the other hand, is heterogeneous—its elements can have
differing types. The purpose of a record is to let you encapsulate logically
related values into a single object.

Arrays let you select a particular element via an integer index. With
records, you must select an element, known as a field, by the field’s name.
Each of the field names within the record must be unique; that is, you can’t
use the same field name two or more times in the same record. However, all
field names are local to their record, and you can reuse those names else-
where in the program.

7.3.1  Records in Pascal/Delphi
Here’s a typical record declaration for a Student data type in Pascal/Delphi:

type
 Student =
 record
 Name: string (64);
 Major: smallint; // 2-byte integer in Delphi
 SSN: string (11);
 Mid1: smallint;
 Midt: smallint;
 Final: smallint;
 Homework: smallint;
 Projects: smallint;
 end;

Many Pascal compilers allocate all of the fields in contiguous memory
locations. This means that Pascal will reserve the first 65 bytes for the name,3
the next 2 bytes for the major code, the next 12 bytes for the Social Security
number, and so on.

3. Pascal strings usually require an extra byte, in addition to all the characters in the string,
to encode the length.

182 Chapter 7

7.3.2  Records in C/C++
Here’s the same declaration in C/C++:

typedef
 struct
 {
 char Name[65]; // Room for a 64-character zero-terminated string.
 short Major; // Typically a 2-byte integer in C/C++
 char SSN[12]; // Room for an 11-character zero-terminated string.
 short Mid1;
 short Mid2;
 short Final;
 short Homework;
 short Projects
 } Student;

Because C++ structures are actually a specialized form of the class dec-
laration, they behave differently from C structures and may include extra
data in memory that is not present in the C variant. (This is why the mem-
ory storage for structures in C++ may be different; see “Memory Storage
of Records” on page 184). There are also differences in namespaces and
other minor distinctions between C and C++ structures.

As it turns out, though, you can tell C++ to compile a true C struct defi-
nition using the extern "C" block as follows:

extern "C"
{
 struct
 {
 char Name[65]; // Room for a 64-character zero-terminated string.
 short Major; // Typically a 2-byte integer in C/C++
 char SSN[12]; // Room for an 11-character zero-terminated string.
 short Mid1;
 short Mid2;
 short Final;
 short Homework;
 short Projects;
 } Student;
}

N O T E 	 Java doesn’t support anything corresponding to the C struct—it supports only classes
(see “Classes” on page 192).

Composite Data Types and Memory Objects 183

7.3.3  Records in HLA
In HLA, you can also create structure types using the record/endrecord dec-
laration. For example, you would encode the record from the previous sec-
tions as follows:

type
 Student:
 record
 Name: char[65]; // Room for a 64-character
 // zero-terminated string.
 Major: int16;
 SSN: char[12]; // Room for an 11-character
 // zero-terminated string.
 Mid1: int16;
 Mid2: int16;
 Final: int16;
 Homework: int16;
 Projects: int16;
 endrecord;

As you can see, the HLA declaration is very similar to the Pascal dec-
laration. To stay consistent with the Pascal declaration, this example uses
character arrays rather than strings for the Name and SSN (Social Security
number) fields. In a typical HLA record declaration, you’d probably use a
string type for at least the Name field (keeping in mind that a string variable
is a 4-byte pointer).

7.3.4  Records (Tuples) in Swift
Although Swift doesn’t support the concept of a record, you can simulate
one using a Swift tuple. While Swift does not store record (tuple) elements
in memory in the same way as other programming languages (see “Memory
Storage of Records” on page 184), tuples are a useful construct if you want
to create a composite/aggregate data type without the overhead of a class.

A Swift tuple is simply a list of values in the following form:

(value1, value2, ..., valuen)

The types of the values within the tuple don’t need to be identical.
Swift typically uses tuples to return multiple values from functions.

Consider the following short Swift code fragment:

func returns3Ints()->(Int, Int, Int)
{
 return(1, 2, 3)
}
var (r1, r2, r3) = returns3Ints();
print(r1, r2, r3)

184 Chapter 7

The returns3Ints() function returns three values (1, 2, and 3). The
following statement stores those three integer values into r1, r2, and r3,
respectively:

var (r1, r2, r3) = returns3Ints();

You can also assign tuples to a single variable and access “fields” of the
tuple using integer indices as the field names:

let rTuple = ("a", "b", "c")
print(rTuple.0, rTuple.1, rTuple.2) // Prints "a b c"

Of course, using field names like .0 results in very hard-to-maintain
code. While you could create records out of tuples, referring to the fields by
an integer index is rarely suitable in real-world programs.

Fortunately, Swift allows you to assign each tuple field a label, which
you can then use instead of an integer index to refer to the field. Consider
the following Swift code fragment:

typealias record = (field1:Int, field2:Int, field3:Float64)

var r = record(1, 2, 3.0)
print(r.field1, r.field2, r.field3) // prints "1 2 3.0"

Using Swift tuples this way is the syntactical equivalent of using a Pascal
or HLA record (or a C structure). Keep in mind, however, that the stor-
age of the tuple in memory might not map to the same layout as a record
or structure in these other languages. Like arrays in Swift, tuples are an
opaque type, without a guaranteed definition for how Swift will store them
in memory.

7.3.5  Memory Storage of Records
The following Pascal example demonstrates a typical Student variable
declaration:

var
 John: Student;

Given the earlier declaration for the Pascal Student data type, this allo-
cates 81 bytes of storage laid out in memory as shown in Figure 7-8.

sName

(65 bytes)

Major

(2 bytes)

SSN

(12 bytes)

Midterm1

(2 bytes)
Final

(2 bytes)

(2 bytes)

Projects

(2 bytes)

John

(2 bytes)
Midterm2 Homework

Figure 7-8: Student data structure storage in memory

Composite Data Types and Memory Objects 185

If the label John corresponds to the base address of this record, then the
Name field is at offset John+0, the Major field is at offset John+65, the SSN field is
at offset John+67, and so on.

Most programming languages let you refer to a record field by its name
rather than by its numeric offset into the record. The typical syntax for field
access uses the dot operator to select a field from a record variable. Given the
variable John from the previous example, here’s how you could access vari-
ous fields in this record:

John.Mid1 = 80; // C/C++ example
John.Final := 93; (* Pascal example *)
mov(75, John.Projects); // HLA example

Figure 7-8 suggests that all fields of a record appear in memory in
the order of their declaration, and this is usually the case in practice. In
theory, though, a compiler can freely place the fields anywhere in memory
that it chooses. The first field usually appears at the lowest address in the
record, the second field appears at the next highest address, the third
field follows the second field in memory, and so on.

Figure 7-8 also suggests that compilers pack the fields into adjacent
memory locations with no gaps between them. While this is true for many
languages, it’s certainly not the most common memory organization for a
record. For performance reasons, most compilers actually align the fields
of a record on appropriate memory boundaries. The exact details vary by
language, compiler implementation, and CPU, but a typical compiler places
fields at an offset within the record’s storage area that is “natural” for that
particular field’s data type. On the 80x86, for example, compilers that fol-
low the Intel ABI (application binary interface) allocate 1-byte objects at
any offset within the record, words only at even offsets, and double-word
or larger objects on double-word boundaries. Although not all 80x86 com-
pilers support the Intel ABI, most do, which allows records to be shared
among functions and procedures written in different languages on the
80x86. Other CPU manufacturers provide their own ABI for their proces-
sors, and programs that adhere to an ABI can share binary data at runtime
with other programs that adhere to the same ABI.

In addition to aligning the fields of a record at reasonable offset bound-
aries, most compilers also ensure that the length of the entire record is a
multiple of 2, 4, 8, or even 16 bytes. As mentioned earlier in the chapter,
they accomplish this by appending padding bytes to fill out the record’s
size. This ensures that the record’s length is an even multiple of the size
of the largest scalar (noncomposite data type) object in the record or the
CPU’s optimal alignment size, whichever is smaller. For example, if a record
has fields whose lengths are 1, 2, 4, 8, and 10 bytes, then an 80x86 compiler
generally will pad the record’s length so that it is an even multiple of 8. This
allows you to create an array of records and be assured that each record in
the array starts at a reasonable address in memory.

186 Chapter 7

Although some CPUs don’t allow access to objects in memory at mis-
aligned addresses, many compilers allow you to disable the automatic
alignment of fields within a record. Generally, the compiler has an option
you can use to globally disable this feature. Many compilers also provide a
pragma or a packed keyword that lets you turn off field alignment on a record-
by-record basis. Disabling the automatic field alignment feature may save
some memory by eliminating the padding bytes between the fields and at
the end of the record (again, provided that field misalignment is accept-
able on your CPU). However, the program may run a little bit slower when
it needs to access misaligned values in memory.

One reason to use a packed record is to gain manual control over the
alignment of the record’s fields. For example, suppose you have a couple of
functions written in two different languages, and both functions need to
access some data in a record. Suppose also that the two compilers for these
functions do not use the same field alignment algorithm. A record declara-
tion like the following (in Pascal) may not be compatible with the way both
functions access the record data:

type
 aRecord: record
 bField : byte; (* assume Pascal compiler supports a byte type *)
 wField : word; (* assume Pascal compiler supports a word type *)
 dField : dword; (* assume Pascal compiler supports a double-word type *)
 end; (* record *)

The problem here is that the first compiler could use the offsets 0, 2,
and 4 for the bField, wField, and dField fields, respectively, while the second
compiler might use offsets 0, 4, and 8.

Suppose, however, that the first compiler allows you to specify the packed
keyword before the record keyword, causing the compiler to store each field
immediately following the previous one. Although using the packed keyword
doesn’t make the records compatible with both functions, it does allow you
to manually add padding fields to the record declaration, as follows:

type
 aRecord: packed record
 bField :byte;
 padding0 :array[0..2] of byte; (* add padding to dword align wField *)
 wField :word;
 padding1 :word; (* add padding to dword align dField *)
 dField :dword;
 end; (* record *)

Adding padding manually can make code maintenance a real chore.
However, if incompatible compilers need to share data, it’s a trick worth
knowing. For the exact details on packed records, consult your language’s
reference manual.

Composite Data Types and Memory Objects 187

7.4  Discriminant Unions
A discriminant union (or just union) is very similar to a record. Like records,
unions have fields that you access using dot notation. In many languages,
the only syntactical difference between records and unions is the use of the
keyword union rather than record. Semantically, however, there’s a big differ-
ence between them. In a record, each field has its own offset from the base
address of the record, and the fields do not overlap. In a union, however, all
fields have the same offset, 0, and all the fields of the union overlap. As a
result, the size of a record is the sum of the sizes of all the fields (plus, possi-
bly, some padding bytes), whereas a union’s size is the size of its largest field
(plus, possibly, some padding bytes at the end).

Because the fields of a union overlap, you might think it’s of little use in
a real-world program. After all, if the fields all overlap, then changing the
value of one field changes the values of all the others as well. This means
that union fields are mutually exclusive—that is, you can use only one at a
time. While it’s true that this makes unions less generally applicable than
records, they still have many uses.

7.4.1  Unions in C/C++
Here’s an example of a union declaration in C/C++:

typedef union
{
 unsigned int i;
 float r;
 unsigned char c[4];

} unionType;

Assuming the C/C++ compiler allocates 4 bytes for unsigned integers,
the size of a unionType object will be 4 bytes (because all three fields are
4-byte objects).

N O T E 	 Unfortunately, Java doesn’t support discriminant unions due to the safety issues involved.
You can implement some features of discriminant unions using subclassing, but Java
does not support explicitly sharing memory locations among different variables.

7.4.2  Unions in Pascal/Delphi
Pascal/Delphi use case-variant records to create a discriminant union. The
syntax for a case-variant record is as follows:

type
 typeName =
 record
 <<nonvariant/union record fields go here>>

188 Chapter 7

 case tag of
 const1:(field_declaration);
 const2:(field_declaration);
 .
 .
 .
 constn:(field_declaration) (* no semicolon follows
 the last field *)

 end;

In this example, tag is either a type identifier (such as boolean, char, or
some user-defined type) or a field declaration of the form identifier:type.
If the tag item takes this latter form, then identifier becomes another field
of the record, not a member of the variant section (those declarations follow-
ing the case), and has the specified type. In addition, the Pascal compiler
could generate code that raises an exception whenever the application
attempts to access any of the variant fields except the one specified by the
value of the tag field. In practice, though, almost no Pascal compilers do
this check. Still, keep in mind that the Pascal language standard suggests
that compilers should do it, so some compilers out there might.

Here’s an example of two different case-variant record declarations
in Pascal:

type
 noTagRecord=
 record
 someField: integer;
 case boolean of
 true:(i:integer);
 false:(b:array[0..3] of char)
 end; (* record *)

 hasTagRecord=
 record
 case which:0..2 of
 0:(i:integer);
 1:(r:real);
 2:(c:array[0..3] of char)
 end; (* record *)

As you can see in the hasTagRecord union, a Pascal case-variant record
does not require any normal record fields. This is true even if you do not
have a tag field.

Composite Data Types and Memory Objects 189

7.4.3  Unions in Swift
Swift does not directly support the concept of a discriminant union. Unlike
Java, however, Swift does provide an alternative—equivalent to Pascal’s
case-variant record—that supports the safe use of unions: enumerated
data types.

Consider the following Swift enumeration definition:

enum EnumType
{
 case a
 case b
 case c
}

let et = EnumType.b
print(et) // prints "b" on standard output

So far, this is just an enumerated data type that has nothing to do with
unions. However, we can attach a value (actually, a tuple of values) to each
case in an enumerated data type. Consider the following Swift program,
which demonstrates enum associated values:

import Foundation

enum EnumType
{
 case isInt(Int)
 case isReal(Double)
 case isString(String)
}

func printEnumType(_ et:EnumType)
{
 switch(et)
 {
 case .isInt(let i):
 print(i)
 case .isReal(let r):
 print(r)
 case .isString(let s):
 print(s)
 }
}

let etI = EnumType.isInt(5)
let etF = EnumType.isReal(5.0)
let etS = EnumType.isString("Five")

print(etI, etF, etS)
printEnumType(etI)
printEnumType(etF)
printEnumType(etS)

190 Chapter 7

This program produces the following output:

isInt(5) isReal(5.0) isString("Five")
5
5.0
Five

A variable of type EnumType takes on one of the enumeration values isInt,
isReal, or isString (these are the three constants of type EnumType). In addition
to whatever internal encoding Swift chooses for these three constants (prob-
ably 0, 1, and 2, though their actual values are irrelevant), Swift associates an
integer value with isInt, a 64-bit double-precision floating-point value with
isReal, and a string value with isString. The three let statements assign
the appropriate values to EnumType variables; as you can see, to assign the
value you include it in parentheses after the constant’s name. You can then
extract the value using a switch statement.

7.4.4  Unions in HLA
HLA supports unions as well; here’s a typical union declaration:

type
 unionType:
 union
 i: int32;
 r: real32;
 c: char[4];
 endunion;

7.4.5  Memory Storage of Unions
As noted previously, the big difference between a union and a record is the
fact that records allocate storage for each field at different offsets, whereas
unions overlay all of the fields at the same offset in memory. For example,
consider the following HLA record and union declarations:

type
 numericRec:
 record
 i: int32;
 u: uns32;
 r: real64;
 endrecord;
 numericUnion:
 union
 i: int32;
 u: uns32;
 r: real64;
 endunion;

Composite Data Types and Memory Objects 191

If you declare a variable, n, of type numericRec, you access the fields as
n.i, n.u, and n.r, exactly as though you had declared the n variable to be
type numericUnion. However, the size of a numericRec object is 16 bytes, because
the record contains two double-word fields and a quad-word (real64) field.
The size of a numericUnion variable, though, is 8 bytes. Figure 7-9 shows the
memory arrangement of the i, u, and r fields in both the record and union.

i u r

r

i, u

Base + 0 Base + 8 Base + 16

numericUnion variable

numericRec variable

Figure 7-9: Layout of a union versus a record variable

Note that Swift enum types are opaque. They may not store the associated
values from each enumeration case in the same memory address—and even
if they currently do, there’s no guarantee they will in future versions of Swift.

7.4.6  Other Uses of Unions
In addition to conserving memory, another common reason why program-
mers use unions is to create aliases in their code. An alias is a second name
for some memory object. Although aliases are often a source of confusion
in a program and should be used sparingly, sometimes it’s convenient to
use them. For example, in some section of your program you might need
to constantly use type coercion to refer to a particular object. To avoid this,
you could use a union variable with each field representing one of the dif-
ferent types you want to use for the object. Consider the following HLA
code fragment:

type
 CharOrUns:
 union
 c:char;
 u:uns32;
 endunion;

static
 v:CharOrUns;

192 Chapter 7

With a declaration like this, you can manipulate an uns32 object by
accessing v.u. If, at some point, you need to treat the LO byte of this uns32
variable as a character, you can do so by simply accessing the v.c variable
as follows:

mov(eax, v.u);
stdout.put("v, as a character, is '", v.c, "'" nl);

Another common practice is to use unions to disassemble a larger object
into its constituent bytes. Consider the following C/C++ code fragment:

typedef union
{
 unsigned int u;
 unsigned char bytes[4];
} asBytes;

asBytes composite;
 .
 .
 .
 composite.u = 1234567890;
 printf
 (
 "HO byte of composite.u is %u, LO byte is %u\n",
 composite.u[3],
 composite.u[0]
);

Although composing and decomposing data types this way is a use-
ful trick to employ every now and then, keep in mind that this code isn’t
portable. The HO and LO bytes of a multibyte object appear at different
addresses on big-endian versus little-endian machines. As a result, this
code fragment works fine on little-endian machines, but fails to display the
correct bytes on big-endian CPUs. Any time you use unions to decompose
larger objects, you should be aware of this limitation. Still, this trick is usu-
ally much more efficient than using shift lefts, shift rights, and AND opera-
tions, so you’ll see it used quite a bit.

N O T E 	 Swift’s type safety system does not allow you to access a collection of bits as different
types using discriminant unions. If you really want to convert one type to another by
raw bit assignment, you can use the Swift unsafeBitCast() function. See the Swift
standard library documentation for more details.

7.5  Classes
At first glance, classes in a programming language like C++, Object Pascal,
or Swift look like they are simple extensions to records (or structures) and
should have a similar memory organization. Indeed, most programming

Composite Data Types and Memory Objects 193

languages do organize class data fields in memory very similarly to records
and structures. The compiler lays out the fields in sequential memory loca-
tions as it encounters them in a class declaration. However, classes have sev-
eral additional features that you won’t find in pure record and structures;
specifically, member functions (functions declared inside a class), inheri-
tance, and polymorphism have a big impact on how compilers implement
class objects in memory.

Consider the following HLA structure and HLA class declarations:

type
 student: record
 sName: char[65];
 Major: int16;
 SSN: char[12];
 Midterm1: int16;
 Midterm2: int16;
 Final: int16;
 Homework: int16;
 Projects: int16;
 endrecord;

 student2: class
 var
 sName: char[65];
 Major: int16;
 SSN: char[12];
 Midterm1: int16;
 Midterm2: int16;
 Final: int16;
 Homework: int16;
 Projects: int16;

 method setName(source:string);
 method getName(dest:string);
 procedure create; // Constructor for class
 endclass;

As with records, HLA allocates storage for all var fields in a class sequen-
tially. Indeed, if a class consists only of var data fields, its memory represen-
tation is nearly identical to that of a corresponding record declaration (see
Figures 7-10 and 7-11).

sName

(65 bytes)

Major

(2 bytes)

SSN

(12 bytes)

Midterm1

(2 bytes)
Final

(2 bytes)

Homework

(2 bytes)

Projects

(2 bytes)

Midterm2

(2 bytes)

Figure 7-10: Layout of the HLA student record

194 Chapter 7

sName

(65 bytes)

Major

(2 bytes)
VMT pointer

(4 bytes)

SSN

(12 bytes)

Midterm1

(2 bytes)
Final

(2 bytes)

Homework

(2 bytes)

Projects

(2 bytes)

Midterm2

(2 bytes)

Figure 7-11: Layout of the HLA student2 class

As you can see from these figures, the difference is the presence of the
VMT pointer field at the beginning of the student2 class data. VMT, which
stands for virtual method table, is a pointer to an array of pointers to the meth-
ods (functions) associated with the class.4 In the student2 example, the VMT
field would point at a table containing two 32-bit pointers—one pointing
at the setName() method and one pointing at the getName() method. When a
program calls one of the virtual methods setName() or getName() in this class,
it does not call them directly at their address in memory. Instead, it fetches
the address of the VMT from the object in memory, uses that pointer to
fetch the specific method address (setName() will likely be at the first index
into the VMT and getName() at the second), and then use the fetched
address to call the method indirectly.

7.5.1  Inheritance
Obtaining the method address from the VMT is a lot of work. Why would
the compiled code do this rather than calling the method directly? The
reason is because of a pair of magical features that classes and objects
support: inheritance and polymorphism. Consider the following HLA
class declaration:

type
 student3: class inherits(student2)
 var
 extraTime: int16; // Extra time allotted for exams
 override method setName;
 override procedure create;
 endclass;

The student3 class inherits all the data fields and methods from the
student2 class (as specified by the inherits clause in the class declaration)
and then defines a new data field, extraTime, that allots extra time, in min-
utes, for the student during examinations. The student3 declaration also
defines a new method, setName(), that replaces the original setName() method
in the student2 class (it also defines an overridden create procedure, but
we’ll ignore this for now). The memory layout for a student3 object appears
in Figure 7-12.

4. Note that create is a class procedure, not a method. Class procedures do not appear in
the VMT.

Composite Data Types and Memory Objects 195

sName

(65 bytes)

Major

(2 bytes)(4 bytes)

SSN

(12 bytes)

Midterm1

(2 bytes)
Final

(2 bytes)

Homework

(2 bytes)
extraTime

(2 bytes)

Projects

(2 bytes)

Midterm2

(2 bytes)

VMT pointer

Figure 7-12: Layout of the HLA student3 class

In memory, the difference between the student2 and student3 objects is
the extra 2 bytes at the end of the student3 data structure and the value held
by the VMT field. For student2 objects the VMT field points at the VMT for
the student2 class (there is only one actual student2 VMT in memory, and all
student2 objects contain a pointer to it). If we have a pair of student2 objects
named John and Joan, their VMT fields will both contain the address of the
same VMT in memory, which has the information shown in Table 7-3.

Table 7-3: VMT Entries for student2 VMT

Offset5 Entry

0 (bytes) Pointer to the (student2) setName() method

4 (bytes) Pointer to the getName() method

Now consider the case where we have a student3 object in memory (let’s
name it Jenny). The memory layout for Jenny is similar to that of John and
Joan (see Figures 7-11 and 7-12). However, whereas the VMT fields in John
and Joan both contain the same value (a pointer to the student2 VMT), the
VMT field for the Jenny object will point at the student3 VMT (see Table
7-4).

Table 7-4: VMT Entries for student3 VMT

Offset Entry

0 (bytes) Pointer to the (student3) setName() method

4 (bytes) Pointer to the getName() method

Although the student3 VMT looks almost identical to the student2 VMT,
there is one critical difference: the first entry in Table 7-3 points at the
student2 setName() method, whereas the first entry in Table 7-4 points at
the student3 setName() method.

Adding fields inherited from a base class to another class must be done
carefully. Remember, an important attribute of a class that inherits fields
from a base class is that you can use a pointer to the base class to access

5. In assembly language, indices into the table are byte indices. Because HLA pointers are 4
bytes, each offset in the table is 4 bytes greater than the offset of the previous entry.

196 Chapter 7

its fields, even if the pointer contains the address of some other class (that
inherits the fields from the base class). Consider the following classes:

type
 tBaseClass: class
 var
 i:uns32;
 j:uns32;
 r:real32;

 method mBase;
 endclass;

 tChildClassA: class inherits(tBaseClass)
 var
 c:char;
 b:boolean;
 w:word;

 method mA;
 endclass;

 tChildClassB: class inherits(tBaseClass)
 var
 d:dword;
 c:char;
 a:byte[3];

 endclass;

Because both tChildClassA and tChildClassB inherit the fields of tBaseClass,
these two child classes include the i, j, and r fields as well as their own spe-
cific fields.

For inheritance to work properly, the i, j, and r fields must appear at
the same offsets in all child classes as they do in tBaseClass. This way, an
instruction of the form mov((type tBaseClass [ebx]).i, eax); will correctly
access the i field even if EBX points at an object of type tChildClassA or
tChildClassB. Figure 7-13 shows the layout of the child and base classes.

Note that the new fields in the two child classes bear no relation to
one another, even if they have the same name (for example, the c fields in
the two child classes do not lie at the same offset). Although the two child
classes share the fields they inherit from their common base class, any new
fields they add are unique and separate. Two fields in different classes share
the same offset only by coincidence if those fields are not inherited from a
common base class.

All classes (even those that aren’t related to one another) place the
pointer to the VMT at the same offset within the object (typically offset 0).
There is a single VMT associated with each class in a program; even when
classes inherit fields from some base class, their VMT (generally) differs
from the base class’s VMT. Figure 7-14 shows how objects of type tBaseClass,
tChildClassA, and tChildClassB point at their specific VMTs.

Composite Data Types and Memory Objects 197

VMT

i

j

r

VMT

i

j

r

VMT

i

j

r

b

c

w

d

c

a

Derived (child) classes locate their inherited fields at the same offsets as those
fields in the base class.

tBaseClass tChildClassA tChildClassB

Figure 7-13: Layout of base and child classes in memory

B1
tBaseClass:VMT

CA
tChildClassA:VMT

tChildClassB:VMT

CB

var

B1: tBaseClass
CA: tChildClassA
CB: tChildClassB
CB2: tChildClassB
CA2: tChildClassA

CA2

CB2

VMT pointer

Figure 7-14: VMT references from objects

Whenever a child class inherits fields from some base class, the child
class’s VMT also inherits entries from the base class’s VMT. For example,
the VMT for the class tBaseClass contains only a single entry—a pointer to
the method tBaseClass.mBase(). The VMT for the class tChildClassA contains

198 Chapter 7

two entries: pointers to tBaseClass.mBase() and tChildClassA.mA(). Because
tChildClassB doesn’t define any new methods or iterators, its VMT contains
only a single entry: a pointer to the tBaseClass.mBase() method. Note that
tChildClassB’s VMT is identical to tBaseclass’s table. Nevertheless, HLA pro-
duces two distinct VMTs. Figure 7-15 shows this relationship.

tChildClassBtBaseClass tChildClassA

Virtual method tables for derived (inherited) classes

Offset 0

Offset 4mA

mBasemBase mBase

Figure 7-15: Layout of base and child classes in memory

7.5.2  Class Constructors
Before you can actually call any methods in a VMT, you have to make sure
that the table is actually present in memory (holding the addresses of the
methods defined in a class), and you also have to initialize the VMT pointer
field in every class you create. If you’re using an HLL (such as C++, C#, Java,
or Swift), the compiler will automatically generate the VMTs for you when
you compile the class definitions. As for initializing the VMT pointer field
in the object itself, that’s usually handled by the default constructor (object
initialization function) for each class. All this work is hidden from an HLL
programmer. That’s why these class examples are using HLA—in assembly
language (even a high-level assembly language), very little is hidden from
you. With HLA examples, then, you get to see exactly how objects work and
the cost of using them.

To begin with, HLA does not automatically create the VMTs for you.
You must explicitly declare them in your code for each class you define. For
the student2 and student3 examples, you can declare them as follows:

readonly
 VMT(student2);
 VMT(student3);

Technically, these don’t have to appear in a readonly section (they could
also appear in an HLA static section); however, you’ll never change the
VMT values, so this section is a good place to declare them.

The VMT declarations in this example define two symbols you can access
in the HLA program: student2._VMT_ and student3._VMT_. These symbols corre-
spond to the address of the first entry in each VMT. Somewhere in your code
(typically in the constructor procedure), you need to initialize the VMT field
of the object with the address of the VMT for the associated class. The HLA
convention for the class constructors appears in the following code:

procedure student2.create; @noframe;
begin create;

Composite Data Types and Memory Objects 199

 push(eax);

 // ESI will contain NULL if this is called as "student2.create();"
 // ESI will not be NULL if you call create from an object reference,
 // such as "John.create();" (in which case ESI will point at the object,
 // John in this case).

 if(esi == NULL) then

 // If a class call, allocate storage for the object
 // on the heap.

 mov(malloc(@size(student2)), esi);

 endif;
 mov(&student2._VMT_, this._pVMT_);

 // If you're going to initialize other fields of the class, do that here.

 pop(eax);
 ret();

end create;

procedure student3.create; @noframe;
begin create;

 push(eax);
 if(esi == NULL) then

 mov(malloc(@size(student3)), esi);

 endif;

 // Must call the base constructor to do any class initialization
 // it requires.

 (type student2 [esi]).create(); // Must call the base class constructor.

 // Might want to initialize any student3-specific fields (such
 // as extra time) here:

 // student2.create filled in the VMT pointer with the address of the
 // student2 VMT. It really needs to point at the student3 VMT.
 // Fix that here.

 mov(&student3._VMT_, this._pVMT_);
 pop(eax);
 ret();

end create;

200 Chapter 7

student2.create() and student3.create() are class procedures (also known
as static class methods or functions in some languages). The main point to
class procedures is that the code calls them directly, not indirectly (that
is, through the VMT). So, if you call John.create() or Joan.create(), you’re
always going to call the student2.create() class procedure. Likewise, if you
call Jenny.create()—or any student3 variable’s create constructor—you’ll
always be calling the student3.create() procedure.

The two statements:

mov(&student2._VMT_, this._pVMT_);

mov(&student3._VMT_, this._pVMT_);

copy the address of the VMT (for the given class) into the VMT pointer
field (this._pVMT_) in the objects being created.

Note the following statement in the student3.create() constructor:

(type student2 [esi]).create(); // Must call the base class constructor.

Upon arriving at this point, the 80x86 ESI register contains a pointer to
a student3 object. The text (type student2 [esi]) typecasts this to a student2
pointer. This winds up calling the parent class’s constructor (in order to
initialize any fields in the base class).

Finally, consider the following code:

var
 John :pointer to student2;
 Joan :pointer to student2;
 Jenny :pointer to student3;
 .
 .
 .
 student2.create(); // Equivalent to calling "new student2"
 // in other languages.
 mov(esi, John); // Save pointer to new student2
 // object in John
 student2.create();
 mov(esi, Joan);
 student3.create();
 mov(esi, Jenny);

If you look at the _pVMT_ entries in the John and Joan objects, you’ll find
that they contain the address of the VMT for the student2 class. Likewise,
the _pVMT_ field of the Jenny object contains the address of the VMT for the
student3 class.

Composite Data Types and Memory Objects 201

7.5.3  Polymorphism
If you have an HLA student2 variable (that is, a variable that contains a
pointer to a student2 object in memory), you can call the setName() method
for that object using the following HLA code:

John.setName("John");
Joan.setName("Joan");

These particular calls are examples of high-level activity taking place in
HLA. The machine code that the HLA compiler emits for the first of these
statements looks something like the following:

mov(John, esi);
mov((type student2 [esi])._pVMT_, edi);
call([edi+0]); // Note: the offset of the setName method in the VMT is 0.

Here’s what this code is doing:

1.	 The first line copies the address held in the John pointer into the ESI
register. This is because most indirect accesses on the 80x86 take place
in a register, not in memory variables.

2.	 The VMT pointer is a field in the student2 object structure. The code
needs to obtain the pointer to the setName() method, held in the VMT.
The _pVMT_ field of the object (which is in memory) holds the address
of the VMT. Once again, we must load this into a register to access that
data indirectly. The program copies the VMT pointer into the 80x86
EDI register.

3.	 The VMT (at which EDI now points) contains two entries. The first
entry (offset 0) contains the address of the student2.setName() method;
the second entry (offset 4) contains the address of the student2.getName()
method. Because we want to call the student2.setName() method, the
third instruction in this sequence calls the method at the address held
in the memory location pointed at by [edi+0].

As you can see, this is quite a bit more work than calling student.setName()
directly. Why do we go through all this effort? After all, we know that John
and Joan are both student2 objects. We also know that Jenny is a student3 object.
So, we ought to be able to call the student2.setName() or student3.setName()
methods directly. That would take only one machine instruction, which is
both faster and shorter.

The reason for all this extra work is to support polymorphism. Suppose
we declare a generic student2 object:

var student:pointer to student2;

202 Chapter 7

What happens when we assign the value of Jenny to student and call
student.setName()? Well, the code sequence is identical to that for the call for
John given earlier. That is, the code loads the pointer held in student into the
ESI register, copies the _pVMT_ field into the EDI register, and then jumps
indirectly through the first entry of the VMT (which points at the setName()
method). There is, however, one major difference between this example
and the previous: in this case, student is pointing at a student3 object in
memory. So, when the code loads the address of the VMT into the EDI
register, EDI is actually pointing at the student3 VMT, not the student2 VMT
(as was the case when we used the John pointer). Therefore, when the pro-
gram calls the setName() method, it’s actually calling the student3.setName()
method, not the student2.setName() method. This behavior is the basis for
polymorphism in modern object-oriented programming languages.

7.5.4  Abstract Methods and Abstract Base Classes
An abstract base class exists solely to supply a set of common fields to its
derived classes. You never declare variables whose type is an abstract base
class; you always use one of the derived classes. An abstract base class is a
template for creating other classes, nothing more.

The only difference in syntax between a standard base class and an
abstract base class is the presence of at least one abstract method declara-
tion. An abstract method is a special method that does not have an actual
implementation in the abstract base class. Any attempt to call that method
will raise an exception. If you’re wondering what possible good an abstract
method could be, keep reading.

Suppose you want to create a set of classes to hold numeric values.
One class could represent unsigned integers, another class could represent
signed integers, a third could implement BCD values, and a fourth could
support real64 values. While you could create four separate classes that
function independently of one another, doing so passes up an opportunity
to make this set of classes more convenient to use. To understand why, con-
sider the following HLA class declarations:

type
 uint: class
 var
 TheValue: dword;

 method put;
 << Other methods for this class >>
 endclass;

 sint: class
 var
 TheValue: dword;

 method put;
 << Other methods for this class >>
 endclass;

Composite Data Types and Memory Objects 203

 r64: class
 var
 TheValue: real64;

 method put;
 << Other methods for this class >>
 endclass;

The implementation of these classes is not unreasonable. They have
fields for the data, and they have a put() method that, presumably, writes
the data to the standard output device. They probably have other methods
and procedures to implement various operations on the data. There are,
however, two problems with these classes, one minor and one major, both
occurring because these classes do not inherit any fields from a common
base class.

The minor problem is that you have to repeat the declaration of several
common fields in these classes. For example, the put() method is declared
in each class.6 The major problem is that this approach is not generic—that
is, you can’t create a generic pointer to a “numeric” object and perform
operations like addition, subtraction, and output on that value (regardless
of the underlying numeric representation).

We can easily solve these two problems by turning the previous class
declarations into a set of derived classes. The following code demonstrates
an easy way to do this:

type
 numeric: class
 method put;
 << Other common methods shared by all the classes >>
 endclass;

 uint: class inherits(numeric)
 var
 TheValue: dword;

 override method put;
 << Other methods for this class >>
 endclass;

 sint: class inherits(numeric)
 var
 TheValue: dword;

 override method put;
 << Other methods for this class >>
 endclass;

 r64: class inherits(numeric)
 var

6. Note, by the way, that TheValue is not a common field, because this field has a different type
in the r64 class.

204 Chapter 7

 TheValue: real64;

 override method put;
 << Other methods for this class >>
endclass;

First, by making the put() method inherit from numeric, this code
encourages the derived classes to always use the name put(), which makes
the program easier to maintain. Second, because this example uses derived
classes, it’s possible to create a pointer to the numeric type and load that
pointer with the address of a uint, sint, or r64 object. The pointer can
invoke the methods found in the numeric class to do functions like addition,
subtraction, or numeric output. Therefore, the application that uses this
pointer doesn’t need to know the exact data type; it deals with numeric val-
ues only in a generic fashion.

One problem with this scheme is that it’s possible to declare and use
variables of type numeric. Unfortunately, such numeric variables aren’t capa-
ble of representing any type of number (notice that the data storage for
the numeric fields actually appears in the derived classes). Worse, because
you’ve declared the put() method in the numeric class, you actually have to
write some code to implement that method even though you should never
really call it; the actual implementation should occur only in the derived
classes. While you could write a dummy method that prints an error mes-
sage (or, better yet, raises an exception), you shouldn’t have to resort to
that. Fortunately, there’s no reason to do so—if you use abstract methods.

The HLA abstract keyword, when it follows a method declaration, tells
HLA that you aren’t going to provide an implementation of the method for
this class. Instead, all derived classes are responsible for providing a con-
crete implementation for the abstract method. HLA will raise an exception
if you attempt to call an abstract method directly. The following code modi-
fies the numeric class to convert put() to an abstract method:

type
 numeric: class
 method put; abstract;
 << Other common methods shared by all the classes >>
 endclass;

An abstract base class has at least one abstract method. But you don’t
have to make all methods abstract in an abstract base class; it’s perfectly
legal to declare some standard methods (and, of course, provide their
implementation) within it.

Abstract method declarations provide a mechanism by which a base
class can specify some generic methods that the derived classes must imple-
ment. If the derived classes don’t provide concrete implementations of all
abstract methods, that makes them abstract base classes themselves.

Composite Data Types and Memory Objects 205

A little earlier, you read that you should never create variables whose
type is an abstract base class. Remember, if you attempt to execute an
abstract method, the program will immediately raise an exception to com-
plain about this illegal method call.

7.6  Classes in C++
Up to this point, all the examples of classes and objects have used HLA.
That made sense because the discussion concerned the low-level implemen-
tation of classes, which is something HLA illustrates well. However, you may
not ever use HLA in a program you write. So now we’ll look at how high-
level languages implement classes and objects. As C++ was one of the earli-
est HLLs to support classes, we’ll start with it.

Here’s a variant of the student2 class in C++:

class student2
{
 private:
 char Name[65];
 short Major;
 char SSN[12];
 short Midterm1;
 short Midterm2;
 short Final;
 short Homework;
 short Projects;

 protected:
 virtual void clearGrades();

 public:
 student2();
 ~student2();

 virtual void getName(char *name_p, int maxLen);
 virtual void setName(const char *name_p);
};

The first major difference from HLA’s classes is the presence of the
private, protected, and public keywords. C++ and other HLLs make a con-
certed effort to support encapsulation (information hiding), and these three
keywords are one of the main tools C++ uses to enforce it. Scope, privacy,
and encapsulation are syntactical issues that are useful for software engi-
neering constructs, but they really don’t impact the implementation of classes
and objects in memory. Thus, since this book’s focus is implementation,
we’ll leave further discussion of encapsulation for WGC4 and WGC5.

The layout of the C++ student2 object in memory will be very similar to
the HLA variant (of course, different compilers could lay things out differ-
ently, but the basic idea of data fields and the VMT still applies).

206 Chapter 7

Here’s an example of inheritance in C++:

class student3 : public student2
{
 public:
 short extraTime;
 virtual void setName(char *name_p, int maxLen);
 student3();
 ~student3();
};

Structures and classes are almost identical in C++. The main difference
between the two is that the default visibility at the beginning of a class is
private, whereas the default visibility for struct is public. So, we could rewrite
the student3 class as follows:

struct student3 : public student2
{
 short extraTime;
 virtual void setName(char *name_p, int maxLen);
 student3();
 ~student3();
};

7.6.1  Abstract Member Functions and Classes in C++
C++ has an especially weird way of declaring abstract member functions—
you place “= 0;” after the function definition in the class, like so:

struct absClass
{
 int someDataField;
 virtual void absFunc(void) = 0;
 };

As with HLA, if a class contains at least one abstract function, the class
is an abstract class. Note that abstract functions must also be virtual, as they
must be overridden in some derived class to be useful.

7.6.2  Multiple Inheritance in C++
C++ is one of the few modern programming languages that supports mul-
tiple inheritance ; that is, a class can inherit the data and member functions
from multiple classes. Consider the following C++ code fragment:

class a
{
 public:
 int i;
 virtual void setI(int i) { this->i = i; }
};

Composite Data Types and Memory Objects 207

class b
{
 public:
 int j;
 virtual void setJ(int j) { this->j = j; }
};

class c : public a, public b
{
 public:
 int k;
 virtual void setK(int k) { this->k = k; }
};

In this example, class c inherits all the information from classes a and
b. In memory, a typical C++ compiler will create an object like that shown
in Figure 7-16.

VMT i VMTb j k

Base address of c object

Figure 7-16: Multiple inheritance memory layout

The VMT pointer entry points at a typical VMT containing the addresses
of the setI(), setJ(), and setK() methods (as shown in Figure 7-17). If you
call the setI() method, the compiler will generate code that loads the this
pointer with the address of the VMT pointer entry in the object (the base
address of the c object in Figure 7-16). Upon entry into setI(), the system
believes that this is pointing at an object of type a. In particular, the this.VMT
field points at a VMT whose first (and, as far as type a is concerned, only)
entry is the address of the setI() method. Likewise, at offset (this+4) in
memory (as the VMT pointer is 4 bytes), the setI() method will find the i
data value. As far as the setI() method is concerned, this is pointing at a
class type a object (even though it’s actually pointing at a type c object).

VMT i VMTb j k

Virtual Method Table

Base address
for this when
calling a or c
objects

Base address
for this when
calling b
objects

&setI &setJ &setK

Figure 7-17: Multiple inheritance this values

208 Chapter 7

When you call the setK() method, the system also passes the base
address of the c object. Of course, setK() is expecting a type c object and
this is pointing at a type c object, so all the offsets into the object are
exactly as setK() expects. Note that objects of type c (and methods in the c
class) will normally ignore the VMT2 pointer field in the c object.

The problem occurs when the program attempts to call the setJ()
method. Because setJ() belongs to class b, it expects this to hold the
address of a VMT pointer pointing at a VMT for class b. It also expects
to find data field j at offset (this+4). Were we to pass the c object’s this
pointer to setJ(), accessing (this+4) would reference the i data field, not j.
Furthermore, were a class b method to make a call to another method in
class b (such as setJ() making a recursive call to itself), the VMT pointer
would be wrong—it points at a VMT with a pointer to setI() at offset 0,
whereas class b expects it to point at a VMT with a pointer to setJ() at off-
set 0. To resolve this issue, a typical C++ compiler will insert an extra VMT
pointer into the c object immediately prior to the j data field. It will initial-
ize this second VMT field to point into the c VMT at the location where
the class b method pointers begin (see Figure 7-17). When calling a method
in class b, the compiler will emit code that initializes the this pointer with
the address of this second VMT pointer (rather than pointing at the begin-
ning of c-type object in memory). Now, upon entry to a class b method—
such as setJ()—this will point at a legitimate VMT pointer for class b, and
the j data field will appear at the offset (this+4) that class b methods expect.

7.7  Classes in Java
Java, as a C-based language, has class definitions that are somewhat similar
to C++ (though Java doesn’t support multiple inheritance and has a more
rational way of declaring abstract methods). Here’s a sample set of Java class
declarations to give you a sense of how they work:

public abstract class a
{
 int i;
 abstract void setI(int i);
};

public class b extends a
{
 int j;
 void setI(int i)
 {
 this.i = i;
 }

 void setJ(int j)
 {
 this.j = j;
 }
};

Composite Data Types and Memory Objects 209

7.8  Classes in Swift
Swift is also a member of the C language tree. Like C++, Swift allows you
to declare classes using the class or struct keyword. Unlike C++, Swift
structures and classes are different things. A Swift structure is somewhat
like a C++ class variable, whereas a Swift class is similar to a C++ pointer
to an object. In Swift terminology, structures are value objects and classes
are reference objects. Basically, when you create a structure object, Swift allo-
cates sufficient memory for the entire object and binds that storage to the
variable.7 Like Java, Swift doesn’t support multiple inheritance; only single
inheritance is legal. Also note that Swift doesn’t support abstract member
functions or classes. Here’s an example of a pair of Swift classes:

class a
{
 var i: Int;
 init(i:Int)
 {
 self.i = i;
 }
 func setI(i :Int)
 {
 self.i = i;
 }
};

class b : a
{
 var j: Int = 0;
 override func setI(i :Int)
 {
 self.i = I;
 }
 func setJ(j:Int)
 {
 self.j = j;
 }
};

In Swift, all member functions are virtual by default. Also, the init()
function is Swift’s constructor. Destructors have the name deinit().

7. Technically, this isn’t always true. For performance reasons, Swift uses copy-on-write to
improve performance; so, multiple structure objects can share the same memory location as
long as you don’t change the value of any field of that structure. However, once you do modify
the structure, Swift makes a copy of it and changes the copy (hence the name copy-on-write).
See the Swift documentation for more details.

210 Chapter 7

7.9  Protocols and Interfaces
Java and Swift don’t support multiple inheritance, because it has some logi-
cal problems. The classic example is the “diamond lattice” data structure.
This occurs when two classes (say, b and c) both inherit information from
the same class (say, a) and then a fourth class (say, d) inherits from both
b and c. As a result, d inherits the data from a twice—once through b and
once through c.

Although multiple inheritance can lead to some weird problems like
this, there’s no question that being able to inherit from multiple locations is
often useful. Thus, the solution in languages such as Java and Swift is to allow
a class to inherit methods or functions from multiple sources but to inherit
data fields from only a single ancestor class. This avoids most of the problems
with multiple inheritance (specifically, an ambiguous choice of inherited
data fields) while allowing programmers to include methods from various
sources. Java calls such extensions interfaces, and Swift calls them protocols.

Here’s an example of a couple of Swift protocol declarations and a class
supporting that protocol:

protocol someProtocol
{
 func doSomething()->Void;
 func doSomethingElse() ->Void;
}
protocol anotherProtocol
{
 func doThis()->Void;
 func doThat()->Void;
}

class supportsProtocols: someProtocol, anotherProtocol
{
 var i:Int = 0;
 func doSomething()->Void
 {
 // appropriate function body
 }
 func doSomethingElse()->Void
 {
 // appropriate function body
 }
 func doThis()->Void
 {
 // appropriate function body
 }
 func doThat()->Void
 {
 // appropriate function body
 }}
}

Composite Data Types and Memory Objects 211

Swift protocols don’t supply any functions. Instead, a class that supports
a protocol promises to provide an implementation of the functions the
protocol(s) specify. In the preceding example, the supportsProtocols class is
responsible for supplying all functions required by the protocols it supports.
Effectively, protocols are like abstract classes containing only abstract meth-
ods—the inheriting class must provide actual implementations for all the
abstract methods.

Here’s the previous example coded in Java and demonstrating its com-
parable mechanism, the interface:

class InterfaceDemo {
 interface someInterface
 {
 public void doSomething();
 public void doSomethingElse();
 }
 interface anotherInterface
 {
 public void doThis();
 public void doThat();
 }

 class supportsInterfaces implements someInterface, anotherInterface
 {
 int i;
 public void doSomething()
 {
 // appropriate function body
 }
 public void doSomethingElse()
 {
 // appropriate function body
 }
 public void doThis()
 {
 // appropriate function body
 }
 public void doThat()
 {
 // appropriate function body
 }
 }

 public static void main(String[] args) {
 System.out.println("InterfaceDemo");
 }
}

212 Chapter 7

Interfaces and protocols behave somewhat like base class types in Java
and Swift. If you instantiate a class object and assign that instance to a
variable that is an interface/protocol type, you can execute the supported
member functions for that interface or protocol. Consider the following
Java example:

someInterface some = new supportsInterfaces();

// We can call the member functions defined for someInterface:

some.doSomething();
some.doSomethingElse();

// Note that it is illegal to try and call doThis
// or doThat (or access the i data field) using
// the "some" variable.

Here’s a comparable example in Swift:

import Foundation

protocol a
{
 func b()->Void;
 func c()->Void;
}

protocol d
{
 func e()->Void;
 func f()->Void;
}
class g : a, d
{
 var i:Int = 0;

 func b()->Void {print("b")}
 func c()->Void {print("c")}
 func e()->Void {print("e")}
 func f()->Void {print("f")}

 func local()->Void {print("local to g")}
}

var x:a = g()
x.b()
x.c()

Composite Data Types and Memory Objects 213

You implement a protocol or interface using a pointer to a VMT that
contains the addresses of the functions declared in that protocol or inter-
face. So, the data structure for the Swift g class in the previous example
would have three VMT pointers in it—one for protocol a, one for protocol d,
and one for the class g (holding a pointer to the local() function).

When you create a variable whose type is a protocol/interface (x in the
previous example), the variable holds the VMT pointer for that protocol.
In the current example, the assignment of g() to the x variable actually just
copies the VMT pointer for protocol a into x. Then, when the code executes
x.b and x.c, it obtains the addresses of the actual functions from the VMT.

7.10  Generics and Templates
Although classes and objects allow software engineers to extend their sys-
tems in ways that aren’t possible without object-oriented programming,
objects don’t provide a completely generic solution. Generics, first intro-
duced by the ML programming language in 1973 and popularized by the
Ada programming language, provide the key missing feature to extensi-
bility that plain object-oriented programming was missing. Today, most
modern programming languages—C++ (templates), Swift, Java, HLA (via
macros), and Delphi—support some form of generic programming. In the
generic programming style, you develop algorithms that operate on arbi-
trary data types to be defined in the future, and supply the actual data type
immediately prior to using the generic type.

The classic example is a linked list. It’s very easy to write a simple, singly
linked list class—say, to manage a list of integers. However, after creating
your list of integers, you decide you need a list of doubles. A quick copy-
and-paste operation (plus changing the node type from int to double), and
you’ve got a class that handles linked lists of double values. Oh wait, now
you want a list of strings? Another cut-and-paste operation, and you’ve got
lists of strings. Now you need a list of objects? Okay, yet another cut-and-
paste. . . . You get the idea. Before too long, you’ve created a half-dozen
different list classes and, whoops, you discover a bug in the original imple-
mentation. Now you get to go back and correct that bug in every list class
you’ve created. Good luck with that, if you’ve used the list implementation
in several different projects (you’ve just discovered why “cut and paste” pro-
gramming is not considered great code).

Generics (C++ templates) come to the rescue. With a generic class
definition, you specify only the algorithms (methods/member functions)
that manipulate the list; you don’t worry about the node type. You fill in the
node type when you declare an object of the generic class type. To create
integer, double, string, or object lists, you simply provide the type you want
to the generic list class, and that’s it. Should you discover a bug in the origi-
nal (generic) implementation, all you do is fix the defect once and recom-
pile your code; everywhere you’ve used the generic type, the compilation
applies the correction.

214 Chapter 7

Here’s a C++ node and list definition:

template< class T >
class node {
 public:
 T data;
 private:
 node< T > *next;
};

template< class T >
class list {
 public:
 int isEmpty();
 void append(T data);
 T remove();
 list() {
 listEnd = new node< T >();
 listEnd->next = listEnd;
 }
 private:
 node< T >* listEnd;
};

The <T> sequence in this C++ code is a parameterized type. This means
that you’ll supply a type and the compiler will substitute that type every-
where it sees T in the template. So, in the preceding code, if you supply
int as the parameter type, the C++ compiler will substitute int for every
instance of T. To create a list of integers and doubles, you could use the fol-
lowing C++ code:

#include <iostream>
#include <list>

using namespace std;

int main(void) {
 list< int > integerList;
 list< double > doubleList;

 integerList.push_back(25);
 integerList.push_back(0);
 doubleList.push_back(1.2);
 doubleList.push_back(3.14);

 cout << "integerList.size() " << integerList.size() << endl;
 cout << "doubleList.size() " << doubleList.size() << endl;

 return 0;
}
 doubleList.add(3.14);

Composite Data Types and Memory Objects 215

The easiest way to implement generics is by using macros. When a com-
piler sees a declaration such as list <int> integerList; it expands the associ-
ated template code, substituting int for T throughout the expansion.

Because template expansion can generate a massive amount of code,
modern compilers try to optimize the process wherever possible. For exam-
ple, if you declare two variables like so:

list <int> iList1;
list <int> iList2;

there’s really no need to create two separate list classes, both of type int.
Clearly, the template expansions would be identical, so any decent compiler
would use the same class definition for both declarations.

Even smarter compilers would recognize that some functions, like
remove(), don’t really care about the underlying node data type. The basic
removal operation is the same for all data types; as the list data type uses a
pointer for the node data, there’s no reason to generate different remove()
functions for each type. With polymorphism, a single remove() member
function would work fine. Recognizing this requires a little more sophisti-
cation on the compiler’s part, but it’s certainly doable.

Ultimately, however, template/generic expansion is a macro expansion
process. Anything else that happens is simply an optimization by the compiler.

7.11  For More Information
Hyde, Randall. The Art of Assembly Language. 2nd ed. San Francisco:

No Starch Press, 2010.

Knuth, Donald. The Art of Computer Programming, Volume I: Fundamental
Algorithms. 3rd ed. Boston: Addison-Wesley Professional, 1997.

Boolean logic is the basis of computation in
modern computer systems. You can represent

any algorithm, or any electronic computer
circuit, using a system of Boolean equations. To

fully understand how software operates, then, you need
to understand basic Boolean logic and digital design.

This material is especially important to those who want to design elec-
tronic circuits or write software that controls them. Even if you don’t plan
to do this, you can use your knowledge of Boolean logic to optimize your
software. Many high-level languages process Boolean expressions, such as
those that control an if statement or while loop. Understanding Boolean
logic provides the tools you need to optimize your Boolean expressions and
improve the performance of HLL code.

This chapter covers the following subjects, which will aid you when you
attempt to optimize Boolean expressions:

•	 Boolean algebra, Boolean operators, and Boolean functions

•	 An introduction to Boolean postulates and theorems

8
B O O L E A N L O G I C

A N D D I G I T A L D E S I G N

218 Chapter 8

•	 Truth tables and Boolean function optimization

•	 Canonical forms

•	 Electronic circuits and their Boolean function counterparts

Although a detailed knowledge of Boolean algebra and digital circuit
design isn’t necessary if you simply want to write typical programs, familiar-
ity with these topics will help answer why CPU manufacturers implement
instructions in certain ways—questions that will undoubtedly arise as we
begin looking at the CPU’s low-level implementation.

8.1  Boolean Algebra
Boolean algebra is a deductive mathematical system. A binary operator (°)
accepts a pair of Boolean inputs and produces a single Boolean value. For
example, the Boolean AND operator accepts two Boolean inputs and pro-
duces a single Boolean output (the logical AND of the two inputs).

8.1.1  The Boolean Operators
For our purposes, we will base Boolean algebra on the following set of
values and operators:

•	 The two possible values in the Boolean system are 0 and 1. Often,
we call these values false and true, respectively.

•	 The • symbol represents the logical AND operation. A • B is the opera-
tion of logically ANDing the Boolean values A and B, also known as the
product of A and B. For single-letter variable names, this text drops the
• symbol; therefore, AB also represents the logical AND of the variables
A and B.

•	 The + (plus sign) represents the logical OR operation. A + B is the
result of logically ORing the Boolean values A and B. We also call this
the sum of A and B.

•	 Logical complement, logical negation, and NOT are all names for the
same unary operator. This chapter will use the ' (prime symbol) to
denote logical negation. A' denotes the logical NOT of A.

8.1.2  Boolean Postulates
Every algebraic system follows a certain set of initial assumptions, or pos-
tulates. You can deduce additional rules, theorems, and other properties
of the system from this basic set of postulates. Boolean algebra employs the
following postulates:

Closure  A Boolean system is closed with respect to a particular
binary operator if, for every pair of Boolean values, it produces only
a Boolean result.

Commutativity  A binary operator ° is commutative if A ° B = B ° A for
all possible Boolean values A and B.

Boolean Logic and Digital Design 219

Associativity  A binary operator ° is associative if (A ° B) ° C = A °
(B ° C) for all Boolean values A, B, and C.

Distribution  Two binary operators ° and % are distributive if
A ° (B % C) = (A ° B) % (A ° C) for all Boolean values A, B, and C.

Identity  A Boolean value I is said to be the identity element with respect
to some binary operator ° if A ° I = A for all Boolean values A.

Inverse  A Boolean value I is said to be the inverse element with respect
to some binary operator ° if A ° I = B and B ≠ A (that is, B is the oppo-
site value of A in a Boolean system) for all Boolean values A and B.

When applied to the Boolean operators, the preceding postulates
produce the following set of Boolean postulates:

P1  Boolean algebra is closed under the AND, OR, and NOT operations.

P2  The identity element of AND (•) is 1, and the identity element
of OR (+) is 0. There’s no identity element for logical NOT (').

P3  The • and + operators are commutative.

P4  • and + are distributive with respect to each other. That is,
A • (B + C) = (A • B) + (A • C) and A + (B • C) = (A + B) • (A + C).

P5  • and + are both associative. That is, (A • B) • C = A • (B • C) and
(A + B) + C = A + (B + C).

P6  For every value A there exists a value A' such that A • A' = 0 and
A + A' = 1. This value is the logical complement (or NOT) of A.

You can prove all other theorems in Boolean algebra using this set of
Boolean postulates. This chapter won’t go into the formal proofs of the fol-
lowing theorems, but familiarity with them will be useful:

Th1  A + A = A

Th2  A • A = A

Th3  A + 0 = A

Th4  A • 1 = A

Th5  A • 0 = 0

Th6  A + 1 = 1

Th7  (A + B)' = A' • B'

Th8  (A • B)' = A' + B'

Th9  A + A • B = A

Th10  A • (A + B) = A

Th11  A + A'B = A + B

Th12  A' • (A + B') = A'B'

Th13  AB + AB' = A

Th14  (A' + B' ) • (A' + B) = A'

Th15  A + A' = 1

Th16  A • A' = 0

220 Chapter 8

N O T E 	 Theorems 7 and 8 are called DeMorgan’s Theorems after the mathematician who
discovered them.

An important principle in the Boolean algebra system is duality.
Each pair, theorems 1 and 2, theorems 3 and 4, and so on, forms a dual.
Any valid expression you can create using the postulates and theorems of
Boolean algebra remains valid if you interchange the operators and con-
stants appearing in the expression. Specifically, if you exchange the • and
+ operators and swap the 0 and 1 values in an expression, the resulting
expression will obey all the rules of Boolean algebra. This does not mean the
dual expression computes the same values, only that both expressions are legal
in the Boolean algebra system.

8.1.3  Boolean Operator Precedence
If several different Boolean operators appear within a single Boolean
expression, the result of the expression depends on the precedence of the
operators. The following Boolean operators are ordered from highest pre-
cedence to lowest:

•	 Parentheses

•	 Logical NOT

•	 Logical AND

•	 Logical OR

The logical AND and OR operators are left associative. This means that
if two operators with the same precedence appear between three operands,
you must evaluate the expressions from left to right. The logical NOT oper-
ation is right associative, although it would produce the same result using
either left or right associativity because it is a unary operator having only
a single operand.

8.2  Boolean Functions and Truth Tables
A Boolean expression is a sequence of 0s, 1s, and literals separated by
Boolean operators. A Boolean literal is a primed (negated) or unprimed
variable name, and all variable names are a single alphabetic character.
A Boolean function is a specific Boolean expression; we generally give
Boolean functions the name F with a possible subscript. For example, con-
sider the following Boolean function:

F0 = AB + C

This function computes the logical AND of A and B and then logically
ORs this result with C. If A = 1, B = 0, and C = 1, then F0 returns 1 (1 • 0 + 1 = 1).

You can also represent a Boolean function with a truth table. The truth
tables for the logical AND and OR functions are shown in Tables 8-1
and 8-2, respectively.

Boolean Logic and Digital Design 221

Table 8-1: AND Truth Table

AND 0 1

0 0 0

1 0 1

Table 8-2: OR Truth Table

OR 0 1

0 0 1

1 1 1

For binary operators and two input variables, this truth table format is
very intuitive and convenient. However, for functions involving more than
two variables, it doesn’t work well.

Table 8-3 shows another way to represent truth tables. This format has
several advantages—it is easier to fill in the table, it supports three or more
variables, and it provides a compact representation for two or more functions.

Table 8-3: Truth Table Format for a Function of Three Variables

C B A F = ABC F = AB + C F = A + BC

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 0 0

0 1 1 0 1 1

1 0 0 0 1 0

1 0 1 0 1 1

1 1 0 0 1 1

1 1 1 1 1 1

Although you can create an infinite variety of Boolean functions, they
are not all unique. For example, F = A and F = AA are two different func-
tions. By theorem 2, however, it’s easy to show that these two functions pro-
duce exactly the same result no matter what input value you supply for A. As
it turns out, if you fix the number of input variables, there’s a finite number
of unique Boolean functions possible. For example, there are 16 unique
Boolean functions with two input variables, and there are 256 possible
Boolean functions with three input variables. Given n input variables, there
are 22n

 unique Boolean functions (2 raised to 2 raised to the nth power).
With two input variables, there are 222

 or 16 different functions. With three
input variables, there are 223

 or 256 possible functions. Four input variables
have 224

 or 216 or 65,536 unique Boolean functions.
When working with only 16 Boolean functions (two input variables),

we can name each unique function (see Table 8-4).

222 Chapter 8

Table 8-4: Common Names for Boolean Functions of Two Variables

Function number1 Function name Description

0 Zero (clear) Always returns 0 regardless of A and B
input values.

1 Logical NOR (NOT (A OR B)) = (A + B)'

2 Inhibition (AB') Inhibition = AB' (A AND not B). Also
equivalent to A > B or B < A.

3 NOT B Ignores A and returns B'.

4 Inhibition (BA') Inhibition = BA' (B AND not A). Also
equivalent to B > A or A < B.

5 NOT A Returns A' and ignores B.

6 Exclusive-OR (XOR) A ⊕ B. Equivalent to A ≠ B.

7 Logical NAND (NOT (A AND B)) = (A • B)'

8 Logical AND A • B = (A AND B)

9 Equivalence
(exclusive-NOR)

(A = B). Also known as exclusive-NOR
(not exclusive-OR).

10 A Copy A. Returns the value of A and
ignores B’s value.

11 Implication, B implies A A + B'. (If B then A.) Equivalent to
B ≥ A.

12 B Copy B. Returns the value of B and
ignores A’s value.

13 Implication, A implies B B + A'. (If A then B.) Equivalent to A ≥ B.

14 Logical OR A + B. Returns A OR B.

15 One (set) Always returns 1 regardless of A and B
input values.

8.3  Function Numbers
Beyond two input variables, there are too many functions to provide a
specific name for each. Even when referring to functions with two input
variables, we’ll refer to the function’s number rather than its name. For
example, F8 denotes the logical AND of A and B for a two-input function,
and F14 denotes the logical OR operation. Of course, for functions with
more than two input variables, the question is, “How do we determine a
function’s number?” For example, what is the corresponding number for
the function F = AB + C ? We compute the answer by looking at the func-
tion’s truth table. If we treat the values for A, B, and C as bits in a binary
number with C being the HO bit and A being the LO bit, they produce
the binary strings that correspond to numbers in the range 0 through 7.
Associated with each of these binary strings is the function result, either 0
or 1. If we construct a binary number by placing the function result of each

1. See the discussion of function numbers in the next section.

Boolean Logic and Digital Design 223

combination of the A, B, and C input values into the bit position specified
by the binary string of the A, B, and C bits, the resulting binary number
will be the corresponding function number. If this doesn’t make sense, an
example will help clear it up. Consider the truth table for F = AB + C (see
Table 8-5).

Table 8-5: Truth Table for F = AB + C

C B A F = AB + C

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

The input variables C, B, and A combine to form binary number
sequences in the range %000 through %111 (0 through 7). If we use these
values to denote bit numbers in an 8-bit value (CBA = %111 specifies bit 7,
CBA = %110 specifies bit 6, and so on), we can determine the function num-
ber by placing at each of these bit positions the result of F = AB + C, for
the corresponding combination of C, B, and A values:

CBA: 7 6 5 4 3 2 1 0
F = AB + C: 1 1 1 1 1 0 0 0

Now, if we treat this bit string as a binary number, it produces the func-
tion number $F8, or 248. We usually denote function numbers in decimal.
This also provides insight into why there are 22n

 different functions given
n input variables: if you have n input variables, there are 2n different vari-
able value combinations, and thus 2n bits in the function’s binary number.
If you have m bits, there are 2m different possible arrangements of those
bits. Therefore, for n input variables there are m = 2n possible bits and 2m or
22n possible functions.

8.4  Algebraic Manipulation of Boolean Expressions
You can transform one Boolean expression into an equivalent expression by
applying the postulates and theorems of Boolean algebra. This is important
if you want to convert a given expression to a canonical form (see the next
section) or if you want to minimize the number of literals or terms in an
expression. (A literal is a primed or unprimed variable, and a term is a vari-
able or a product—logical AND—of several different literals.) Electrical
circuits often consist of individual components that implement each literal

224 Chapter 8

or term, so minimizing the number of literals and terms in an expression
allows a circuit designer to use fewer electrical components and, therefore,
to reduce the monetary cost of the system.

Unfortunately, there are no fixed rules you can apply to optimize a
given expression. Much like constructing mathematical proofs, an individ-
ual’s ability to easily do these transformations is usually a matter of experi-
ence. Nevertheless, a few examples show the possibilities:

ab + ab' + a'b = a(b + b') + a'b By P4
 = a • 1 + a'b By P5
 = a + a'b By Th4
 = a + b By Th11

(a'b + a'b' + b')' = (a'(b + b') + b')' By P4
 = (a'• 1 + b')' By P5
 = (a' + b') By Th4
 = ((ab)')' By Th8
 = ab By definition of not

b(a + c) + ab' + bc' + c = ba + bc + ab' + bc' + c By P4
 = a(b + b') + b(c + c') + c By P4
 = a • 1 + b • 1 + c By P5
 = a + b + c By Th4

8.5  Canonical Forms
Each Boolean function has an infinite number of equivalent logic expres-
sions. To help eliminate confusion, logic designers generally specify a
Boolean function using a canonical, or standardized, form. For each dif-
ferent Boolean function, we can choose a single canonical representation
from a defined set.

There are several ways to define a set of canonical representations for
all the possible Boolean functions of n variables. Within each canonical
set, a single expression describes each Boolean function in the system so all
of the functions in the set are unique. We’ll discuss two canonical systems
in this chapter—the sum of minterms and the product of maxterms—but we’ll
employ only the first. Using the duality principle, we can convert between
these two systems.

As mentioned earlier, a term is either a single literal or a product (logi-
cal AND) of several different literals. For example, if you have two variables,
A and B, there are eight possible terms: A, B, A', B', A'B', A'B, AB', and AB.
For three variables, we have 26 different terms: A, B, C, A', B', C', A'B', A'B,
AB', AB, A'C', A'C, AC', AC, B'C', B'C, BC', BC, A'B'C', AB'C', A'BC', ABC',
A'B'C, AB'C, A'BC, and ABC. As the number of variables increases, the
number of terms increases dramatically. A minterm is a product containing

Boolean Logic and Digital Design 225

exactly n literals, where n is the number of input variables. For example, the
minterms for the two variables A and B are A'B', AB', A'B, and AB. Likewise,
the minterms for three variables A, B, and C are A'B'C', AB'C', A'BC', ABC',
A'B'C, AB'C, A'BC, and ABC. In general, there are 2n minterms for n vari-
ables. The set of possible minterms is easy to generate because they corre-
spond to the sequence of binary numbers (see Table 8-6).

Table 8-6: Generating Minterms from Binary Numbers

Binary equivalent (CBA) Minterm

000 A'B'C'

001 AB'C'

010 A'BC'

011 ABC'

100 A'B'C

101 AB'C

110 A'BC

111 ABC

We can derive the canonical form for any Boolean function using a sum
(logical OR) of minterms. Given F248 = AB + C, the equivalent canonical
form is ABC + A'BC + AB'C + A'B'C + ABC'. Algebraically, we can show that
the canonical form is equivalent to AB + C as follows:

ABC + A'BC + AB'C + A'B'C + ABC' = BC(A + A') + B'C(A + A') + ABC' By P4
 = BC • 1 + B'C • 1 + ABC' By Th15
 = C(B + B') + ABC' By P4
 = C + ABC' By Th15 & Th4
 = C + AB By Th11

Obviously, the canonical form is not optimal. However, it’s very easy to
generate the truth table for a function from the canonical form. It’s also
very easy to generate the sum-of-minterms canonical form equation from
the truth table.

8.5.1  Sum-of-Minterms Canonical Form and Truth Tables
To build the truth table from the sum-of-minterms canonical form, follow
these steps:

1.	 Convert minterms to binary equivalents by substituting a 1 for
unprimed variables and a 0 for primed variables, like so:

F248 = CBA + CBA' + CB'A + CB'A' + C' BA
 = 111 + 110 + 101 + 100 + 011

226 Chapter 8

2.	 Place a 1 in the function column for the appropriate minterm entries:

C B A F = AB + C

0 0 0

0 0 1

0 1 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

3.	 Finally, place the number 0 in the function column for the remaining
entries:

C B A F = AB + C

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

Going in the other direction, to generate a logic function from a truth
table, follow these steps:

1.	 Locate all the entries in the truth table with a function result of 1. In this
table, these are the last five entries. The number of table entries contain-
ing 1s determines the number of minterms in the canonical equation.

2.	 Generate the individual minterms by substituting A, B, or C for 1s and
A', B', or C' for 0s. In this example, the result of F248 is 1 when CBA
equals 111, 110, 101, 100, or 011. Therefore, F248 = CBA + CBA' + CB'A +
CB'A' + C'AB.

3.	 Optionally rearrange the terms within the minterms, and rearrange
the minterms within the overall function. This works because the logi-
cal OR and logical AND operations are both commutative.

This process works equally well for any number of variables, as with the
truth table in Table 8-7 for the function F53,504 = ABCD + A'BCD + A'B'CD +
A'B'C'D.

Boolean Logic and Digital Design 227

Table 8-7: Truth Table for F53,504

D C B A F = ABCD + A'BCD + A'B'CD + A'B'C'D

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 1

1 0 0 1 0

1 0 1 0 0

1 0 1 1 0

1 1 0 0 1

1 1 0 1 0

1 1 1 0 1

1 1 1 1 1

Perhaps the easiest way to generate the canonical form of a Boolean
function is to first generate the truth table for it and then build the canonical
form from the truth table. In fact, we’ll use this technique when converting
between the two canonical forms.

8.5.2  Algebraically Derived Sum-of-Minterms Canonical Form
To generate the sum-of-minterms canonical form algebraically, we use the
distributive law and theorem 15 (A + A' = 1). Consider F248 = AB + C. This
function contains two terms, AB and C, but they are not minterms. We can
convert the first term to a sum of minterms as follows:

AB = AB • 1 By Th4
 = AB • (C + C') By Th15
 = ABC + ABC' By distributive law
 = CBA + C'BA By associative law

Similarly, we can convert the second term in F248 to a sum of minterms
as follows:

C = C • 1 By Th4
 = C • (A + A') By Th15
 = CA + CA' By distributive law
 = CA • 1 + CA' • 1 By Th4

228 Chapter 8

 = CA • (B + B') + CA' • (B + B') By Th15
 = CAB + CAB' + CA'B + CA'B' By distributive law
 = CBA + CBA' + CB'A + CB'A' By associative law

The last step (rearranging the terms) in these two conversions is
optional. To obtain the final canonical form for F248, we sum the results
from these two conversions:

F248 = (CBA + C'BA) + (CBA + CBA' + CB'A + CB'A')
     = CBA + CBA' + CB'A + CB'A' + C'BA

8.5.3  Product-of-Maxterms Canonical Form
Another canonical form is the products of maxterms. A maxterm is the sum
(logical OR) of all input variables, primed or unprimed. For example,
consider the following logic function, G, of three variables in product-of-
maxterms form:

G = (A + B + C) • (A' + B + C) • (A + B' + C)

As with the sum-of-minterms form, there’s exactly one product of max-
terms for each possible logic function. For every product-of-maxterms form,
there’s an equivalent sum-of-minterms form. In fact, the function G in this
example is equivalent to the earlier sum-of-minterms form of F248:

F248 = CBA + CBA' + CB'A + CB'A' + C'BA = AB + C

To generate a truth table from the product of maxterms, you use the
duality principle; that is, swap AND for OR and 0s for 1s (and vice versa).
Therefore, to build the truth table, you’d first swap primed and nonprimed
literals. In G, this would yield:

G = (A' + B' + C') • (A + B' + C') • (A' + B + C')

The next step is to swap the logical OR and logical AND operators,
which produces the following:

G = A'B'C' + AB'C' + A'BC'

Finally, you need to swap all 0s and 1s. This means that for each of the
minterms listed previously, you need to store 0s into the function column of
the truth table, and then fill in the rest of the truth table’s function column
with 1s. This will place a 0 in rows 0, 1, and 2 in the truth table. Filling the
remaining entries with 1s produces F248.

Boolean Logic and Digital Design 229

You can easily convert between these two canonical forms by generating
the truth table for one form and working backward to produce the other form.
Consider the function of two variables, F7 = A + B. The sum-of-minterms
form is F7 = A'B + AB' + AB. The truth table is shown in Table 8-8.

Table 8-8: OR Truth Table for Two Variables

A B F7

0 0 0

1 0 1

0 1 1

1 1 1

Working backward to get the product of maxterms, we first locate
all entries in the truth table that have a 0 result. The entry with A and
B both equal to 0 is the only entry with a 0 result. This gives us the first
step of G = A' B'. However, we still need to invert all the variables to obtain
G = AB. By the duality principle, we also need to swap the logical OR and
logical AND operators, obtaining G = A + B. This is the canonical product
of maxterms form.

8.6  Simplification of Boolean Functions
Because there’s an infinite variety of Boolean functions of n variables,
but a finite number of unique ones, you might wonder if there is some
method that will simplify a given Boolean function to produce the opti-
mal form—that is, the expression containing the fewest number of opera-
tors. An optimal form must exist for all logic functions, but we don’t use it
for the canonical form for two reasons. First, although it’s easy to convert
between the truth table forms and the canonical form, it’s not as easy to
generate the optimal form from a truth table. Second, there may be sev-
eral optimal forms for a single function.

You can attempt to produce the optimal form using algebraic transfor-
mations, but there’s no guarantee you’ll arrive at the best result. There are
two methods that will always reduce a given Boolean function to its optimal
form: the mapping method and the prime implicants method. This book cov-
ers the mapping method.

Using the mapping method to manually optimize Boolean functions is
practical only for functions of two, three, or four variables. It’s doable but
cumbersome for functions of five or six variables. For more than six vari-
ables, you should write a program.

230 Chapter 8

The first step in the mapping method is to build a special two-dimen-
sional truth table for the function (see Figure 8-1). Take a careful look at these
truth tables. They do not use the same forms shown earlier in this chapter.
In particular, the progression of the 2-bit values is 00, 01, 11, 10, not 00, 01,
10, 11. This is very important! If you organize the truth tables in a binary
sequence, the mapping optimization method will not work properly. We’ll
call this a truth map to distinguish it from the standard truth table.2

B'A'
B

A

0 1

0

1 BA'

B'A

BA

C
0

1

BA

00 01 1011

C'B'A' C'B'A C'BA'C'AB

CB'A' CB'A CBA'CAB

Three-variable truth map

DC

00

01

BA

00 01 1011

D'C'B'A' D'C'B'A D'C'BA'D'C'AB

D'CB'A' D'CB'A D'CBA'D'CAB

DC'B'A' DC'B'A DC'BA'DC'AB

DCB'A' DCB'A DCBA'DCAB

10

11

Four-variable truth map

Two-variable truth map

Figure 8-1: Two-, three-, and four-variable truth maps

Assuming your Boolean function is already in sum-of-minterms canoni-
cal form, insert 1s for each of the truth map cells corresponding to one
of the minterms in the function. Place 0s everywhere else. For example,
consider the function of three variables F = C'B'A + C'BA' + C'BA + CB'A' +
CB'A + CBA' + CBA. Figure 8-2 shows the truth map for this function.

2. These are also known as Karnaugh maps or Karnaugh/Veitch diagrams, after Maurice
Karnaugh, who created them by refining Edward Veitch’s Boolean optimization diagrams.

Boolean Logic and Digital Design 231

C
0

1

BA

00 01 11 10

0 1 1 1

1 1 1 1

Figure 8-2: A truth map for F = C'B'A +
C'BA' + C'BA + CB'A' + CB'A + CBA' + CBA

The next step is to draw outlines around rectangular groups of 1s. The
rectangles you enclose must have sides whose lengths are powers of 2. For
functions with three variables, the rectangles can have sides whose lengths
are 1, 2, and 4. The set of rectangles you draw must surround all cells con-
taining 1s in the truth map. The trick is to draw all possible rectangles
unless a rectangle would be completely enclosed within another, but also
draw the fewest number of rectangles. Note that the rectangles may overlap
as long as one rectangle does not completely enclose the other. In the truth
map in Figure 8-3, there are three such rectangles.

C

0

1

BA

00 01 11 10

0 1 1 1

1 1 1 1

Three possible rectangles whose lengths
and widths are powers of 2

Figure 8-3: Surrounding rectangular groups
of 1s in a truth map

Each rectangle represents a term in the simplified Boolean function.
Therefore, the simplified Boolean function will contain only three terms.
You build each term by eliminating any variables whose primed and
unprimed forms both appear within the rectangle (because the positive
and negative variants cancel each other out). The long skinny rectangle in
Figure 8-3 is sitting in the row where C = 1 contains both A and B in primed
and unprimed forms. Therefore, we can eliminate both A and B from the
term. Because the rectangle sits in the C = 1 region, this rectangle repre-
sents the single literal C.

232 Chapter 8

The light gray square in Figure 8-3 includes C, C', B, B', and A. Therefore,
it represents the single term A. Likewise, the dark gray square in Figure 8-3
contains C, C', A, A', and B, so it represents the single term B.

The final, optimal, function is the sum (logical OR) of the terms rep-
resented by the three squares, or F = A + B + C. You do not have to consider
the remaining squares containing 0s.

A truth map forms a torus (a doughnut shape). The right edge of
the map wraps around to the left edge, and vice versa. Likewise, the top
edge wraps around to the bottom edge. This introduces additional possi-
bilities for drawing rectangles around groups of 1s in a map. Consider the
Boolean function F = C'B'A' + C'BA' + CB'A' + CBA'. Figure 8-4 shows the
truth map for this function.

C
0

1

BA

00 01 11 10

1 0 0 1

1 0 0 1

Figure 8-4: Truth map for F = C'B'A' +
C'BA' + CB'A + CBA'

At first glance, you might think that the minimum number of rectan-
gles is two, as shown in Figure 8-5.

C

0

1

1 0 0 1

1 0 0 1

BA

00 01 11 10

Figure 8-5: First attempt at surrounding
rectangles formed by 1s

However, because the truth map is a continuous object with the right
side and left sides connected, we can actually form a single, square rect-
angle, as Figure 8-6 shows.

Boolean Logic and Digital Design 233

C

0

1

BA
00 01 11 10

1 0 0 1

1 0 0 1

Figure 8-6: Correct rectangle for the function

Why does it matter if we have one rectangle or two in the truth map?
The larger the rectangles are, the more terms they will eliminate. The
fewer rectangles that we have, then, the fewer terms will appear in the final
Boolean function.

The example in Figure 8-5 with two rectangles generates a function
with two terms. The rectangle on the left eliminates the C variable, leaving
A'B' as its term. The rectangle on the right also eliminates the C variable,
leaving the term BA'. Therefore, this truth map would produce the equa-
tion F = A'B' + A'B. We know this is not optimal (see theorem 13).

Now consider the truth map in Figure 8-6. Here we have a single rect-
angle, so our Boolean function will have only a single term. Because this
rectangle includes both C and C', and also B and B', the only term left is A'.
This Boolean function, therefore, reduces to F = A'.

There are only two types of truth maps that the mapping method can-
not handle properly: a truth map that contains all 0s or a truth map that
contains all 1s. These two cases correspond to the Boolean functions F = 0
and F = 1 (that is, the function number is 0 or 2n − 1). When you see either
of these truth maps, you’ll know how to optimally represent the function.

When optimizing Boolean functions using the mapping method, remem-
ber that you always want to pick the largest rectangles whose sides’ lengths
are powers of 2. You must do this even for overlapping rectangles (unless one
rectangle encloses another). Consider the Boolean function F = C'B'A' + C'BA'
+ CB'A' + C'AB + CBA' + CBA. This produces the truth map in Figure 8-7.

C

0

1

BA

00 01 11 10

1 0 1 1

1 0 1 1

Figure 8-7: Truth map for F = C'B'A' + C'BA' +
CB'A' + C'AB + CBA' + CBA

234 Chapter 8

The initial temptation is to create one of the sets of rectangles found in
Figure 8-8. However, the correct mapping appears in Figure 8-9.

C
0

1

BA
00 01 11 10

1 0 1 1

1 0 1 1

C
0

1

BA
00 01 11 10

1 0 1 1

1 0 1 1

Figure 8-8: Obvious choices for rectangles

C

0

1

BA
00 01 11 10

1 0 1 1

1 0 1 1

Figure 8-9: Correct set of rectangles for F =
C'B'A' + C'BA' + CB'A' + C'AB + CBA' + CBA

All three mappings will produce a Boolean function with two terms.
However, the first two will produce the expressions F = B + A'B' and F = AB +
A'. The third form produces F = B + A'. This last form is the optimized one
(see theorems 11 and 12).

Truth maps you create for functions of four variables are even trick-
ier; there are many places rectangles can hide from you along the edges,
as you can see in Figure 8-10. This list of patterns doesn’t even begin to
cover all of them! For example, the diagrams in Figure 8-10 show none of
the 1×2 rectangles.

Boolean Logic and Digital Design 235

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

Figure 8-10: Partial pattern list for a 4×4 truth map

236 Chapter 8

This final example demonstrates optimizing a function of four vari-
ables. The function is F = D'C'B'A' + D'C'B'A + D'C'BA + D'C'BA' + D'CB'A +
D'CBA + DCB'A + DCBA + DC'B'A' + DC'BA', and its truth map appears in
Figure 8-11.

00

01

00 01 1011

10

11

= 1

= 0

BA

DC

Figure 8-11: Truth map for F = D'C'B'A' +
D'C'B'A + D'C'BA + D'C'BA' + D'CB'A + D'CBA +
DCB'A + DCBA + DC'B'A' + DC'BA'

Figure 8-12 shows the two possible sets of maximal rectangles for this
function, each producing three terms.

Combination 1:

Combination 2:

Figure 8-12: Two combinations yielding three terms

The rectangle formed by the four corners, common to both maps in
Figure 8-12, contains B, B', D, and D', so we can eliminate those terms. The
remaining terms contained within the rectangle are C' and A', so this rect-
angle represents the term C'A'.

Boolean Logic and Digital Design 237

The rectangle formed by the middle four squares, also in both combi-
nations, includes the terms A, B, B', C, D, and D'. Eliminating B, B', D, and
D', we obtain CA.

Combination 1 has a third term represented by the top row. This term
includes the variables A, A', B, B', C', and D'. We can eliminate A, A', B, and
B'. This leaves the term C'D'. Therefore, the function represented by the
upper truth map is F = C'A' + CA + C'D'.

Combination 2 has a third term represented by the top/middle four
squares. This rectangle subsumes the variables A, B, B', C, C', and D'. We
can eliminate B, B', C, and C', leaving the term AD. Therefore, the function
represented by the lower truth map is F = C'A' + CA + AD'.

Both functions are equivalent; both are optimal (remember, there’s no
guarantee of a unique optimal solution). Either will suffice for our purposes:
implementing Boolean functions using the fewest circuit components.

8.7  What Does This Have to Do with Computers, Anyway?
Any program you can write, you can also specify as a sequence of Boolean
equations. This means that any algorithm you can implement in software, you
can also implement directly in hardware—there is a one-to-one relationship
between the set of all Boolean functions and the set of all electronic circuits.
Electrical engineers, who design CPUs and other computer-related circuits,
have to be intimately familiar with this material.

Because it’s easier to specify a solution to a programming problem
using languages like Pascal, C, or even assembly language than it is to spec-
ify the solution using Boolean equations, it’s unlikely that you would ever
implement an entire program using a set of state machines and other logic
circuitry. However, a hardware solution can be orders of magnitude faster
than an equivalent software solution, and some time-critical operations
require a hardware solution.

It is also possible to implement all hardware functions in software. This is
important, because many operations you’d normally implement in hardware
are much cheaper to implement using software on a microprocessor. Indeed,
one of the primary uses of assembly language on modern systems is to inex-
pensively replace a complex electronic circuit. Often, you can replace many
tens or hundreds of dollars of electronic components with a single $2 micro-
computer chip programmed to perform the equivalent function.

The whole field of embedded systems (computer systems embedded in
other products) deals with this problem. For example, most microwave
ovens, TV sets, video games, CD players, and other consumer devices
contain one or more complete computer systems whose sole purpose is to
replace a complex hardware design. Engineers use computers for this pur-
pose because they are less expensive and easier to design with than tradi-
tional electronic circuitry.

To write software that reads switches (input variables) and turns on
motors, LEDs, or lights, or that locks or unlocks a door, you need to under-
stand Boolean functions and how to implement them in software.

238 Chapter 8

8.7.1  Correspondence Between Electronic Circuits and Boolean Functions
For any Boolean function, you can design an equivalent electronic cir-
cuit and vice versa. We can construct any electronic circuit using the
AND, OR, and NOT Boolean operators, which correspond to the AND,
OR, and inverter (NOT) circuits (see Figure 8-13). These symbols are
standard electronic symbols appearing in schematic diagrams. (To learn
more about electronic schematic diagrams, check out any book on
electronic design.)

A A'
A

B
A and B A

B
A or B

Figure 8-13: AND, OR, and inverter (NOT) gates

The lines to the left of each gate, with the A and B labels, correspond to
a logic function input; the line to the right of each diagram corresponds to
the function’s output.

An electronic circuit is a combination of gates that implement some set
of Boolean functions. Consider the Boolean function F = AB + B. You can
implement this function using an AND gate and an OR gate. Simply con-
nect the two input variables (A and B) to the inputs of the AND gate,
connect the output of the AND gate to one of the inputs of the OR gate,
and connect the B input variable to the other OR input. Now you have an
electronic (hardware) circuit that implements this function.

However, you actually need only a single gate type—the NAND (NOT
AND) gate—to implement any electronic circuit (see Figure 8-14). The
NAND gate tests its two inputs (A and B) and outputs false if both inputs are
true; it outputs true if both inputs are false. You could construct the NAND
circuit from an AND gate and an inverter. However, from a transistor/hard-
ware perspective, the NAND gate is actually simpler to construct than an
AND gate; therefore, NAND gates (such as the 7400 IC) are very common.

A

B
not (A and B)

Figure 8-14: The NAND gate

We can construct any Boolean function using only NAND gates
because we can build an inverter (NOT), an AND gate, and an OR gate
from NAND gates.3 Building an inverter is easy; just connect the two inputs
together (see Figure 8-15).

3. Indeed, the four AND gates in a 7408 Transistor-Transistor Logic (TTL) IC are probably
constructed internally with transistors arranged as a NAND gate followed by an inverter.

Boolean Logic and Digital Design 239

A A'

Figure 8-15: Inverter built from a NAND gate

After building an inverter, we can build an AND gate by inverting the
output of a NAND gate, because NOT (NOT (A AND B)) is equivalent to
A AND B (see Figure 8-16). It takes two NAND gates to construct a single
AND gate (no one said that circuits constructed only with NAND gates are
optimal, only that they’re possible).

A

B
A and B

Figure 8-16: Constructing an AND gate from two NAND gates

The remaining gate is the logical-OR gate. We can construct an OR
gate from NAND gates by applying DeMorgan’s Theorems.

(A or B)' = A' and B' DeMorgan's Theorem.
A or B = (A' and B')' Invert both sides of the equation.
A or B = A' nand B' Definition of NAND operation.

Applying these transformations produces the circuit shown in
Figure 8-17.

A

B

A or B

Figure 8-17: Constructing an OR gate from NAND gates

NAND gates are generally less expensive to build than other gates, and
it’s much easier to build up complex circuits from the same basic building
blocks than it is to construct an integrated circuit using different basic gates.

8.7.2  Combinatorial Circuits
A computer’s CPU is built from combinatorial circuits, which are systems con-
taining basic Boolean operations (AND, OR, NOT), some inputs, and a set of
outputs. A combinatorial circuit often implements several different Boolean
functions, with each output corresponding to an individual logic function.

N O T E 	 It is very important that you remember that each output represents a different
Boolean function.

240 Chapter 8

8.7.2.1  Combining Addition Circuits

You can implement addition using Boolean functions. Suppose you have
two 1-bit numbers, A and B. You can produce the 1-bit sum and the 1-bit
carry of this addition using these two Boolean functions:

S = AB' + A'B Sum of A and B.
C = AB Carry from addition of A and B.

These two Boolean functions implement a half adder, so called because
it adds 2 bits together but cannot add in a carry from a previous operation.
Note that S = 1 if A or B is 1, S = 0 if A and B are both 0 or 1 (both 1 pro-
duces a carry, which is what the C = AB expression produces).

A full adder adds three 1-bit inputs (2 bits plus a carry from a previous
addition) and produces two outputs: the sum and the carry. These are the
two logic equations for a full adder:

S = A'B'Cin + A'BCin' + AB'Cin' + ABCin
Cout = AB + ACin + BCin

Although these equations produce only a single-bit result (plus a carry), it’s
easy to construct an n-bit sum by combining adder circuits (see Figure 8-18).

A0
B0

S0

Carry

A1
B1

S1

Carry

A2
B2

S2

Half
adder

Full
adder

Full
adder Carry

.

.

.

Figure 8-18: Building an n-bit adder using
half and full adders

The two n -bit inputs, A and B, are passed into the adder bit-by-bit,
with the LO bits input as A0 and B0, and so on up to HO bits An–1 and
Bn–1. S0 is the LO bit of the sum, up to Sn–1, and the final carry indicates
whether the addition overflowed n bits.

Boolean Logic and Digital Design 241

8.7.2.2  Using Seven-Segment LED Decoders

Another common combinatorial circuit is the seven-segment decoder. Among
the more important circuits in computer system design, decoder circuits
enable the computer to recognize (or decode) a string of bits.

The seven-segment decoder circuit accepts an input of 4 bits and
determines which segments to illuminate on a seven-segment LED display.
Because a seven-segment display contains seven output values (one for each
segment), there are seven logic functions associated with it (segments 0
through 6). See Figure 8-19 for the segment assignments. Figure 8-20 shows
the active segments for each of the 10 decimal values.

S0

S1 S3S2

S5
S4 S6

Figure 8-19: Seven-segment display

Figure 8-20: Seven-segment values for
0 through 9

The four inputs to each of these seven Boolean functions are the 4 bits
from a binary number in the range 0 through 9. Let D be the HO bit of this
number and A be the LO bit. Each segment’s logic function should produce
a 1 (segment on) for all binary number inputs that have that segment illumi-
nated in Figure 8-20. For example, S4 (segment 4) should be illuminated for
numbers 0, 2, 6, and 8, which correspond to the binary values 0000, 0010,
0110, and 1000. For each of the binary values that illuminates a segment,
you will have one minterm in the logic equation:

S4 = D'C'B'A' + D'C'BA' + D'CBA' + DC'B'A'

S0 (segment 0), as a second example, is on for the numbers 0, 2, 3, 5, 6,
7, 8, and 9, which correspond to the binary values 0000, 0010, 0011, 0101,
0110, 0111, 1000, and 1001. Therefore, the logic function for S0 is as follows:

S0 = D'C'B'A' + D'C'BA' + D'C'BA + D'CB'A + D'CBA' + D'CBA + DC'B'A' + DC'B'A

242 Chapter 8

8.7.2.3  Decoding Memory Addresses

A decoder is also commonly used in memory expansion. For example, sup-
pose a system designer wishes to install four (identical) 256MB memory
modules in a system to bring the total to 1GB of RAM. Each of these 256MB
memory modules has 28 address lines (A0..A27), assuming each memory
module is 8 bits wide (228 × 8 bits is 256MB).4

Unfortunately, if the system designer hooked up those four memory
modules to the CPU’s address bus, each module would respond to the same
addresses on the bus. Pandemonium would result. To correct this prob-
lem, each memory module needs to respond to a different set of addresses
appearing on the full address bus (with a module address appearing on
the LO 28 bits of the address bus). By adding a chip-select line to each of
the memory modules, and using a two-input, four-output decoder circuit,
we can use the chip select lines A28 and A29 to specify the HO 2 bits of the
(now effectively 30-bit) memory address. See Figure 8-21 for the details.

Address lines
A0 ..A27

A28
A29

Chip-select lines

Two-input–
to–four-output
decoder

Figure 8-21: Adding four 256MB memory modules to a system

The two- to four-line decoder circuit in Figure 8-21 incorporates four
different logic functions: one function for each of the outputs. Each combi-
nation of the input bits will activate a single chip-select line, and deactivate
the other three. Assuming the inputs are A and B (A = A28 and B = A29), the
four output functions are as follows:

Q0 = A'B'
Q1 = AB'
Q2 = A'B
Q3 = AB

Following standard electronic circuit notation, these equations use Q to
denote an output.

Note that most circuit designers use active low logic for decoders and
chip enables. This means that they enable a circuit when a low-input

4. Actually, most memory modules are wider than 8 bits, so a real 256MB memory module
will have fewer than 28 address lines, but we’ll ignore this technicality in this example.

Boolean Logic and Digital Design 243

value (0) is supplied and disable the circuit when a high-input value (1) is
supplied. Real-world decoding circuits would likely use the following sums
of maxterms functions:

Q0 = A + B
Q1 = A' + B
Q2 = A + B'
Q3 = A' + B'

8.7.2.4  Decoding Machine Instructions

Decoding circuits are also used to decode machine instructions. We’ll cover
this subject in much greater depth in Chapters 9 and 10, but a simple exam-
ple is in order here.

Most modern computer systems represent machine instructions using
binary values in memory. To execute an instruction, the CPU fetches the
instruction’s binary value from memory, decodes it using decoder circuitry,
and then does the appropriate work. To see how this is done, let’s create a
fictional CPU with a very simple instruction set. Figure 8-22 provides the
instruction format (all the numeric codes that correspond to the various
instructions) for our CPU. Within the 1-byte operation code (opcode),
3 bits (iii) represent the instruction, 2 bits (ss) the source operand, and
2 bits the destination operand (dd).

0 i i i s s d d

iii

000 = mov
001 = add
010 = sub
011 = mul
100 = div
101 = and
110 = or
111 = xor

ss & dd

00 = eax
01 = ebx
10 = ecx
11 = edx

7 6 5 4 3 2 1 0Bit:

Figure 8-22: Instruction (opcode) format for a very simple CPU

To determine the 8-bit opcode for a given instruction, look up each
component of the instruction in the tables in Figure 8-22 and substitute the
corresponding bit values.

Let’s pick mov(eax, ebx); as our simple example. To convert this instruction
to its numeric equivalent, mov is encoded as 000, eax is encoded as 00, and ebx
is encoded as 01. Assemble these three fields into the opcode byte (a packed
data type), to obtain the bit value: %00000001. Therefore, the numeric value
$1 is the value for the mov(eax, ebx); instruction (see Figure 8-23).

244 Chapter 8

0 0 0 0 0 0 0 1

iii

000 = mov
 .
 .
 .

ss & dd

00 = eax
01 = ebx
10 = ecx
11 = edx

Figure 8-23: Encoding the mov(eax, ebx); instruction

A typical decoder circuit for this example appears in Figure 8-24. The
circuit uses three separate decoders to decode the individual fields of the
opcode. This is much less complex than creating a single 7- to 128-line
decoder to decode the entire opcode.

0 0 0 0 0 0 0 1

Circuitry to do a mov
Circuitry to do an add
Circuitry to do a sub
Circuitry to do a mul
Circuitry to do a div
Circuitry to do an and
Circuitry to do an or
Circuitry to do an xor

Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7

A
B
C

Two- to
four-line
decoder

Three- to
eight-line
decoder

A
B

Q0
Q1
Q2
Q3

EAX
EBX
ECX
EDX

The circuitry attached to the
destination register bits is
identical to the circuitry for
the source register bits.

Figure 8-24: Decoding simple machine instructions

Boolean Logic and Digital Design 245

The circuit in Figure 8-24 tells you which instruction and what operands
a given opcode specifies. To actually execute this instruction, you must supply
additional circuitry to select the source and destination operands from an
array of registers and act accordingly upon those operands. Such circuitry
is beyond the scope of this chapter, so we’ll save the juicy details for later.

8.7.3  Sequential and Clocked Logic
One major problem with combinatorial logic is that it is memoryless. In theory,
all logic function outputs depend only on the current inputs. Any change
in the input values immediately appears on the outputs.5 Unfortunately, com-
puters need the ability to remember the results of past computations. This is
the domain of sequential, or clocked, logic.

8.7.3.1  The Set/Reset Flip-Flop

A memory cell is an electronic circuit that remembers an input value after
the removal of that input value. The most basic memory unit is the set/
reset (S/R) flip-flop. You can construct an S/R flip-flop memory cell using
two NAND gates, as shown in Figure 8-25. In this diagram, the outputs
of the two NAND gates are recirculated to one of the inputs of the other
NAND gate.

Q

Q'

S

R

Figure 8-25: Set/reset flip-flop constructed
from NAND gates

The S and R inputs are normally high, or 1. If you toggle the S input by
temporarily setting its value to 0 and then bringing it back to 1, the Q output
is set to 1. Likewise, if you toggle the R input from 1 to 0 and back to 1, this
resets the Q output to 0. Q' outputs the opposite of Q.

If both S and R are 1, then the Q output depends upon the original
value of Q itself. That is, whatever Q happens to be, the top NAND gate
continues to output that same value. If Q was originally 1, then the bottom
NAND gate receives two inputs of 1 (both Q and R), and the bottom NAND
gate produces an output of 0 (Q'). As a result, the two inputs to the top
NAND gate are 0 and 1, and the top NAND gate produces an output of 1,
matching the original value for Q.

5. In practice, there is a short propagation delay between a change in the inputs and the corre-
sponding outputs in any electronic implementation of a Boolean function.

246 Chapter 8

On the other hand, if the original value of Q was 0, then the inputs to
the bottom NAND gate are Q = 0 and R = 1, and the output of this bottom
NAND gate is 1. As a result, the inputs to the top NAND gate are S = 1 and
Q' = 1. This produces a 0 output, the original value of Q.

Now suppose Q is 0, S is 0, and R is 1. This sets the two inputs to the top
NAND gate to 1 and 0, forcing the output (Q) to 1. Returning S to the high
state does not change the output at all, because the value of Q' is 1. You will
obtain this same result if Q is 1, S is 0, and R is 1. Again, this produces a Q
output value of 1, and again this value remains 1 even when S switches from
0 to 1. To overcome this and produce a Q output of 1, you must toggle the
S input. The same idea applies to the R input, except that toggling it forces
the Q output to 0 rather than to 1.

There is one catch to this circuit. It does not operate properly if you
set both the S and R inputs to 0 simultaneously. This forces both the Q and
Q' outputs to 1 (which is logically inconsistent). Whichever input remains 0
the longest determines the final state of the flip-flop. A flip-flop operating
in this mode is said to be unstable.

Table 8-9 lists all the output configurations for an S/R flip-flop based
on the current inputs and the previous output values.

Table 8-9: S/R Flip-Flop Output States Based on Current Inputs and Previous Outputs

Previous Q Previous Q´ S input R input Q output Q´ output

x6 x 0 (1 > 0 > 1) 1 1 0

x x 1 0 (1 > 0 > 1) 0 1

x x 0 0 1 17

0 1 1 1 0 1

1 0 1 1 1 0

8.7.3.2  The D Flip-Flop

The only problem with the S/R flip-flop is that to be able to remember
either a 0 or a 1 value, you must have two different inputs. A memory cell
would be more valuable to us if we could specify the data value to remem-
ber with one input value and supply a second clock input value to latch the
data input value.8 This type of flip-flop, the D flip-flop (D stands for data),
uses the circuit in Figure 8-26.

6. x = “don’t care,” implying that the value may be 0 or 1 and it won’t affect the outputs.

7. This is an unstable configuration and will change once S or R is set to 1.

8. “Latch” simply means to remember the value. That is, a D flip-flop is the basic memory
element because it can remember one data bit appearing on its D input.

Boolean Logic and Digital Design 247

Clk

D

Q

Q'

Figure 8-26: Implementing a D flip-flop with NAND gates

Assuming you fix the Q and Q' outputs to either 0/1 or 1/0, sending a
clock pulse that goes from 0 to 1 and back to 0 will copy the D input to the
Q output (and set Q' to the inverse of Q). To see how this works, note that
the right half of the circuit diagram in Figure 8-26 is an S/R flip-flop. If
the data input is 1 while the clock line is high, this places a 0 on the S input
of the S/R flip-flop (and a 1 on the R input). Conversely, if the data input
is 0 while the clock line is high, this places a 0 on the R input (and a 1 on
the S input) of the S/R flip-flop, thus clearing the S/R flip-flop’s output.
Whenever the clock input is low, both the S and R input are high, and the
outputs of the S/R flip-flop do not change.

Although remembering a single bit is often important, in most com-
puter systems you want to remember a group of bits. You can do this by
combining several D flip-flops in parallel. Concatenating flip-flops to store
an n-bit value forms a register. The electronic schematic in Figure 8-27 shows
how to build an 8-bit register from a set of D flip-flops.

D0

Q0

D1 D2

Q2

D3

Q3

D4

Q4

D5

Q5

D6 D7

Q7

Clk

Q1 Q6

Figure 8-27: An 8-bit register implemented with eight D flip-flops

Note that the eight D flip-flops in Figure 8-27 use a common clock line.
This diagram does not show the Q' outputs on the flip-flops because they
are rarely required in a register.

D flip-flops are useful for building many sequential circuits beyond
simple registers. For example, you can build a shift register that shifts the bits
one position to the left on each clock pulse. A 4-bit shift register appears in
Figure 8-28.

248 Chapter 8

Q0 Q1 Q2 Q3

Clk

Data In

D D D D

Q'

Clk Clk Clk Clk

Q Q Q Q

Figure 8-28: A 4-bit shift register built from D flip-flops

You can even build a counter that counts the number of times the clock
toggles from 1 to 0 and back to 1 using flip-flops. The circuit in Figure 8-29
implements a 4-bit counter using D flip-flops.

Clk

D Clk D Clk D Clk
Q1' Q2' Q3'

D Clk

Q0'

Q0' Q1' Q2' Q3'

Figure 8-29: A 4-bit counter built from D flip-flops

Surprisingly, you can build an entire CPU with combinatorial circuits
and only a few additional sequential circuits. For example, you can build
a simple state machine known as a sequencer by combining a counter and a
decoder, as shown in Figure 8-30.

Clk

Q2

4-bit
counter

Q0
Q1

Q3

C

A

B

D

Q2

Q0

Q1

Q3
.
.
.

Q14

Q15

4- to
16-line
decoder

State 0

State 1

State 2

State 3

State 14

State 15

Figure 8-30: A simple 16-state sequencer

For each cycle of the clock in Figure 8-30, this sequencer activates one
of its output lines. Those lines, in turn, may control other circuits. By “fir-
ing” those other circuits on each of the 16 output lines of the decoder, we
can control the order in which the circuits accomplish their tasks. This
is essential in a CPU, as we often need to control the sequence of various

Boolean Logic and Digital Design 249

operations. For example, it wouldn’t be a good thing if the add(eax, ebx);
instruction stored the result into EBX before fetching the source operand
from EAX (or EBX). A simple sequencer can tell the CPU when to fetch
the first operand, when to fetch the second operand, when to add them
together, and when to store the result. However, we’re getting a little ahead
of ourselves—we’ll discuss this in detail in the next two chapters.

8.8  For More Information
Horowitz, Paul, and Winfield Hill. The Art of Electronics. 3rd ed. Cambridge,

UK: Cambridge University Press, 2015.

N O T E 	 This chapter is not, by any means, a complete treatment of Boolean algebra and digi-
tal design. If you’re interested in learning more, consult one of the dozens of books on
this subject.

9
C P U A R C H I T E C T U R E

Without question, the design of the cen-
tral processing unit (CPU) has the great-

est impact on the performance of your
software. To execute a particular instruction

(or command), a CPU requires a certain amount of
electronic circuitry specific to that instruction. As you
increase the number of instructions the CPU can support, you also increase
the CPU’s complexity and the amount of circuitry, or logic gates, needed to
execute them. Therefore, to keep the number of logic gates and the associ-
ated costs reasonably small, CPU designers must restrict the number and
complexity of the instructions the CPU can execute. This is known as the
CPU’s instruction set.

This chapter, and the next, discusses the design of CPUs and their
instruction sets—information that is absolutely crucial for writing high-
performance software.

252 Chapter 9

9.1  Basic CPU Design
Programs in early computer systems were often hardwired into the cir-
cuitry. That is, the computer’s wiring determined exactly what algorithm
the computer would execute. The computer had to be rewired in order to
solve a different problem. This was a difficult task, something that only elec-
trical engineers were able to do.

Thus, the next advance in computer design was the programmable
computer system, in which a computer operator could easily “rewire”
the computer using a panel of sockets and plug wires known as a patch
board. A computer program consisted of rows of sockets, with each row rep-
resenting one operation (instruction) during the program’s execution. To
execute an instruction, the programmer inserted a wire into its correspond-
ing socket (see Figure 9-1).

Instr #1

Instr #2

Instr #3
 .
 .
 .

mo
v

ad
d

su
b

mu
l

di
v

an
d

or xo
r

Figure 9-1: Patch board programming

The number of possible instructions was limited by how many sockets
could fit on each row. CPU designers quickly realized that with a small
amount of additional logic circuitry, they could reduce the number of sock-
ets required for specifying n different instructions from n sockets to log2(n)
sockets. They did this by assigning a unique binary number to each instruc-
tion (for example, Figure 9-2 shows how to represent eight instructions
using only 3 bits).

Instr #1

Instr #2

Instr #3
 .
 .
 .

C B A CBA instruction
000 mov

001 add

010 sub

011 mul

100 div

101 and

110 or

111 xor

Figure 9-2: Encoding instructions

CPU Architecture 253

The example in Figure 9-2 requires eight logic functions to decode the
A, B, and C bits on the patch board, but the extra circuitry (a single three-
to eight-line decoder) is worth the cost, because it reduces the total number
of sockets from eight to three for each instruction.

Many CPU instructions require operands. For example, the mov instruc-
tion moves data from one location in the computer to another, such as from
one register to another, and therefore requires a source operand and a desti-
nation operand. The operands were encoded as part of the machine instruc-
tion, with sockets corresponding to the source and destination. Figure 9-3
shows one possible combination of sockets to handle a mov instruction.

Instr #1

Instr #2

Instr #3
 .
 .
 .

C B A

CBA instruction
000 mov

001 add

010 sub

011 mul

100 div

101 and

110 or

111 xor

DD SS

 Register

00

01 BX

10 CX

11 DX

AX

DD -or- SS

Figure 9-3: Encoding instructions with source and destination fields

The mov instruction would move data from the source register to the des-
tination register, the add instruction would add the value of the source regis-
ter to the destination register, and so on. This scheme allowed the encoding
of 128 different instructions with just seven sockets per instruction.

As noted earlier, a big problem with patch-board programming was
that a program’s functionality was limited by the number of sockets avail-
able on the machine. Early computer designers recognized a relationship
between the sockets on the patch board and bits in memory. They realized
they could store the binary equivalent of a machine instruction in main
memory, fetch that binary number when the CPU wanted to execute the
instruction, and then load it into a special register to decode the instruc-
tion. Known as the stored program computer, this invention was another major
advance in computer design.

The trick was to add more circuitry, called the control unit (CU), to the
CPU. The control unit uses a special register, the instruction pointer, to hold
the address of an instruction’s binary numeric code (also known as an

254 Chapter 9

operation code or opcode). The control unit fetches the instruction’s opcode
from memory and places it in the instruction decoding register for execution.
After executing the instruction, the control unit increments the instruction
pointer and fetches the next instruction from memory for execution.

9.2  Decoding and Executing Instructions: Random Logic
vs. Microcode

Once the control unit fetches an instruction from memory, traditional CPUs
use two common approaches to execute the instruction: random logic (hard-
wired) and microcode (emulation). The 80x86 family, for example, uses both
of these techniques.

The random logic1 or hardwired approach uses decoders, latches, coun-
ters, and other hardware logic devices to operate on the opcode data.
Random logic is fast but poses a circuitry design challenge; for CPUs with
large and complex instruction sets, it’s difficult to properly lay out the logic
so that related circuits are close to one another in the two-dimensional
space of the chip.

CPUs based on microcode contain a small, very fast execution unit (cir-
cuitry responsible for executing a particular function), known as a micro-
engine, that uses the binary opcode to select a set of instructions from the
microcode bank. This microcode executes one microinstruction per clock
cycle, and the sequence of microinstructions executes all the steps to per-
form whatever calculations are necessary for that instruction.

Although this microengine itself is fast, it must fetch its instructions from
the microcode ROM (read-only memory). Therefore, if memory technology
is slower than the execution logic, the micro-engine must run at the same
speed as the microcode ROM, which in turn limits the speed at which the
CPU can run.

The random logic approach decreases the time to execute an opcode’s
instruction, provided that typical CPU speeds are faster than memory
speeds, but that doesn’t mean it’s necessarily faster than the microcode
approach. Random logic often includes a sequencer that steps through
several states (one state per clock cycle). Whether you use up clock cycles
executing microinstructions or stepping through a random logic state
machine, you’re still burning up time.

Which approach is better for CPU design depends entirely on the
current state of memory technology. If memory technology is faster than
CPU technology, the microcode approach probably makes more sense. If
memory technology is slower than CPU technology, random logic tends to
execute machine instructions more quickly.

1. There is actually nothing random about this logic at all. The name comes from the fact
that if you view a photomicrograph of a CPU die that uses microcode, the microcode section
looks very regular; the same photograph of a CPU that utilizes hardware logic contains no
such easily discernible patterns.

CPU Architecture 255

9.3  Executing Instructions, Step by Step
Regardless of which approach the CPU uses, you need to understand how a
CPU executes individual machine instructions. To that end, we’ll consider
four representative 80x86 instructions—mov, add, loop, and jnz (jump if not
zero)—to give you a sense of how a CPU executes all the instructions in its
instruction set.

As you saw earlier, the mov instruction copies data from a source operand
to a destination operand. The add instruction adds the value of its source
operand to its destination operand. loop and jnz are conditional jump instruc-
tions—they test some condition and, if it’s true, they jump to some other
instruction in memory; if it’s false, they continue with the next instruction.
The jnz instruction tests a Boolean variable within the CPU known as the
zero flag and either transfers control to the target instruction (the instruction
to jump to) if the zero flag contains 0, or continues with the next instruction
if the zero flag contains 1. The program indicates the address of the target
instruction by specifying the distance, in bytes, between it and the jnz instruc-
tion in memory.

The loop instruction decrements the value of the ECX register and, if the
resulting value does not contain 0, transfers control to a target instruction.
This is a good example of a complex instruction set computer (CISC) instruction
because it does more than one operation:

1.	 It subtracts 1 from ECX.

2.	 It does a conditional jump if ECX does not contain 0.

That is, loop is roughly equivalent to the following instruction sequence:

sub(1, ecx); // On the 80x86, the sub instruction sets the zero flag
jnz SomeLabel; // the result of the subtraction is 0.

To execute the mov, add, jnz, and loop instructions, the CPU has to
execute a number of different operations. Each operation requires a finite
amount of time to execute, and the time required to execute the entire
instruction generally amounts to one clock cycle per operation or stage
(step) that the CPU executes. Obviously, the more stages needed for an
instruction, the slower it will run. Because they have many execution stages,
complex instructions generally run slower than simple instructions.

Although 80x86 CPUs differ and don’t necessarily execute the exact
same steps, their sequence of operations is similar. This section presents
some possible sequences, all starting with the same three execution stages:

1.	 Fetch the instruction’s opcode from memory.

2.	 Update the EIP (extended instruction pointer) register with the
address of the byte following the opcode.

3.	 Decode the instruction’s opcode to see what instruction it specifies.

256 Chapter 9

9.3.1  The mov Instruction
A decoded 32-bit 80x86 mov(srcReg, destReg); instruction might use the fol-
lowing (additional) execution stages:

1.	 Fetch the data from the source register (srcReg).

2.	 Store the fetched value into the destination register (destReg).

The mov(srcReg, destMem); instruction could use the following execu
tion stages:

1.	 Fetch the displacement associated with the memory operand from the
memory location immediately following the opcode.

2.	 Update EIP to point at the first byte beyond the operand that follows
the opcode.

3.	 Compute the effective address of the destination memory location,
if the mov instruction uses a complex addressing mode (for example,
the indexed addressing mode).

4.	 Fetch the data from srcReg.

5.	 Store the fetched value into the destination memory location.

A mov(srcMem, destReg); instruction is very similar, simply swapping the
register access for the memory access in these steps.

The mov(constant, destReg); instruction could use the following execu-
tion stages:

1.	 Fetch the constant associated with the source operand from the mem-
ory location immediately following the opcode.

2.	 Update EIP to point at the first byte beyond the constant that follows
the opcode.

3.	 Store the constant value into the destination register.

Assuming each stage requires one clock cycle for execution, this
sequence (including the three common stages) will require six clock
cycles to execute.

The mov(constant, destMem); instruction could use the following execu-
tion stages:

1.	 Fetch the displacement associated with the memory operand from the
memory location immediately following the opcode.

2.	 Update EIP to point at the first byte beyond the operand that follows
the opcode.

3.	 Fetch the constant operand’s value from the memory location immedi-
ately following the displacement associated with the memory operand.

4.	 Update EIP to point at the first byte beyond the constant.

CPU Architecture 257

5.	 Compute the effective address of the destination memory location, if
the mov instruction uses a complex addressing mode (for example, the
indexed addressing mode).

6.	 Store the constant value into the destination memory location.

9.3.2  The add Instruction
The add instruction is a little more complex. Here’s a typical set of opera-
tions (beyond the common set) that the decoded add(srcReg, destReg);
instruction must complete:

1.	 Fetch the value of the source register and send it to the arithmetic
logical unit (ALU), which handles arithmetic on the CPU.

2.	 Fetch the value of the destination register operand and send it to the ALU.

3.	 Instruct the ALU to add the values.

4.	 Store the result back into the destination register operand.

5.	 Update the flags register with the result of the addition operation.

N O T E 	 The flags register, also known as the condition-codes register or program-
status word, is an array of Boolean variables in the CPU that tracks whether the
previous instruction produced an overflow, a zero result, a negative result, or other
such condition.

If the source operand is a memory location instead of a register, and
the add instruction takes the form add(srcMem, destReg);, then the instruction
sequence is slightly more complicated:

1.	 Fetch the displacement associated with the memory operand from the
memory location immediately following the opcode.

2.	 Update EIP to point at the first byte beyond the operand that follows
the opcode.

3.	 Compute the effective address of the source memory location, if the add
instruction uses a complex addressing mode (for example, the indexed
addressing mode).

4.	 Fetch the source operand’s data from memory and send it to the ALU.

5.	 Fetch the value of the destination register operand and send it to the ALU.

6.	 Instruct the ALU to add the values.

7.	 Store the result back into the destination register operand.

8.	 Update the flags register with the result of the addition operation.

If the source operand is a constant and the destination operand is a
register, the add instruction takes the form add(constant, destReg); and the
CPU might deal with it as follows:

1.	 Fetch the constant operand that immediately follows the opcode in
memory and send it to the ALU.

258 Chapter 9

2.	 Update EIP to point at the first byte beyond the constant that follows
the opcode.

3.	 Fetch the value of the destination register operand and send it to the ALU.

4.	 Instruct the ALU to add the values.

5.	 Store the result back into the destination register operand.

6.	 Update the flags register with the result of the addition operation.

This instruction sequence requires nine cycles to complete.
If the source operand is a constant, and the destination operand is

a memory location, then the add instruction takes the form add(constant,
destMem); and the sequence is slightly more complicated:

1.	 Fetch the displacement associated with the memory operand from
memory immediately following the opcode.

2.	 Update EIP to point at the first byte beyond the operand that follows
the opcode.

3.	 Compute the effective address of the destination memory location, if
the add instruction uses a complex addressing mode (for example, the
indexed addressing mode).

4.	 Fetch the constant operand that immediately follows the memory oper-
and’s displacement value and send it to the ALU.

5.	 Fetch the destination operand’s data from memory and send it to the ALU.

6.	 Update EIP to point at the first byte beyond the constant that follows
the memory operand.

7.	 Instruct the ALU to add the values.

8.	 Store the result back into the destination memory operand.

9.	 Update the flags register with the result of the addition operation.

This instruction sequence requires 11 or 12 cycles to complete, depend-
ing on whether the effective address computation is necessary.

9.3.3  The jnz Instruction
Because the 80x86 jnz instruction does not allow different types of oper-
ands, it needs only one sequence of steps. The jnz label; instruction might
use the following additional execution stages once decoded:

1.	 Fetch the displacement value (the jump distance) and send it to the ALU.

2.	 Update the EIP register to hold the address of the instruction following
the displacement operand.

3.	 Test the zero flag to see if it is clear (that is, if it contains 0).

4.	 If the zero flag was clear, copy the value in EIP to the ALU.

5.	 If the zero flag was clear, instruct the ALU to add the displacement and
EIP values.

6.	 If the zero flag was clear, copy the result of the addition back to the EIP.

CPU Architecture 259

Notice how the jnz instruction requires fewer steps, and thus runs in
fewer clock cycles, if the jump is not taken. This is very typical for condi-
tional jump instructions.

9.3.4  The loop Instruction
Because the 80x86 loop instruction does not allow different types of oper-
ands, it needs only one sequence of steps. The decoded 80x86 loop instruc-
tion might use an execution sequence like the following:2

1.	 Fetch the value of the ECX register and send it to the ALU.

2.	 Instruct the ALU to decrement this value.

3.	 Send the result back to the ECX register. Set a special internal flag if
this result is nonzero.

4.	 Fetch the displacement value (the jump distance) following the opcode
in memory and send it to the ALU.

5.	 Update the EIP register with the address of the instruction following
the displacement operand.

6.	 Test the special internal flag to see if ECX was nonzero.

7.	 If the flag was set (that is, it contains 1), copy the value in EIP to the ALU.

8.	 If the flag was set, instruct the ALU to add the displacement and
EIP values.

9.	 If the flag was set, copy the result of the addition back to the EIP register.

As with the jnz instruction, note that the loop instruction executes more
rapidly if the branch is not taken, and the CPU continues execution with
the instruction that immediately follows the loop instruction.

9.4  RISC vs. CISC: Improving Performance by Executing
More, Faster, Instructions

Early microprocessors (including the 80x86 and its predecessors) are exam-
ples of complex instruction set computers (CISCs). At the time these CPUs were
created, the thinking was that having each instruction do more work made
programs run faster because they executed fewer instructions (as CPUs
with less complex instructions had to execute more instructions to do the
same amount of work). The Digital Equipment Corporation (DEC) PDP-11
and its successor, the VAX, epitomized this design philosophy.

In the early 1980s, computer architecture researchers discovered that
this complexity came at a huge cost. All the hardware necessary to support
these complex instructions wound up constraining the overall clock speed
of the CPU. Experiments with the VAX 11-780 minicomputer demonstrated
that programs executing multiple, simple, instructions were faster than
those executing fewer, more complex, instructions. Those researchers

2. Plus, of course, the common instructions at the beginning of the sequence.

260 Chapter 9

hypothesized that if they stripped the instruction set down to the bare
essentials, using only simple instructions, they could boost the hardware’s
performance (by increasing the clock speed). They called this new architec-
ture reduced instruction set computer (RISC).3 So began the great “RISC versus
CISC” debate: which architecture was really better?

On paper, at least, RISC CPUs looked better. In practice, they ran at
slower clock speeds, because existing CISC designs had a huge head start
(as their designers had had many more years to optimize them). By the
time RISC CPU designs had matured enough to run at higher clock speeds,
the CISC designs had evolved, taking advantage of the RISC research.
Today, the 80x86 CISC CPU is still the high-performance king. RISC CPUs
found a different niche: they tend to be more power efficient than CISC
processors, so they typically wind up in portable and low-power designs
(such as cell phones and tablets).

Though the 80x86 (a CISC CPU) remains the performance leader, it’s
still possible to write programs with a larger number of simple 80x86 instruc-
tions that run faster than those with fewer, more complex 80x86 instructions.
80x86 designers have kept these legacy instructions around to allow you to
execute older software that still contains them. Newer compilers, however,
avoid these legacy instructions to produce faster-running code.

Nevertheless, one important takeaway from RISC research is that the
execution time of each instruction is largely dependent upon the amount
of work it does. The more internal operations an instruction requires, the
longer it will take to execute. In addition to improving execution time by
reducing the number of internal operations, RISC also prioritized internal
operations that could execute concurrently—that is, in parallel.

9.5  Parallelism: The Key to Faster Processing
If we can reduce the amount of time it takes for a CPU to execute the
individual instructions in its instruction set, an application containing a
sequence of those instructions will also run faster than it otherwise would.

An early goal of the RISC processors was to execute one instruction per
clock cycle, on average. However, even if a RISC instruction is simplified, its
actual execution still requires multiple steps. So how could the processors
achieve this goal? The answer is parallelism.

Consider the following steps for a mov(srcReg, destReg); instruction:

1.	 Fetch the instruction’s opcode from memory.

2.	 Update the EIP register with the address of the byte following the opcode.

3.	 Decode the instruction’s opcode to see what instruction it specifies.

4.	 Fetch the data from srcReg.

5.	 Store the fetched value into the destination register (destReg).

3. Note, by the way, that RISC should be read as “(reduced instruction) set computer,” not
“reduced (instruction set) computer.” RISC reduces the complexity of each instruction, not
the size of the instruction set.

CPU Architecture 261

The CPU must fetch the instruction’s opcode from memory before it
updates the EIP register instruction with the address of the byte beyond the
opcode, decode the opcode before it knows to fetch the value of the source
register, and fetch the value of the source register before it can store the
fetched value in the destination register.

All but one of the stages in the execution of this mov instruction are
serial. That is, the CPU must execute one stage before proceeding to the
next. The exception is step 2, updating the EIP register. Although this stage
must follow the first stage, none of the following stages depend upon it. We
could execute this step concurrently with any of the others, and it wouldn’t
affect the operation of the mov instruction. By doing two of the stages in
parallel, then, we can reduce this instruction’s execution time by one clock
cycle. The following sequence illustrates one possible concurrent execution:

1.	 Fetch the instruction’s opcode from memory.

2.	 Decode the instruction’s opcode to see what instruction it specifies.

3.	 Fetch the data from srcReg and update the EIP register with the address
of the byte following the opcode.

4.	 Store the fetched value into the destination register (destReg).

Although the remaining stages in the mov(srcReg, destReg); instruction
must be serialized, other forms of the mov instruction offer similar opportu-
nities to save cycles by executing stages concurrently. For example, consider
the 80x86 mov([ebx+disp], eax); instruction:

1.	 Fetch the instruction’s opcode from memory.

2.	 Update the EIP register with the address of the byte following the opcode.

3.	 Decode the instruction’s opcode to see what instruction it specifies.

4.	 Fetch the displacement value for use in calculating the effective address
of the source operand.

5.	 Update EIP to point at the first byte after the displacement value
in memory.

6.	 Compute the effective address of the source operand.

7.	 Fetch the value of the source operand’s data from memory.

8.	 Store the result into the destination register operand.

Once again, we can overlap the execution of several stages in this
instruction. In the following example, we reduce the number of steps from
eight to six by overlapping both updates of EIP with two other operations:

1.	 Fetch the instruction’s opcode from memory.

2.	 Decode the instruction’s opcode to see what instruction it specifies, and
update the EIP register with the address of the byte following the opcode.

3.	 Fetch the displacement value for use in calculating the effective address
of the source operand.

262 Chapter 9

4.	 Compute the effective address of the source operand, and update EIP
to point at the first byte after the displacement value in memory.

5.	 Fetch the value of the source operand’s data from memory.

6.	 Store the result into the destination register operand.

As a last example, consider the add(constant, [ebx+disp]); instruction.
Its serial execution looks like this:

1.	 Fetch the instruction’s opcode from memory.

2.	 Update the EIP register with the address of the byte following the opcode.

3.	 Decode the instruction’s opcode to see what instruction it specifies.

4.	 Fetch the displacement value from the memory location immediately
following the opcode.

5.	 Update EIP to point at the first byte beyond the displacement operand
that follows the opcode.

6.	 Compute the effective address of the second operand.

7.	 Fetch the constant operand that immediately follows the displacement
value in memory and send it to the ALU.

8.	 Fetch the destination operand’s data from memory and send it to the ALU.

9.	 Update EIP to point at the first byte beyond the constant that follows
the displacement operand.

10.	 Instruct the ALU to add the values.

11.	 Store the result back into the destination (second) operand.

12.	 Update the flags register with the result of the addition operation.

We can overlap several stages in this instruction because they don’t
depend on the result of their immediate predecessor:

1.	 Fetch the instruction’s opcode from memory.

2.	 Decode the instruction’s opcode to see what instruction it specifies and
update the EIP register with the address of the byte following the opcode.

3.	 Fetch the displacement value from the memory location immediately
following the opcode.

4.	 Update EIP to point at the first byte beyond the displacement operand
that follows the opcode and compute the effective address of the mem-
ory operand (ebx+disp).

5.	 Fetch the constant operand that immediately follows the displacement
value and send it to the ALU.

6.	 Fetch the destination operand’s data from memory and send it to the ALU.

7.	 Instruct the ALU to add the values and update EIP to point at the first
byte beyond the constant value.

8.	 Store the result back into the second operand and update the flags reg-
ister with the result of the addition operation.

CPU Architecture 263

Although it might seem like the CPU could fetch the constant and the
memory operand in the same stage because their values do not depend
upon each other, it can’t do this (yet!) because it has only a single data bus,
and both values are coming from memory. In the next section you’ll see
how we can overcome this problem.

By overlapping various execution stages, we’ve substantially reduced
the number of steps, and consequently the number of clock cycles, that
these instructions need to complete execution. This is a major key to
improving CPU performance without cranking up the chip’s clock speed.
However, there’s only so much to be gained from this approach alone,
because instruction execution is still serialized. Starting with the next
section, we’ll see how to overlap the execution of adjacent instructions in
order to save additional cycles.

9.5.1  Functional Units
As you’ve seen in the add instruction, the steps for adding two values and then
storing their sum can’t be done concurrently, because you can’t store the sum
until after you’ve computed it. Furthermore, there are some resources that
the CPU can’t share between steps in an instruction. There is only one data
bus, and the CPU can’t fetch an instruction’s opcode while it is trying to store
data to memory. In addition, many of the steps that make up the execution of
an instruction share functional units in the CPU.

Functional units are groups of logic that perform a common operation,
such as the arithmetic logical unit and the control unit. A functional unit
can do only one operation at a time; you can’t do two operations concur-
rently that use the same functional unit. To design a CPU that executes
several stages in parallel, we must arrange those stages to reduce potential
conflicts, or add extra logic so that two (or more) operations can occur
simultaneously by executing in different functional units.

Consider again the steps that a mov(srcMem, destReg); instruction
might require:

1.	 Fetch the instruction’s opcode from memory.

2.	 Update the EIP register to hold the address of the displacement value
following the opcode.

3.	 Decode the instruction’s opcode to see what instruction it specifies.

4.	 Fetch the displacement value from memory to compute the source
operand’s effective address.

5.	 Update the EIP register to hold the address of the byte beyond the dis-
placement value.

6.	 Compute the effective address of the source operand.

7.	 Fetch the value of the source operand.

8.	 Store the fetched value into the destination register.

264 Chapter 9

The first operation uses the value of the EIP register, so we can’t over-
lap it with the subsequent step, which adjusts the value in EIP. In addition,
the first operation uses the bus to fetch the instruction opcode from mem-
ory, and because every step that follows this one depends upon this opcode,
it’s unlikely that we’ll be able to overlap it with any other.

The second and third operations don’t share any functional units, and
the third operation doesn’t depend upon the value of the EIP register,
which is modified in the second step. Therefore, we can modify the control
unit so that it combines these steps, adjusting the EIP register at the same
time that it decodes the instruction. This will shave one cycle off the execu-
tion of the mov instruction.

The third and fourth steps, which decode the instruction’s opcode and
fetch the displacement value, don’t look like they can be done in parallel,
because you must decode the instruction’s opcode to determine whether
the CPU needs to fetch a displacement operand from memory. However,
we can design the CPU to fetch the displacement anyway so that it’s avail-
able if we need it.

Of course, there’s no way to overlap the execution of steps 7 and 8
because the CPU must fetch the value before storing it away.

By combining all the steps that are possible, we might obtain the
following sequence for a mov instruction:

1.	 Fetch the instruction’s opcode from memory.

2.	 Decode the instruction’s opcode to see what instruction it specifies, and
update the EIP register to hold the address of the displacement value
following the opcode.

3.	 Fetch the displacement value from memory to compute the source
operand’s effective address, and update the EIP register to hold the
address of the byte beyond the displacement value.

4.	 Compute the effective address of the source operand.

5.	 Fetch the value of the source operand from memory.

6.	 Store the fetched value into the destination register.

By adding a small amount of logic to the CPU, we’ve shaved one or two
cycles off the execution of the mov instruction. This simple optimization
works with most of the other instructions as well.

Now consider the loop instruction, which has several steps that use the
ALU. If the CPU has only a single ALU, it must execute these steps sequen-
tially. However, if the CPU has multiple ALUs (that is, multiple functional
units), it can execute some of these steps in parallel. For example, the CPU
could decrement the value in the ECX register (using the ALU) at the same
time it updates the EIP value. Note that the loop instruction also uses the
ALU to compare the decremented ECX value against 0 (to determine if it
should branch). However, there’s a data dependency between increment-
ing ECX and comparing it with 0; therefore, the CPU can’t perform both
of these operations at the same time.

CPU Architecture 265

9.5.2  The Prefetch Queue
Now that we’ve looked at some simple optimization techniques, consider what
happens when the mov instruction executes on a CPU with a 32-bit data bus.
If the mov instruction fetches an 8-bit displacement value from memory, the
CPU may wind up fetching an additional 3 bytes along with the displace-
ment value (the 32-bit data bus lets us fetch 4 bytes in a single bus cycle).
The second byte on the data bus is actually the opcode of the next instruc-
tion. If we could save this opcode until the execution of the next instruc-
tion, we could shave a cycle off its execution time because it wouldn’t have
to fetch the same opcode byte again.

9.5.2.1  Using Unused Bus Cycles

There are still more improvements we can make. While the mov instruction is
executing, the CPU isn’t accessing memory on every clock cycle. For example,
while data is being stored into the destination register, the bus is idle. When
the bus is idle, we can prefetch and save the instruction opcode and operands
of the next instruction.

The hardware that does this is the prefetch queue. Figure 9-4 shows the
internal organization of a CPU with a prefetch queue.

CPU

A
L
U

Control
unit

Prefetch
queue

Data

Address

Execution
unit

Registers

Bus
interface

unit

Figure 9-4: CPU design with a prefetch queue

The bus interface unit (BIU), as its name implies, controls access to the
address and data buses. The BIU acts as a “traffic cop” and handles simul-
taneous requests for bus access by different modules, such as the execution
unit and the prefetch queue. Whenever some component inside the CPU
wishes to access main memory, it sends this request to the BIU.

Whenever the execution unit is not using the BIU, the BIU can fetch
additional bytes from the memory that holds the machine instructions
and store them in the prefetch queue. Then, whenever the CPU needs an
instruction opcode or operand value, it grabs the next available byte from

266 Chapter 9

the prefetch queue. Because the BIU grabs multiple bytes at a time from
memory, and because, per clock cycle, the CPU generally consumes fewer
bytes from the prefetch queue than are available, instructions will normally
be sitting in the prefetch queue for the CPU’s use.

However, there’s no guarantee that all instructions and operands will
be sitting in the prefetch queue when we need them. For example, con-
sider the 80x86 jnz Label; instruction. If the 2-byte form of the instruction
appears at locations 400 and 401 in memory, the prefetch queue may con-
tain the bytes at addresses 402, 403, 404, 405, 406, 407, and so on. If jnz
transfers control to Label at target address 480, the bytes at addresses 402,
403, 404, and so on, won’t be of any use to the CPU. The system will have
to pause for a moment to fetch the data at address 480 before it can go on.
Most of the time, the CPU fetches sequential values from memory, though,
so having the data in the prefetch queue saves time.

9.5.2.2  Overlapping Instructions

Another improvement we can make is to overlap the processes of decoding
the next instruction’s opcode and executing the last step of the previous
instruction. After the CPU processes the operand, the next available byte
in the prefetch queue is an opcode, which the CPU can decode because
the instruction decoder is idle while the CPU executes the steps of the
current instruction. Of course, if the current instruction modifies the EIP
register, the time the CPU spends on the decoding operation goes to waste;
however, because it occurs in parallel with other operations of the current
instruction, this decoding doesn’t slow down the system (though it does
require extra circuitry).

9.5.2.3  Summarizing Background Prefetch Events

Our instruction execution sequence now assumes that the following CPU
prefetch events are occurring (concurrently) in the background:

1.	 If the prefetch queue is not full (generally it can hold between 8 and 32
bytes, depending on the processor) and the BIU is idle on the current
clock cycle, fetch the next double word located at the address found in
the EIP register at the beginning of the clock cycle.

2.	 If the instruction decoder is idle and the current instruction does not
require an instruction operand, the CPU should begin decoding the
opcode at the front of the prefetch queue. If the current instruction
requires an instruction operand, then the CPU begins decoding the
byte just beyond that operand in the prefetch queue.

Now let’s reconsider our mov(srcreg, destreg); instruction. Because
we’ve added the prefetch queue and the BIU, we can overlap the fetch and
decode stages of this instruction with specific stages of the previous instruc-
tion to get the following steps:

1.	 Fetch and decode the instruction; this is overlapped with the previous
instruction.

CPU Architecture 267

2.	 Fetch the source register and update the EIP register with the address
of the next instruction.

3.	 Store the fetched value into the destination register.

The instruction execution timings in this example assume that the
opcode is present in the prefetch queue and that the CPU has already
decoded it. If either is not true, additional cycles will be necessary to fetch
the opcode from memory and decode the instruction.

9.5.3  Conditions That Hinder the Performance of the Prefetch Queue
When they transfer control to the target location, jump and conditional
jump instructions are slower than other instructions, because the CPU can’t
overlap the processes of fetching and decoding the opcode for the next
instruction with the process of executing a jump instruction that transfers
control. It may take several cycles after the execution of a jump instruction
for the prefetch queue to reload.

N O T E 	 If you want to write fast code, avoid jumping around in your program as much
as possible.

Conditional jump instructions invalidate the prefetch queue only if they
actually transfer control to the target location. If the jump condition is false,
execution continues with the next instruction and the values in the prefetch
queue remain valid. Therefore, while writing the program, if you can deter-
mine which jump condition occurs most frequently, you should arrange your
program so that the most common condition causes the program to continue
with the next instruction rather than jump to a separate location.

In addition, instruction size (in bytes) can affect the performance of
the prefetch queue. The larger the instruction, the faster the CPU will
empty the prefetch queue. Instructions involving constants and memory
operands tend to be the largest. If you execute a sequence of these instruc-
tions in a row, the CPU may end up having to wait because it is removing
instructions from the prefetch queue faster than the BIU is copying data to
the prefetch queue. So, whenever possible, try to use shorter instructions.

Finally, prefetch queues work best when you have a wide data bus. The
16-bit 8086 processor runs much faster than the 8-bit 8088 because it can
keep the prefetch queue full with fewer bus accesses. Don’t forget, the CPU
needs to use the bus for other purposes. Instructions that access memory
compete with the prefetch queue for access to the bus. If you have a sequence
of instructions that all access memory, the prefetch queue may quickly empty,
and once that happens, the CPU must wait for the BIU to fetch new opcodes
from memory before it can continue executing instructions.

9.5.4  Pipelining: Overlapping the Execution of Multiple Instructions
Executing instructions in parallel using a BIU and an execution unit is a
special case of pipelining. Most modern processors incorporate pipelining

268 Chapter 9

to improve performance. With just a few exceptions, pipelining allows us to
execute one instruction per clock cycle.

The advantage of the prefetch queue is that it lets the CPU overlap
the processes of fetching and decoding the instruction opcode with the
execution of other instructions. Assuming you’re willing to add hardware,
you can execute almost all operations in parallel. That is the idea behind
pipelining.

Pipelined operation improves an application’s average performance by
executing several instructions concurrently. However, as you saw with the
prefetch queue, certain instructions (and combinations thereof) fare better
than others in a pipelined system. By understanding how pipelined opera-
tion works, you can organize your applications to run faster.

9.5.4.1  A Typical Pipeline

Consider the steps necessary to do a generic operation, with each step tak-
ing one clock cycle:

1.	 Fetch the instruction’s opcode from memory.

2.	 Decode the opcode and, if required, prefetch a displacement operand,
a constant operand, or both.

3.	 If required, compute the effective address for a memory operand (for
example, [ebx+disp]).

4.	 If required, fetch the value of any memory operand and/or register.

5.	 Compute the result.

6.	 Store the result into the destination register.

Assuming you’re willing to pay for some extra silicon, you can build a
little miniprocessor to handle each step. The organization would look some-
thing like Figure 9-5.

Fetch
opcode

Decode

prefetch
operand

Compute
effective
address

Fetch
source and
destination
values

Compute
result

Store
resultopcode and

1 2 3 4 5 6Stage

Figure 9-5: A pipelined implementation of instruction execution

In stage 4, the CPU fetches both the source and destination operands.
You can set this up by putting multiple data paths inside the CPU (such
as from the registers to the ALU) and ensuring that no two operands ever
compete for simultaneous use of the data bus (that is, there are no memory-
to-memory operations).

CPU Architecture 269

If you design a separate piece of hardware for each stage in the pipe-
line in Figure 9-5, almost all of them can take place in parallel. Of course,
you can’t fetch and decode the opcode for more than one instruction at
the same time, but you can fetch the opcode of the next instruction while
decoding the current instruction’s opcode. If you have an n-stage pipeline,
you will usually have n instructions executing concurrently. Figure 9-6
shows pipelining in operation. T1, T2, T3, and so on, represent consecutive
“ticks” (time = 1, time = 2, and so on) of the system clock.

T1 T2 T3 T4 T5 T6 T7 T8 T9...

Opcode

Opcode

Opcode

Opcode

Instruction #1

Instruction #2

Instruction #3

Decode Address Values Compute Store

Decode Address Values Compute Store

Decode Address Values Compute Store

Decode Address Values Compute Store

Figure 9-6: Instruction execution in a pipeline

At time T = T1, the CPU fetches the opcode byte for the first instruction.
At T = T2, the CPU begins decoding the opcode for the first instruction,
and, in parallel, it fetches a block of bytes from the prefetch queue in the
event that the first instruction has an operand. Also in parallel with the
decoding of the first instruction, the CPU instructs the BIU to fetch the
opcode of the second instruction because the first instruction no longer
needs that circuitry.

Note that there is a minor conflict here. The CPU is attempting to fetch
the next byte from the prefetch queue for use as an operand; at the same
time, it is fetching operand data from the prefetch queue for use as an
opcode. How can it do both at once? You’ll see the solution shortly.

At time T = T3, the CPU computes the address of any memory oper-
and if the first instruction accesses memory. If the first instruction doesn’t
access memory, the CPU does nothing. During T3, the CPU also decodes
the opcode of the second instruction and fetches any operands in the
second instruction. Finally, the CPU also fetches the opcode for the third
instruction. With each advancing tick of the clock, another execution stage
of each instruction in the pipeline completes, and the CPU fetches the
opcode of yet another instruction from memory.

This process continues until, at T = T6, the CPU completes the execution
of the first instruction, computes the result for the second, and fetches the
opcode for the sixth instruction in the pipeline. The important thing to note
is that after T = T5, the CPU completes an instruction on every clock cycle.
Once the CPU fills the pipeline, it completes one instruction on each cycle.
This is true even if there are complex addressing modes to be computed,
memory operands to fetch, or other operations that consume cycles on a non-
pipelined processor. All you need to do is add more stages to the pipeline,
and you can still effectively process each instruction in one clock cycle.

270 Chapter 9

Now back to the small conflict in the pipeline organization I mentioned
earlier. At T = T2, for example, the CPU attempts to prefetch a block of
bytes containing any operands of the first instruction, and at the same time
it fetches the opcode of the second instruction. Until the CPU decodes
the first instruction, it doesn’t know how many operands the instruction
requires or their length. Moreover, until it determines that information, the
CPU doesn’t know what byte to fetch as the opcode of the second instruc-
tion. So how can the pipeline fetch the opcode of the next instruction in
parallel with any address operands of the current instruction?

One solution is to disallow this simultaneous operation in order
to avoid the potential data hazard. If an instruction has an address or
constant operand, we can simply delay the start of the next instruction.
Unfortunately, many instructions have these additional operands, so this
approach will substantially hinder the CPU’s execution speed.

The second solution is to throw a lot more hardware at the problem.
Operand and constant sizes usually come in 1-, 2-, and 4-byte lengths.
Therefore, if we actually fetch the bytes in memory that are located at off-
sets 1, 3, and 5 bytes beyond the current opcode we are decoding, one of
them will probably contain the opcode of the next instruction. Once we are
through decoding the current instruction, we know how many bytes it con-
sumes, and, therefore, we know the offset of the next opcode. We can use a
simple data selector circuit to choose which of the three candidate opcode
bytes we want to use.

In practice, we actually have to select the next opcode byte from more
than three candidates because 80x86 instructions come in many different
lengths. For example, a mov instruction that copies a 32-bit constant to a
memory location can be 10 or more bytes long. Moreover, instructions vary
in length from 1 to 15 bytes. And some opcodes on the 80x86 are longer
than 1 byte, so the CPU may have to fetch multiple bytes in order to prop-
erly decode the current instruction. However, by throwing more hardware
at the problem, we can decode the current opcode at the same time we’re
fetching the next.

9.5.4.2  Stalls in a Pipeline

Unfortunately, the scenario presented in the previous section is a little
too simplistic. There are two problems that our simple pipeline ignores:
competition between instructions for access to the bus (known as bus con-
tention), and nonsequential instruction execution. Both problems may
increase the average execution time of the instructions in the pipeline. By
understanding how the pipeline works, you can write your software to avoid
these pitfalls and improve the performance of your applications.

Bus contention can occur whenever an instruction needs to access an
item in memory. For example, if a mov(reg, mem); instruction needs to store
data in memory and a mov(mem, reg); instruction needs to fetch data from
memory, contention for the address and data bus may develop because the
CPU will be trying to do both operations simultaneously.

CPU Architecture 271

One simplistic way to handle bus contention is through a pipeline stall. The
CPU, when faced with contention for the bus, gives priority to the instruc-
tion farthest along in the pipeline. This stalls the later instruction in the
pipeline, and it takes two cycles to execute that instruction (see Figure 9-7).

T1 T2 T3 T4 T5 T6 T7 T8 T9...

Opcode

Opcode

Opcode

Instruction #1

Instruction #2

Decode Address Values Compute Store

Decode Address Values Compute Store

Decode Address Values Compute Store

Pipeline stall occurs here because Instruction #1
is attempting to store a value to memory at the
same time Instruction #2 is attempting to read
a value from memory.

Instruction #3 appears
to take two clock cycles
to execute because of
the pipeline stall.

Figure 9-7: A pipeline stall

There are many other cases of bus contention. For example, fetching
operands for an instruction requires access to the prefetch queue at the
same time that the CPU needs to access it to fetch the opcode of the next
instruction. Given the simple pipelining scheme that we’ve outlined so far,
it’s unlikely that most instructions would execute at one clock (cycle) per
instruction (CPI).

As another example of a pipeline stall, consider what happens when
an instruction modifies the value in the EIP register. For example, the jnz
instruction might change the value in the EIP register if it transfers control to
its target label, which implies that the next set of instructions to be executed
does not immediately follow the jnz instruction. By the time the instruction
jnz label; completes execution (assuming the zero flag is clear so that the
branch is taken), we’ve already started five other instructions and we’re only
one clock cycle away from completing the first of these. The CPU must not
execute those instructions, or it will compute improper results.

The only reasonable solution is to flush the entire pipeline and begin
fetching opcodes anew. However, doing so causes a severe execution time
penalty. It will take the length of the pipeline (six cycles in our example)
before the next instruction completes execution. The longer the pipeline
is, the more you can accomplish per cycle in the system, but the slower a
program will run if it jumps around quite a bit. Unfortunately, you can’t
control the number of stages in the pipeline,4 but you can control the num-
ber of transfer instructions in your programs, so it’s best to keep these to a
minimum in a pipelined system.

4. Note, by the way, that the number of stages in an instruction pipeline varies among CPUs.

272 Chapter 9

9.5.5  Instruction Caches: Providing Multiple Paths to Memory
System designers can resolve many problems with bus contention through
the intelligent use of the prefetch queue and the cache memory subsystem.
As you’ve seen, they can design the prefetch queue to buffer data from
the instruction stream. However, they can also use a separate instruction
cache (apart from the data cache) to hold machine instructions. As a pro-
grammer, you have no control over how your CPU’s instruction cache is
organized, but knowing how it operates might prompt you to use certain
instruction sequences that would otherwise create stalls.

Suppose the CPU has two separate memory spaces, one for instructions
and one for data, each with its own bus. This is called the Harvard architec-
ture because the first such machine was built at Harvard University. On a
Harvard machine, there’s no contention for the bus; the BIU can continue
to fetch opcodes on the instruction bus while accessing memory on the
data/memory bus (see Figure 9-8).

CPU

I/O subsystem

Data memory

Instruction memory

Data/memory bus

Instruction bus

Figure 9-8: A typical Harvard machine

In the real world, there are very few true Harvard machines. The extra
pins needed on the processor to support two physically separate buses
increase the cost of the processor and introduce many other engineering
problems. However, microprocessor designers have discovered that they
can obtain many of the benefits of the Harvard architecture with few of its
disadvantages by using separate on-chip caches for data and instructions.
Advanced CPUs use an internal Harvard architecture and an external von
Neumann architecture. Figure 9-9 shows the structure of the 80x86 with
separate data and instruction caches.

CPU Architecture 273

Data
cache BIU

Instruction
cache

Prefetch
queue

Data/address
busesExecution unit

Figure 9-9: Using separate code and data caches

Each path between the sections inside the CPU represents an indepen-
dent bus, and data can flow on all paths concurrently. This means that the
prefetch queue can pull instruction opcodes from the instruction cache
while the execution unit is writing data to the data cache. However, it’s not
always possible, even with a cache, to avoid bus contention. In the arrange-
ment with two separate caches, the BIU still has to use the data/address bus
to fetch opcodes from memory whenever they are not located in the instruc-
tion cache. Likewise, the data cache still has to buffer data from memory
on occasion.

Although you can’t control the presence, size, or type of cache on a
CPU, you must be aware of how the cache operates in order to write the
best programs. On-chip, level-one (L1) instruction caches are generally
quite small (between 4KB and 64KB on typical CPUs) compared to the
size of main memory. Therefore, the shorter your instructions, the more
of them will fit in the cache (tired of “shorter instructions” yet?). The more
instructions you have in the cache, the less often bus contention will occur.
Likewise, using registers to hold temporary results places less strain on the
data cache, so it doesn’t need to flush data to memory or retrieve data from
memory quite so often.

9.5.6  Pipeline Hazards
There is another problem with using a pipeline: hazards. There are two
types of hazards: control hazards and data hazards. We’ve actually dis-
cussed control hazards already, although we didn’t refer to them by name.

274 Chapter 9

A control hazard occurs whenever the CPU branches to some new location
in memory and consequently has to flush from the pipeline the instruc-
tions that are in various stages of execution. A data hazard occurs when two
instructions attempt to access the same memory location out of sequence.

Let’s take a look at data hazards using the execution profile for the fol-
lowing instruction sequence:

mov(SomeVar, ebx);
mov([ebx], eax);

When these two instructions execute, the pipeline will look something
like Figure 9-10.

into ebx

T1 T2 T3 T4 T5 T6 T7 ...

Operand Address StoreOpcode

Operand Load Load StoreOpcode

&SomeVar ***

ebx [ebx] into eax

from SomeVar

Load Compute

Address

mov(SomeVar, ebx);

mov([ebx], eax);

Figure 9-10: A data hazard

These two instructions attempt to fetch the 32-bit value whose address
is held in the SomeVar pointer variable. However, this sequence of instructions
won’t work properly! The second instruction accesses the value in EBX before
the first instruction copies the address of memory location SomeVar into EBX
(T5 and T6 in Figure 9-10).

CISC processors, like the 80x86, handle hazards automatically. (Some
RISC chips do not, and if you tried this sequence on certain RISC chips, you
would store an incorrect value in EAX.) In order to handle the data hazard
in this example, CISC processors stall the pipeline to synchronize the two
instructions. The actual execution would look something like Figure 9-11.

into ebx

T3 T4 T5 T6 T7 ...

Address Store mov (SomeVar, ebx);

mov ([ebx], eax);Operand Load Load Store

ebx [ebx] into eax

from SomeVar

Load Compute

Address Delay Delay

Figure 9-11: How a CISC CPU handles a data hazard

By delaying the second instruction by two clock cycles, the CPU guar-
antees that the load instruction will load EAX with the value at the proper
address. Unfortunately, the mov([ebx], eax); instruction now executes in
three clock cycles rather than one. However, requiring two extra clock
cycles is better than producing incorrect results.

CPU Architecture 275

Fortunately, you (or your compiler) can reduce the impact that hazards
have on program execution speed within your software. A data hazard
occurs when the source operand of one instruction was a destination oper-
and of a previous instruction. There’s nothing wrong with loading EBX
from SomeVar and then loading EAX from [EBX] (that is, the double-word
memory location pointed at by EBX), as long as they don’t occur one right after
the other. Suppose the code sequence had been:

mov(2000, ecx);
mov(SomeVar, ebx);
mov([ebx], eax);

We could reduce the effect of the hazard in this code sequence by sim-
ply rearranging the instructions, as follows:

mov(SomeVar, ebx);
mov(2000, ecx);
mov([ebx], eax);

Now the mov([ebx], eax); instruction requires only one additional clock
cycle. By inserting yet another instruction between the mov(SomeVar, ebx);
and the mov([ebx], eax); instructions, you can eliminate the effects of the
hazard altogether (of course, the inserted instruction must not modify the
values in the EAX and EBX registers).

On a pipelined processor, the order of instructions in a program
may dramatically affect the program’s performance. If you’re writing assem-
bly code, always look for possible hazards and eliminate them wherever pos-
sible by rearranging your instruction sequences. If you’re using a compiler,
choose one that properly handles instruction ordering.

9.5.7  Superscalar Operation: Executing Instructions in Parallel
With the pipelined architecture shown so far, we could achieve, at best,
execution times of one CPI. Is it possible to execute instructions faster
than this? At first you might think, “Of course not—we can do at most one
operation per clock cycle, so there’s no way we can execute more than one
instruction per clock cycle.” Keep in mind, however, that a single instruc-
tion is not a single operation. In the examples presented earlier, each
instruction took between six and eight operations to complete. By adding
seven or eight separate units to the CPU, we could effectively execute these
eight operations in one clock cycle, yielding one CPI. If we add more hard-
ware and execute, say, 16 operations at once, can we achieve 0.5 CPI? The
answer is a qualified yes. A CPU that includes this additional hardware is
a superscalar CPU, and it can execute more than one instruction during a
single clock cycle. The 80x86 family began supporting superscalar execu-
tion with the introduction of the Pentium processor.

A superscalar CPU has several execution units (see Figure 9-12). If it
encounters in the prefetch queue two or more instructions that it can exe-
cute independently, it will do so.

276 Chapter 9

Data/address
buses

Instruction
cache

Prefetch
queue

Execution unit 2

Execution unit 1

D
ata

cache BIU

Superscalar CPU

Figure 9-12: A CPU that supports superscalar operation

There are a couple of advantages to going superscalar. Suppose you
have the following instructions in the instruction stream:

mov(1000, eax);
mov(2000, ebx);

If there are no other problems or hazards in the surrounding code, and
all 6 bytes for these two instructions are currently in the prefetch queue,
there’s no reason why the CPU can’t fetch and execute both instructions
in parallel. All it takes is extra silicon on the CPU chip to implement two
execution units.

Besides speeding up independent instructions, a superscalar CPU
can also speed up program sequences that have hazards. One limitation
of normal CPUs is that once a hazard occurs, the offending instruction
will completely stall the pipeline. Every instruction that follows the stalled
instruction will also have to wait for the CPU to synchronize the execution
of the offending instructions. With a superscalar CPU, however, instruc-
tions following the hazard may continue execution through the pipeline as
long as they don’t have hazards of their own. This alleviates (though it does
not eliminate) some of the need for careful instruction scheduling.

The way you write software for a superscalar CPU can dramatically
affect its performance. First and foremost is that rule you’re probably sick
of by now: use short instructions. The shorter your instructions, the more
instructions the CPU can fetch in a single operation and, therefore, the
more likely the CPU will execute faster than one CPI. Most superscalar
CPUs do not completely duplicate the execution unit. There might be
multiple ALUs, floating-point units, and so on, which means that certain

CPU Architecture 277

instruction sequences can execute very quickly, while others won’t. You have
to study the exact composition of your CPU to decide which instruction
sequences produce the best performance.

9.5.8  Out-of-Order Execution
In a standard superscalar CPU, it is the programmer’s (or compiler’s)
responsibility to arrange the instructions to avoid hazards and pipeline
stalls. Fancier CPUs can actually remove some of this burden and improve
performance by automatically rescheduling instructions while the program
executes. To understand how this is possible, consider the following instruc-
tion sequence:

mov(SomeVar, ebx);
mov([ebx], eax);
mov(2000, ecx);

There’s a data hazard between the first and second instructions. The
second instruction must delay until the first instruction completes execu-
tion. This introduces a pipeline stall and increases the running time of the
program. Typically, the stall affects every instruction that follows. However,
the third instruction’s execution does not depend on the result from either
of the first two instructions. Therefore, there’s no reason to stall the execu-
tion of the mov(2000, ecx); instruction. It can continue executing while the
second instruction waits for the first to complete. This technique is called
out-of-order execution because the CPU can execute instructions prior to the
completion of instructions appearing previously in the code stream.

Keep in mind that the CPU can execute instructions out of sequence
only if doing so produces exactly the same results as sequential execution.
While there are many little technical issues that make this feature more dif-
ficult than it seems, with enough engineering effort you can implement it.

9.5.9  Register Renaming
One problem that hampers the effectiveness of superscalar operation on
the 80x86 CPU is its limited number of general-purpose registers. Suppose,
for example, that the CPU had four different pipelines and, therefore, was
capable of executing four instructions simultaneously. Presuming no con-
flicts existed among these instructions and they could all execute simulta-
neously, it would still be very difficult to actually achieve four instructions
per clock cycle because most instructions operate on two register operands.
For four instructions to execute concurrently, you’d need eight different
registers: four destination registers and four source registers (none of the
destination registers could double as source registers of other instructions).
CPUs that have lots of registers can handle this task quite easily, but the
limited register set of the 80x86 makes this difficult. Fortunately, there’s a
trick to alleviate part of the problem: register renaming.

Register renaming is a sneaky way to give a CPU more registers than it
actually has. Programmers won’t have direct access to these extra registers,

278 Chapter 9

but the CPU can use them to prevent hazards in certain cases. For example,
consider the following short instruction sequence:

mov(0, eax);
mov(eax, i);
mov(50, eax);
mov(eax, j);

There’s a data hazard between the first and second instructions as
well as between the third and fourth instructions. Out-of-order execution
in a superscalar CPU would normally allow the first and third instructions
to execute concurrently, and then the second and fourth instructions could
execute concurrently. However, there’s also a data hazard between the first
and third instructions because they use the same register. The program-
mer could have easily solved this problem by using a different register (say,
EBX) for the third and fourth instructions. However, let’s assume that the
programmer was unable to do this because all the other registers were
holding important values. Is this sequence doomed to executing in four
cycles on a superscalar CPU that should require only two?

One advanced trick a CPU can employ is to create a bank of registers
for each of the general-purpose registers on the CPU. That is, rather than
having a single EAX register, the CPU could support an array of EAX
registers; let’s call these registers EAX[0], EAX[1], EAX[2], and so on.
Similarly, you could have an array of each of the other registers: EBX[0]
through EBX[n], ECX[0] through ECX[n], and so on. The instruction
set doesn’t permit the programmer to select one of these specific register
array elements for a given instruction, but the CPU can automatically
choose among them if doing so wouldn’t change the overall computation
and could speed up program execution. This is known as register renaming.
For example, consider the following sequence (with register array ele-
ments automatically chosen by the CPU):

mov(0, eax[0]);
mov(eax[0], i);
mov(50, eax[1]);
mov(eax[1], j);

Because EAX[0] and EAX[1] are different registers, the CPU can exe-
cute the first and third instructions concurrently. Likewise, the CPU can
execute the second and fourth instructions concurrently.

Although this is a simple example, and different CPUs implement regis-
ter renaming in many different ways, you can see how the CPU can use this
technique to improve performance.

9.5.10  VLIW Architecture
Superscalar operation attempts to schedule, in hardware, the execution
of multiple instructions simultaneously. Another technique, which Intel is
using in its IA-64 architecture, involves very long instruction words (VLIW).

CPU Architecture 279

In a VLIW computer system, the CPU fetches a large block of bytes (41 bits
in the case of the IA-64 Itanium CPU) and decodes and executes it all at
once. This block of bytes usually contains two or more instructions (three
in the case of the IA-64). VLIW computing requires the programmer or
compiler to properly schedule the instructions in each block so that there
are no hazards or other conflicts, but if all goes well, the CPU can execute
three or more instructions per clock cycle.

9.5.11  Parallel Processing
Most techniques for improving CPU performance via architectural advances
involve the parallel execution of instructions. If programmers are aware of
the underlying architecture, they can write code that runs faster, but these
architectural advances often improve performance significantly even if pro-
grammers do not write special code to take advantage of them.

The only problem with ignoring the underlying architecture is that
there’s only so much the hardware can do to parallelize a program that
requires sequential execution for proper operation. To truly produce a
parallel program, the programmer must specifically write parallel code,
though, of course, this requires architectural support from the CPU. This
section and the next touch on the types of support a CPU can provide.

Common CPUs use what’s known as the single instruction, single data
(SISD) model. This means that the CPU executes one instruction at a time,
and that instruction operates on a single piece of data.5 Two common
parallel models are the single instruction, multiple data (SIMD) and multiple
instruction, multiple data (MIMD) models. Many modern CPUs, including the
80x86, include limited support for these parallel-execution models, provid-
ing a hybrid SISD/SIMD/MIMD architecture.

In the SIMD model, the CPU executes a single instruction stream, just
like the pure SISD model, but operates on multiple pieces of data concur-
rently. For example, consider the 80x86 add instruction. This is a SISD
instruction that operates on (that is, produces) a single piece of data. True,
the instruction fetches values from two source operands, but the end result
is that the add instruction stores a sum into only a single destination oper-
and. An SIMD version of add, on the other hand, would compute several
sums simultaneously. The 80x86 MMX and SIMD instruction extensions,
the ARM’s Neon instructions, and the PowerPC’s AltiVec instructions, oper-
ate in exactly this fashion. With the paddb MMX instruction, for example,
you can add up to eight separate pairs of values with the execution of a
single instruction. Here’s an example of this instruction:

paddb(mm0, mm1);

5. We’ll ignore the parallelism provided by pipelining and superscalar operation in this
discussion.

280 Chapter 9

Although this instruction appears to have only two operands (like a
typical SISD add instruction on the 80x86), the MMX registers (MM0 and
MM1) actually hold eight independent byte values (the MMX registers are
64 bits wide but are treated as eight 8-bit values).

Unless you have an algorithm that can take advantage of SIMD instruc-
tions, they’re not that useful. Fortunately, high-speed 3D graphics and
multimedia applications benefit greatly from these SIMD (and MMX)
instructions, so their inclusion in the 80x86 CPU offers a huge perfor-
mance boost for these important applications.

The MIMD model uses multiple instructions, operating on multiple
pieces of data (usually with one instruction per data object, though one of
these instructions could also operate on multiple data items). These multiple
instructions execute independently of one another, so it’s very rare that a
single program (or, more specifically, a single thread of execution) would
use the MIMD model. However, if you have a multiprogramming environ-
ment with multiple programs attempting to execute concurrently, the MIMD
model does allow each of those programs to execute its own code stream
simultaneously. This type of parallel system is called a multiprocessor system.

9.5.12  Multiprocessing
Pipelining, superscalar operation, out-of-order execution, and VLIW
designs are all techniques that CPU designers use in order to execute
several operations in parallel. These techniques support fine-grained paral-
lelism and are useful for speeding up adjacent instructions in a computer
system. If adding more functional units increases parallelism, what would
happen if you added another CPU to the system? This approach, known
as multiprocessing, can improve system performance, though not as uni-
formly as other techniques.

Multiprocessing doesn’t help a program’s performance unless that
program is specifically written for use on a multiprocessor system. If you
build a system with two CPUs, those CPUs cannot trade off executing alter-
nate instructions within a single program. It is very expensive, time-wise,
to switch the execution of a program’s instructions from one processor to
another. Therefore, multiprocessor systems are effective only with an oper-
ating system that executes multiple processes or threads concurrently. To
differentiate this type of parallelism from that afforded by pipelining and
superscalar operation, we’ll call this coarse-grained parallelism.

Adding multiple processors to a system is not as simple as wiring two or
more processors to the motherboard. To understand why this is so, consider
two separate programs running on separate processors in a multiproces-
sor system. These two processors communicate with each other by writing
to a block of shared physical memory. When CPU 1 writes to this block of
memory it caches the data locally and might not actually write the data to
physical memory for some time. If CPU 2 attempts to simultaneously read
this block of shared memory, it winds up reading the old data out of main
memory (or its local cache) rather than reading the updated data that
CPU 1 wrote to its local cache. This is known as the cache-coherency problem.

CPU Architecture 281

In order for these two functions to operate properly, the two CPUs must
notify each other whenever they make changes to shared objects, so the
other CPU can update its own locally cached copy.

Multiprocessing is an area where the RISC CPUs have a big advantage
over Intel’s CPUs. While Intel 80x86 systems reach a point of diminishing
returns at around 32 processors, Sun SPARC and other RISC processors
easily support 64-CPU systems (with more arriving, it seems, every day).
This is why large databases and large web server systems tend to use expen-
sive Unix-based RISC systems rather than 80x86 systems.

Newer versions of the Intel i-series and Xeon processors support a
hybrid form of multiprocessing known as hyperthreading. The idea behind
hyperthreading is deceptively simple—in a typical superscalar processor it’s
rare for an instruction sequence to utilize all the CPU’s functional units on
each clock cycle. Rather than allow those functional units to go unused, the
CPU can run two separate threads of execution concurrently and keep all
the functional units occupied. This allows a single CPU to effectively do the
work of 1.5 CPUs in a typical multiprocessor system.

9.6  For More Information
Hennessy, John L., and David A. Patterson. Computer Architecture:

A Quantitative Approach. 5th ed. Waltham, MA: Elsevier, 2012.

N O T E 	 One subject missing from this chapter is the design of the CPU’s actual instruction
set. That is the subject of the next chapter.

This chapter discusses the implementa-
tion of a CPU’s instruction set. Although

the choice of a given instruction set is
usually beyond a software engineer’s control,

understanding the decisions a hardware design engi-
neer has to make when designing a CPU’s instruction
set can definitely help you write better code.

CPU instruction sets contain several tradeoffs based on assumptions
that computer architects make about the way software engineers write code.
If the machine instructions you choose match those assumptions, your code
will probably run faster and require fewer machine resources. Conversely,
if your code violates the assumptions, chances are pretty good it won’t per-
form as well as it otherwise could.

Although studying the instruction set may seem like a task suited only
to assembly language programmers, even high-level language programmers
can benefit from doing so. After all, every HLL statement maps to some
sequence of machine instructions, and the general concepts of instruction

10
I N S T R U C T I O N S E T A R C H I T E C T U R E

284 Chapter 10

set design are portable across architectures. Even if you never intend to
write software using assembly language, it’s important to understand how
the underlying machine instructions work and how they were designed.

10.1  The Importance of Instruction Set Design
While features like caches, pipelining, and superscalar implementation
can all be grafted onto a CPU long after the original design is obsolete,
it’s very difficult to change the instruction set once a CPU is in production
and people are writing software using it. Therefore, instruction set design
requires very careful consideration; the designer must get the instruction set
architecture (ISA) correct from the start of the design cycle.

You might assume that the “kitchen sink” approach to instruction set
design—in which you include every instruction you can dream up—is best.
However, instruction set design is the epitome of compromise management.
Why can’t we have it all? Well, in the real world there are some nasty reali-
ties that prevent this:

Silicon real estate  The first nasty reality is that each feature requires
some number of transistors on the CPU’s silicon die (chip), so CPU
designers have a “silicon budget”—a finite number of transistors to
work with. There simply aren’t enough transistors to support putting
every possible feature on a CPU. The original 8086 processor, for exam-
ple, had a silicon budget of fewer than 30,000 transistors. The 1999
Pentium III processor had a budget of over 9 million transistors. The
2019 AWS Graviton2 (ARM) CPU has over 30 billion transistors.1 These
three budgets reflect the differences in semiconductor technology from
1978 to today.

Cost  Although it’s possible to use billions of transistors on a CPU today,
the more transistors used, the more expensive the CPU. For example, at
the beginning of 2018, Intel i7 processors using billions of transistors cost
hundreds of dollars, whereas contemporary CPUs with 30,000 transistors
cost less than a dollar.

Expandability  It’s very difficult to anticipate all the features people
will want. For example, Intel’s MMX and SIMD instruction enhance-
ments were added to make multimedia programming more practical
on the Pentium processor. Back in 1978, when Intel created the first
8086 processor, very few people could have predicted the need for these
instructions. A CPU designer must allow for making extensions to the
instruction set in future members of the CPU family to accommodate
currently unanticipated needs.

Legacy support for old instructions   This nasty reality is almost the
opposite of expandability. Often, an instruction that the CPU designer
feels is important now turns out to be less useful than expected. For

1. Though this is a bit of an outlier, typical desktop and server CPUs circa 2019/2020
contained 5 to 10 billion transistors.

Instruction Set Architecture 285

example, the loop and enter instructions on the 80x86 CPU see very lit-
tle use in modern high-performance programs. It’s commonly the case
that programs never use some of the instructions in a CPU adopting
the kitchen sink approach. Unfortunately, once an instruction is added
to the instruction set, it has to be supported in all future versions of the
processor, unless few enough programs use the instruction that CPU
designers are willing to let those programs break.

Complexity  A CPU designer must consider the assembly program-
mers and compiler writers who will be using the chip. A CPU employ-
ing the kitchen sink approach might appeal to someone who’s already
familiar with that CPU, but no one else will want to learn an overly
complex system.

These problems with the kitchen sink approach all have a common
solution: design a simple instruction set for the first version of the CPU,
and leave room for later expansion. This is one of the main reasons the
80x86 has proven to be so popular and long-lived. Intel started with a rela-
tively simple CPU and figured out how to extend the instruction set over
the years to accommodate new features.

10.2  Basic Instruction Design Goals
The efficiency of your programs largely depends upon the instructions
that they use. Short instructions use very little memory and often execute
rapidly, but they can’t tackle big tasks. Larger instructions can handle
more complex tasks, with a single instruction often doing the work of several
short instructions, but they may consume excessive memory or require many
machine cycles to execute. To enable software engineers to write the best
possible code, computer architects must strike a balance between the two.

In a typical CPU, the computer encodes instructions as numeric values
(operation codes, or opcodes) and stores them in memory. Encoding these
instructions is one of the major tasks in instruction set design, requiring
careful thought. Instructions must each have a unique opcode, so the CPU
can differentiate them. With an n-bit number, there are 2n different pos-
sible opcodes, so to encode m instructions requires at least log2(m) bits. The
main point to keep in mind is that the size of individual CPU instructions is
dependent on the total number of instructions that the CPU supports.

Encoding opcodes is a little more involved than assigning a unique
numeric value to each instruction. As the previous chapter discussed, decod-
ing each instruction and executing the specified task requires actual cir-
cuitry. With a 7-bit opcode, we could encode 128 different instructions. To
decode each of these 128 instructions requires a 7- to 128-line decoder—an
expensive piece of circuitry. However, assuming that the instruction opcodes
contain certain (binary) patterns, a single large decoder can often be
replaced by several smaller, less expensive ones.

If an instruction set contains 128 unrelated instructions, there’s little
you can do other than decode the entire bit string for each instruction.
However, in most architectures the instructions fall into categories. On

286 Chapter 10

the 80x86 CPUs, for example, mov(eax, ebx); and mov(ecx, edx); have differ-
ent opcodes, because they’re different instructions, but they’re obviously
related in that they both move data from one register to another. The only
difference is their source and destination operands. Thus, CPU designers
could encode instructions like mov with a subopcode, and then they could
encode the instruction’s operands using other bit fields within the opcode.

For example, given an instruction set with only eight instructions, each
with two operands, and each operand having only one of four possible val-
ues, we could encode the instructions using three packed fields containing
3, 2, and 2 bits, respectively (see Figure 10-1).

0 0 0 0 0 0 0 1

Three- to
eight-line
decoder

Circuitry to do a mov
Circuitry to do an add
Circuitry to do a sub
Circuitry to do a mul
Circuitry to do a div
Circuitry to do an and
Circuitry to do an or
Circuitry to do an xor

Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7

A

B

C

Two- to
four-line
decoder

A

B

Q0
Q1
Q2
Q3

eax

ebx

ecx

edx

The circuitry attached to the
destination register bits is
identical to the circuitry for
the source register bits.

Figure 10-1: Separating an opcode into several fields to simplify decoding

This encoding needs only three simple decoders to determine what
the CPU should do. While this is a basic example, it demonstrates one very
important facet of instruction set design: opcodes should be easy to decode.
The easiest way to simplify the opcode is to construct it using several dif-
ferent bit fields. The smaller these bit fields are, the easier it will be for the
hardware to decode and execute the instruction.

Instruction Set Architecture 287

The CPU designer’s goal, then, is to assign an appropriate number of
bits to the opcode’s instruction field and to its operand fields. Choosing
more bits for the instruction field lets the opcode encode more instruc-
tions, just as choosing more bits for the operand fields lets the opcode spec-
ify a larger number of operands (often memory locations or registers). You
might think that when encoding 2n different instructions using n bits, you’d
have very little leeway in choosing the size of the instruction. It’s going to
take n bits to encode those 2n instructions; you can’t do it with any fewer. It
is possible, however, to use more than n bits. This might seem wasteful, but
sometimes it’s advantageous. Again, picking an appropriate instruction size
is one of the more important aspects of instruction set design.

10.2.1  Choosing Opcode Length
Opcode length isn’t arbitrary. Assuming that a CPU is capable of reading
bytes from memory, the opcode will probably have to be some multiple of
8 bits long. If the CPU is not capable of reading bytes from memory (most
RISC CPUs read memory only in 32- or 64-bit chunks), the opcode will be
the same size as the smallest object the CPU can read from memory at one
time. Any attempt to shrink the opcode size below this limit is futile. In this
chapter, we’ll work with the first case: opcodes that must have a length that
is a multiple of 8 bits.

Another point to consider is the size of an instruction’s operands. Some
CPU designers include all operands in their opcode. Other CPU designers
don’t count operands like immediate constants or address displacements as
part of the opcode, and this is the approach we’ll take.

An 8-bit opcode can encode only 256 different instructions. Even if we
don’t count instruction operands as part of the opcode, having only 256
different instructions is a stringent limit. Though CPUs with 8-bit opcodes
exist, modern processors tend to have far more than 256 different instruc-
tions. Because opcodes must have a length that is a multiple of 8 bits, the
next smallest possible opcode size is 16 bits. A 2-byte opcode can encode up
to 65,536 different instructions, though the instructions will be larger.

When reducing instruction size is an important design goal, CPU
designers often employ data compression theory. The first step is to ana-
lyze programs written for a typical CPU and count how many times each
instruction occurs over a large number of applications. The second step is
to create a list of these instructions, sorted by their frequency of use. Next,
the designer assigns the 1-byte opcodes to the most frequently used instruc-
tions; 2-byte opcodes to the next most frequently used instructions; and
opcodes of 3 or more bytes to the rarely used instructions. Although this
scheme requires opcodes with a maximum size of 3 or more bytes, most of
the actual instructions in a program will use 1- or 2-byte opcodes. The aver-
age opcode length will be somewhere between 1 and 2 bytes (let’s say 1.5
bytes), and a typical program will be shorter than had all the instructions
employed a 2-byte opcode (see Figure 10-2).

288 Chapter 10

0 1 X X X X X X

encode 64 1-byte instructions. Because there are a total of three

1-byte instructions.

1 0 X X X X X X

1 1 X X X X X X

X X X X X X X X

0 0 1 X X X X X

0 0 0 X X X X X

X X X X X X X X

X X X X X X X X

If the HO 2 bits of the first opcode byte are not both 0, then the
whole opcode is 1 byte long, and the remaining 6 bits let us

opcode bytes of this form, we can encode up to 192 different

If the HO 3 bits of our first opcode byte contain %001, then the
opcode is 2 bytes long, and the remaining 13 bits let us encode
8,192 different instructions.

If the HO 3 bits of our first opcode byte contain all 0s, then the
opcode is 3 bytes long, and the remaining 21 bits let us encode two
million (2) different instructions.21

Figure 10-2: Encoding instructions using a variable-length opcode

Instruction Set Architecture 289

Although using variable-length instructions allows us to create smaller
programs, it comes at a price. First, decoding variable-length instructions
is a bit more complicated than decoding fixed-length instructions. Before
decoding a particular instruction field, the CPU must first decode the
instruction’s size, which consumes time. This may affect the CPU’s overall
performance by introducing delays in the decoding step, which in turn
limits the CPU’s maximum clock speed (because those delays stretch out
a single clock period, thus reducing the CPU’s clock frequency). Variable-
length instructions also make decoding multiple instructions in a pipeline
difficult, because the CPU can’t easily determine the instruction boundar-
ies in the prefetch queue.

For these reasons and others, most popular RISC architectures avoid
variable-length instructions. However, in this chapter, we’ll study a variable-
length approach, because saving memory is an admirable goal.

10.2.2  Planning for the Future
Before actually choosing the instructions to implement in a CPU, designers
must plan for the future. As explained earlier, the need for new instructions
will undoubtedly arise after the initial design, so it’s wise to reserve some
opcodes specifically for expansion purposes. Given the instruction opcode
format in Figure 10-2, it might not be a bad idea to reserve one block of 64
1-byte opcodes, half (4,096) of the 2-byte opcodes, and half (1,048,576) of
the 3-byte opcodes for future use. Giving up 64 of the very valuable 1-byte
opcodes may seem extravagant, but history suggests that such foresight
is rewarded.

10.2.3  Choosing Instructions
The next step is to choose the instructions to implement. Even if nearly
half the instructions have been reserved for future expansion, that doesn’t
mean that all the remaining opcodes must be used to implement instruc-
tions. A designer can leave a number of these instructions unimplemented,
effectively reserving them for the future as well. The right approach is not
to use up the opcodes as quickly as possible, but rather to produce a consis-
tent and complete instruction set given the design compromises. It’s much
easier to add an instruction later than it is to remove one, so, for the first
go-round, it’s generally better to go with a simpler design.

First, choose some generic instruction types. Early in the design process
it’s important to limit your choices to very common instructions. Other pro-
cessors’ instruction sets are probably the best place to look for suggestions.
For example, most processors have the following:

•	 Data movement instructions (such as mov)

•	 Arithmetic and logical instructions (such as add, sub, and, or, not)

•	 Comparison instructions

•	 Conditional jump instructions (generally used after the comparison
instructions)

290 Chapter 10

•	 Input/output instructions

•	 Other miscellaneous instructions

The initial instruction set should comprise a reasonable number of
instructions that will allow programmers to write efficient programs, with-
out exceeding the silicon budget or violating other design constraints.
This requires CPU designers to make strategic decisions based on careful
research, experimentation, and simulation.

10.2.4  Assigning Opcodes to Instructions
After choosing the initial instructions, the CPU designer assigns opcodes
to them. The first step in this process is to group the instructions accord-
ing to the characteristics they share. For example, an add instruction prob-
ably supports the exact same set of operands as the sub instruction, so it
makes sense to group these two instructions together. On the other hand,
the not and neg instructions each generally require only a single operand.
Therefore, it makes sense to put these two instructions in the same group,
but one separate from the add and sub group.

Once all the instructions are grouped, the next step is to encode them.
A typical encoding scheme uses some bits to select the group, some to select
a particular instruction from that group, and some to encode the operand
types (such as registers, memory locations, and constants). The number
of bits needed to encode all this information can have a direct impact on
the instruction’s size, regardless of how often the instruction is used. For
example, suppose 2 bits are needed to select an instruction’s group, 4 bits
to select the instruction within that group, and 6 bits to specify the instruc-
tion’s operand types. In this case, the instructions are not going to fit into
an 8-bit opcode. On the other hand, if all we need is to push one of eight
different registers onto the stack, 4 bits will be enough to specify the push
instruction group, and 3 bits will be enough to specify the register.

Encoding instruction operands with a minimal amount of space is
always a problem, because many instructions allow a large number of oper-
ands. For example, the generic 32-bit 80x86 mov instruction allows two oper-
ands and requires a 2-byte opcode.2 However, Intel noticed that mov(disp,
eax); and mov(eax, disp); occur frequently in programs, so it created a
special 1-byte version of these instructions to reduce their size and, conse-
quently, the size of programs that use them. Intel did not remove the 2-byte
versions of these instructions, though: there are two different instructions
that store EAX into memory and two different instructions that load EAX
from memory. A compiler or assembler will always emit the shorter versions
of each pair of instructions.

Intel made an important tradeoff with the mov instruction: it gave up
an extra opcode in order to provide a shorter version of one variant of
each instruction. Actually, Intel uses this trick all over the place to create

2. Actually, Intel claims it’s a 1-byte opcode plus a 1-byte mod-reg-r/m byte. For our purposes,
we’ll treat the mod-reg-r/m byte as part of the opcode.

Instruction Set Architecture 291

shorter and easier-to-decode instructions. Back in 1978, creating redun-
dant instructions to reduce program size was a good compromise given the
cost of memory. Today, however, a CPU designer would probably use those
redundant opcodes for different purposes.

10.3  The Y86 Hypothetical Processor
Because of enhancements made to the 80x86 processor family over time,
Intel’s design goals in 1978, and the evolution of computer architecture,
the encoding of 80x86 instructions is very complex and somewhat illogi-
cal. In short, the 80x86 is not a good introductory example of instruction
set design. To work around this, we’ll discuss instruction set design in two
stages: first, we’ll develop a trivial instruction set for the Y86, a hypothetical
processor that is a small subset of the 80x86, and then we’ll expand our dis-
cussion to the full 80x86 instruction set.

10.3.1  Y86 Limitations
The hypothetical Y86 processor is a very stripped-down version of the 80x86
CPUs. It supports only:

•	 One operand size: 16 bits. This simplification frees us from having to
encode the operand size as part of the opcode (thereby reducing the
total number of opcodes we’ll need).

•	 Four 16-bit registers: AX, BX, CX, and DX. This lets us encode register
operands with only 2 bits (versus the 3 bits the 80x86 family requires
to encode eight registers).

•	 A 16-bit address bus with a maximum of 65,536 bytes of addressable
memory.

These simplifications, plus a very limited instruction set, will allow us
to encode all Y86 instructions using a 1-byte opcode and a 2-byte displace-
ment/offset when applicable.

10.3.2  Y86 Instructions
Including both forms of the mov instruction, the Y86 CPU still provides
only 18 basic instructions. Seven of these instructions have two operands,
eight have one operand, and five have no operands at all. The instructions
are mov (two forms), add, sub, cmp, and, or, not, je, jne, jb, jbe, ja, jae, jmp, get,
put, and halt.

10.3.2.1  The mov Instruction

The mov instruction comes in two forms, merged into the same instruc
tion class:

mov(reg/memory/constant, reg);
mov(reg, memory);

292 Chapter 10

In these forms, reg is either register ax, bx, cx, or dx; memory is an operand
specifying a memory location; and constant is a numeric constant using
hexadecimal notation.

10.3.2.2  Arithmetic and Logical Instructions

The arithmetic and logical instructions are as follows:

add(reg/memory/constant, reg);
sub(reg/memory/constant, reg);
cmp(reg/memory/constant, reg);
and(reg/memory/constant, reg);
or(reg/memory/constant, reg);

not(reg/memory);

The add instruction adds the value of the first operand to the value of the
second, storing the sum in the second operand. The sub instruction subtracts
the value of the first operand from the value of the second, storing the dif-
ference in the second operand. The cmp instruction compares the value of
the first operand against the value of the second and saves the result of the
comparison for use by the conditional jump instructions (described in the
next section). The and and or instructions compute bitwise logical operations
between their two operands and store the result in the second operand.
The not instruction appears separately because it supports only a single
operand. not is the bitwise logical operation that inverts the bits of its single
memory or register operand.

10.3.2.3  Control Transfer Instructions

The control transfer instructions interrupt the execution of instructions stored
in sequential memory locations and transfer control to instructions stored
at some other point in memory. They do this either unconditionally, or
conditionally based upon the result from a cmp instruction. These are the
control transfer instructions:

ja dest; // Jump if above (i.e., greater than)
jae dest; // Jump if above or equal (i.e., greater than or equal to)
jb dest; // Jump if below (i.e., less than)
jbe dest; // Jump if below or equal (i.e., less than or equal to)
je dest; // Jump if equal
jne dest; // Jump if not equal

jmp dest; // Unconditional jump

The first six instructions (ja, jae, jb, jbe, je, and jne) let you check the
result of the previous cmp instruction—that is, the result of the compari-
son of that instruction’s first and second operands.3 For example, if you

3. The Y86 processor performs only unsigned comparisons.

Instruction Set Architecture 293

compare the AX and BX registers with a cmp(ax, bx); instruction and then
execute the ja instruction, the Y86 CPU will jump to the specified destina-
tion location if AX is greater than BX. If AX is not greater than BX, control
will fall through to the next instruction in the program. In contrast to the
first six instructions, the jmp instruction unconditionally transfers control
to the instruction at the destination address.

10.3.2.4  Miscellaneous Instructions

The Y86 supports three instructions that do not have any operands:

get; // Read an integer value into the AX register
put; // Display the value in the AX register
halt; // Terminate the program

The get and put instructions let you read and write integer values: get
prompts the user for a hexadecimal value and then stores that value into
the AX register; put displays the value of the AX register in hexadecimal
format. The halt instruction terminates program execution.

10.3.3  Operand Types and Addressing Modes on the Y86
Before assigning opcodes, we need to look at the operands these instruc-
tions support. The 18 Y86 instructions use five different operand types:
registers, constants, and three memory-addressing modes (the indirect
addressing mode, the indexed addressing mode, and the direct addressing
mode). See Chapter 6 for more details on these addressing modes.

10.3.4  Encoding Y86 Instructions
Because a real CPU uses logic circuitry to decode the opcodes and act
appropriately on them, it’s not a good idea to arbitrarily assign opcodes to
machine instructions. Instead, a typical CPU opcode uses a certain number
of bits to denote the instruction class (such as mov, add, and sub), and a cer-
tain number of bits to encode each operand.

A typical Y86 instruction takes the form shown in Figure 10-3.

iii

000 =
001 =
010 =

011 = cmp
100 =
101 =
110 =
111 =

rr

00 =
01 = bx
10 = cx
11 = dx

mmm

000 =
001 = bx
010 = cx
011 = dx

100 =
101 =
110 =
111 =

[bx]

ax

[xxxx+bx]
[xxxx]
constant

ax

mov(mem/reg/const, reg)
mov(reg, mem)

special
or
and

sub
add

i i i r r m m m

This 16-bit field is present
only if the instruction is a
jump instruction or one of
the operands is a memory-
addressing mode of one of
these forms: [xxxx+bx],
[xxxx], or a constant.

Figure 10-3: Basic Y86 instruction encoding

294 Chapter 10

The basic instruction is either 1 or 3 bytes long, and its opcode consists
of a single byte containing three fields. The first field, consisting of the HO
3 bits, defines the instruction, and these 3 bits provide eight possible com-
binations. As there are 18 different Y86 instructions, we’ll have to pull some
tricks to handle the remaining 10 instructions.

10.3.4.1  Eight Generic Y86 Instructions

As you can see in Figure 10-3, seven of the eight basic opcodes encode
the or, and, cmp, sub, and add instructions, as well as both versions of the mov
instruction. The eighth, 000, is an expansion opcode. This special instruction
class, which we’ll return to shortly, provides a mechanism that allows us to
expand the set of available instructions.

To determine the full opcode for a particular instruction, you simply
select the appropriate bits for the iii, rr, and mmm fields (identified in Figure
10-3). The rr field contains the destination register (except for the ver-
sion of the mov instruction whose iii field is 111), and the mmm field encodes
the source register. For example, to encode the mov(bx, ax); instruction
you would select iii = 110 (mov(reg, reg);), rr = 00 (ax), and mmm = 001 (bx).
This produces the 1-byte instruction %11000001, or $c0.

Some Y86 instructions are larger than 1 byte. To illustrate why this
is necessary, take, for example, the instruction mov([1000], ax);, which
loads the AX register with the value stored at memory location $1000. The
encoding for the opcode is %11000110, or $c6. However, the encoding for the
mov([2000], ax); instruction is also $c6. Clearly these two instructions do dif-
ferent things: one loads the AX register from memory location $1000, while
the other loads the AX register from memory location $2000.

In order to differentiate between instructions that encode an address
using the [xxxx] or [xxxx+bx] addressing modes, or to encode a constant using
the immediate addressing mode, you must append the 16-bit address or
constant to the instruction’s opcode. Within this 16-bit address or constant,
the LO byte follows the opcode in memory and the HO byte follows the LO
byte. So, the 3-byte encoding for mov([1000], ax); would be $c6, $00, $10, and
the 3-byte encoding for mov([2000], ax); would be $c6, $00, $20.

10.3.4.2  The Special Expansion Opcode

The special opcode in Figure 10-3 allows the Y86 CPU to expand the set
of available instructions that can be encoded using a single byte. This
opcode handles several zero- and one-operand instructions, as shown in
Figures 10-4 and 10-5.

Figure 10-4 shows the encodings of four one-operand instruction
classes. The first 2-bit encoding for the rr field, %00, further expands the
instruction set by providing a way to encode the zero-operand instruc-
tions shown in Figure 10-5. Five of these instructions are illegal instruction
opcodes; the three valid opcodes are the halt instruction, which terminates
program execution; the get instruction, which reads a hexadecimal value
from the user and stores it in the AX register; and the put instruction,
which outputs the value in the AX register.

Instruction Set Architecture 295

rr

00 = zero-operand instructions
01 = jump instructions
10 = not
11 = illegal (reserved)

000 =
001 =
010 =
011 =
100 =
101 =
110 =
111 =

bx
cx
dx

[bx]

ax

[xxxx+bx]
[xxxx]
constant

mmm (if rr = 10)

0 0 0 r r m m m

This 16-bit field is present
only if the instruction is a
jump instruction or one of
the operands is a memory-
addressing mode of one of
these forms: [xxxx+bx],
[xxxx], or a constant.

Figure 10-4: Single-operand instruction encodings (iii = %000)

mmm

000 = illegal
001 = illegal
010 = illegal
011 = brk
100 = iret
101 = halt
110 = get
111 = put

0 0 000 m m m

Figure 10-5: Zero-operand instruction encodings (iii = %000 and rr = %00)

The second 2-bit encoding for the rr field, %01, is also part of an expan-
sion opcode that provides all the Y86 jump instructions (see Figure 10-6).
The third rr field encoding, %10, is for the not instruction. The fourth rr
field encoding is currently unassigned. Any attempt to execute an opcode
with an iii field encoding of %000 and an rr field encoding of %11 will halt
the processor with an illegal instruction error. As previously discussed, CPU
designers often reserve unassigned opcodes like this one so they can extend
the instruction set in the future (as Intel did when moving from the 80286
processor to the 80386 or from the 32-bit x86 processors to the 64-bit x86-
64 processors).

The seven jump instructions in the Y86 instruction set all take the form
jxx address;. The jmp instruction copies the 16-bit address value that follows
the opcode into the instruction pointer register, causing the CPU to fetch
the next instruction from the target address of the jmp. The remaining six
instructions—ja, jae, jb, jbe, je, and jne—test some condition and, if it is
true, copy the address value into the instruction pointer register. The eighth
opcode, %00001111, is another illegal opcode. These encodings are shown in
Figure 10-6.

296 Chapter 10

000 = je
001 = jne
010 = jb
011 = jbe
100 = ja
101 = jae
110 = jmp
111 = illegal

mmm (if rr = 01) This 16-bit field is present
only if the instruction is a
jump instruction or one of
the operands is a memory-
addressing mode of one of
these forms: [xxxx+bx],
[xxxx], or a constant.

0 0 0 0 1 m m m

Figure 10-6: Jump instruction encodings

10.3.5  Examples of Encoding Y86 Instructions
The Y86 processor does not execute instructions as human-readable strings
of characters like mov(ax, bx);. Instead, it fetches instructions as bit patterns,
such as $c1, from memory, then decodes and executes those bit patterns.
Human-readable instructions like mov(ax, bx); and add(5, cx); must first
be converted into binary representation, or machine code. This section will
explore this conversion.

10.3.5.1  The add Instruction

We’ll start our conversion with a very simple example, the add(cx, dx);
instruction. Once you’ve chosen the instruction, you look it up in one of the
opcode figures from the previous section. The add instruction is in the first
group (see Figure 10-3) and has an iii field of %101. The source operand is
cx, so the mmm field is %010. The destination operand is dx, so the rr field is %11.
Merging these bits produces the opcode %10111010, or $ba (see Figure 10-7).

iii

101 = add

rr mmm This 16-bit field is not present,
because no numeric operand
is required by this instruction.

1 0 1 1 1 0 1 0

11 = dx 010 = cx

Figure 10-7: Encoding the add(cx, dx); instruction

Now consider the add(5, ax) instruction. Because it has an immediate
source operand (a constant), the mmm field will be %111 (see Figure 10-3).
The destination register operand is ax (%00), and the instruction class field
is %101, so the full opcode becomes %10100111, or $a7. However, we’re not
finished yet. We also have to include the 16-bit constant $0005 as part of the
instruction, with the LO byte of the constant following the opcode, and
the HO byte of the constant following its LO byte, because the bytes are
arranged in little-endian order. So, the sequence of bytes in memory, from
lowest address to highest address, is $a7, $05, $00 (see Figure 10-8).

Instruction Set Architecture 297

iii

101 = add

rr

00 = ax

mmm

111 = constant

1 0 1 0 0 1 1 1

This 16-bit field holds the
binary equivalent of the
constant (5).

5

Figure 10-8: Encoding the add(5, ax); instruction

The add([2ff+bx], cx) instruction also contains a 16-bit constant that
is the displacement portion of the indexed addressing mode. To encode
this instruction, we use the following field values: iii = %101, rr = %10, and
mmm = %101. This produces the opcode byte %10110101, or $b5. The complete
instruction also requires the constant $2ff, so the full instruction is the
3-byte sequence $b5, $ff, $02 (see Figure 10-9).

iii

101 = add

rr mmm

101 = [$2ff+bx]

1 0 1 0 01 1 1

This 16-bit field holds the
binary equivalent of the
displacement ($2ff).10 = CX

$2FF

Figure 10-9: Encoding the add([$2ff+bx], cx); instruction

Now consider add([1000], ax). This instruction adds the 16‑bit contents
of memory locations $1000 and $1001 to the value in the AX register. Once
again, iii = %101 for the add instruction. The destination register is ax, so
rr = %00. Finally, the addressing mode is the displacement-only addressing
mode, so mmm = %110. This forms the opcode %10100110, or $a6. The complete
instruction is 3 bytes long, because it must also encode the displacement
(address) of the memory location in the 2 bytes following the opcode.
Therefore, the complete 3-byte sequence is $a6, $00, $10 (see Figure 10-10).

This 16-bit field holds the
binary equivalent of the
displacement ($1000).

iii

101 = add

rr

00 = ax

mmm

110 = [$1000]

$10001 0 1 0 0 1 1 0

Figure 10-10: Encoding the add([1000], ax); instruction

The last addressing mode to consider is the register indirect addressing
mode, [bx]. The add([bx],bx) instruction uses the following encoded values:
mmm = %101, rr = %01 (bx), and mmm = %100 ([bx]). Because the value in the BX
register completely specifies the memory address, there’s no need to attach
a displacement field to the instruction’s encoding. Hence, this instruction is
only 1 byte long (see Figure 10-11).

298 Chapter 10

iii

101 = add

rr

01 = bx

mmm

100 = [bx]

1 0 1 0 01 1 0

Because there isn’t a displacement
or constant associated with this
instruction, this 16-bit field is not
present in the instruction.

Figure 10-11: Encoding the add([bx], bx); instruction

You use a similar approach to encode the sub, cmp, and, and or instruc-
tions. The only difference between encoding these instructions and the add
instruction is the value you use for the iii field in the opcode.

10.3.5.2  The mov Instruction

The Y86 mov instruction is special, because it comes in two forms. The only
difference between the encoding of the add instruction and the encoding of
the mov instruction’s first form (iii = %110) is the iii field. This form of mov
copies either a constant or data from the register or memory address speci-
fied by the mmm field into the destination register specified by the rr field.

The second form of the mov instruction (iii = %111) copies data from the
source register specified by the rr field to a destination memory location
specified by the mmm field. In this form of the mov instruction, the source and
destination meanings of the rr and mmm fields are reversed: rr is the source
field and mmm is the destination field. Another difference between the two
forms of mov is that in its second form, the mmm field may contain only the
values %100 ([bx]), %101 ([disp+bx]), and %110 ([disp]). The destination values
can’t be any of the registers encoded by mmm field values in the range %000
through %011 or a constant encoded by an mmm field of %111. These encodings
are illegal because the first form of the mov handles cases with a register des-
tination, and because storing data into a constant doesn’t make any sense.

10.3.5.3  The not Instruction

The not instruction is the only instruction with a single memory/register
operand that the Y86 processor supports. It has the following syntax:

not(reg);

or:

not(address);

where address represents one of the memory addressing modes ([bx],
[disp+bx], or [disp]). You may not specify a constant operand for the
not instruction.

Because not has only a single operand, it needs only the mmm field to
encode that operand. An iii field of %000 and an rr field of %10 identify the
not instruction. In fact, whenever the iii field contains 0, the CPU knows
that it has to decode bits beyond the iii field to identify the instruction.

Instruction Set Architecture 299

In this case, the rr field specifies whether we’ve encoded not or one of the
other specially encoded instructions.

To encode an instruction like not(ax), specify %000 for the iii field
and %10 for the rr field, then encode the mmm field the same way you would
encode it for the add instruction. Because mmm = %000 for AX, not(ax) would be
encoded as %00010000, or $10 (see Figure 10-12).

iii

000 = special
rr

10 = not

mmm

000 = ax

0 0 0 0 0 0 01

Because there isn’t a displacement
or constant associated with this
instruction, this 16-bit field is not
present in the instruction.

Figure 10-12: Encoding the not(AX); instruction

The not instruction does not allow an immediate, or constant, operand,
so the opcode %00010111 ($17) is an illegal opcode.

10.3.5.4  The Jump Instructions

The Y86 jump instructions also use the special encoding, meaning that the
iii field for jump instructions is always %000. These instructions are always
3 bytes long. The first byte, the opcode, specifies which jump instruction to
execute, and the next 2 bytes specify the address in memory to which the
CPU transfers control (if the condition is met, in the case of the conditional
jumps). There are seven different Y86 jump instructions, six conditional
jumps, and one unconditional jump, jmp. All seven of these instructions
set iii = %000 and rr = %01, so they differ only by their mmm fields. The eighth
possible opcode, with an mmm field value of %111, is an illegal opcode (see
Figure 10-6).

Encoding these instructions is relatively straightforward. Picking the
instruction you want to encode completely determines the opcode. The
opcode values fall in the range $08 through $0e ($0f is the illegal opcode).

The only field that requires some thought is the 16-bit operand that
follows the opcode. This field holds the address of the target instruction
to which the unconditional jump always transfers, and to which the condi-
tional jumps transfer if the transfer condition is true. To properly encode
this 16-bit operand, you must know the address of the opcode byte of the
target instruction. If you’ve already converted the target instruction to binary
form and stored it into memory, you’re all set—just specify the target instruc-
tion’s address as the sole operand of the jump instruction. On the other
hand, if you haven’t yet written, converted, and placed the target instruction
into memory, knowing its address would seem to require a bit of divination.
Fortunately, you can figure it out by computing the lengths of all the instruc-
tions between the current jump instruction you’re encoding and the target
instruction—but unfortunately, this is an arduous task.

The best way to calculate the distance is to write all your instructions
down on paper, compute their lengths (which is easy, because all instruc-
tions are either 1 or 3 bytes long depending on whether they have a 16-bit

300 Chapter 10

operand), and then assign an appropriate address to each instruction.
Once you’ve done this, you’ll know the starting address for each instruc-
tion, and you can put target address operands into your jump instructions
as you encode them.

10.3.5.5  The Zero-Operand Instructions

The remaining instructions, the zero-operand instructions, are the easi-
est to encode. Because they have no operands, they are always 1 byte long.
These instructions always have iii = %000 and rr = %00, and mmm specifies the
particular instruction opcode (see Figure 10-5). Note that the Y86 CPU
leaves five of these instructions undefined (so we can use these opcodes for
future expansion).

10.3.6  Extending the Y86 Instruction Set
The Y86 CPU is a trivial CPU, suitable only for demonstrating how to
encode machine instructions. However, as with any good CPU, the Y86
design allows for expansion by adding new instructions.

You can extend the number of instructions in a CPU’s instruction set by
using either undefined or illegal opcodes. So, because the Y86 CPU has sev-
eral illegal and undefined opcodes, we’ll use them to expand the instruc-
tion set.

Using undefined opcodes to define new instructions works best when
there are undefined bit patterns within an opcode group, and the new
instruction you want to add falls into that same group. For example, the
opcode %00011mmm falls into the same group as the not instruction, which also
has an iii field value of %000. If you decided that you really needed a neg
(negate) instruction, using the %00011mmm opcode makes sense because you’d
probably expect neg to use the same syntax as the not instruction. Likewise,
if you want to add a zero-operand instruction to the instruction set, Y86
has five undefined zero-operand instructions for you to choose from
(%0000000..%00000100; see Figure 10-5). You’d just appropriate one of these
opcodes and assign your instruction to it.

Unfortunately, the Y86 CPU doesn’t have many illegal opcodes avail-
able. For example, if you wanted to add the shl (shift left), shr (shift right),
rol (rotate left), and ror (rotate right) instructions as single-operand
instructions, there’s not enough space within the group of single-operand
instruction opcodes to do so (only %00011mmm is currently open). Likewise,
there are no two-operand opcodes open, so if you wanted to add an xor
(exclusive OR) instruction or some other two-operand instruction, you’d
be out of luck.

A common way to handle this dilemma, and one the Intel designers
have employed, is to use one of the undefined opcodes as a prefix opcode
byte. For example, the opcode $ff is illegal (it corresponds to a mov(dx,

Instruction Set Architecture 301

constant) instruction), but we can use it as a special prefix byte to further
expand the instruction set (see Figure 10-13).4

Opcode expansion prefix byte ($ff) Instruction opcode byte
(you have to define this)

Any additional
operand bytes
as defined by
your instructions

1 1 1 1 1 1 1 1

Figure 10-13: Using a prefix byte to extend the instruction set

Whenever the CPU encounters a prefix byte in memory, it reads and
decodes the next byte in memory as the actual opcode. However, it doesn’t
treat the second byte as it would a standard opcode that did not follow
a prefix byte. Instead, it allows the CPU designer to create a completely
new opcode scheme, independent of the original instruction set. A single-
expansion opcode byte allows CPU designers to add up to 256 more instruc-
tions to the instruction set. For even more instructions, designers can use
additional illegal opcode bytes (in the original instruction set) to add still
more expansion opcodes, each with its own independent instruction set;
or they can follow the opcode expansion prefix byte with a 2-byte opcode
(yielding up to 65,536 new instructions); or they can execute any other
scheme they can dream up.

Of course, one big drawback of this approach is that it increases the size
of the new instructions by 1 byte, because each instruction now requires
the prefix byte as part of the opcode. This also increases the cost of the
circuitry (since decoding prefix bytes and multiple instruction sets is fairly
complex), so you don’t want to use this scheme for the basic instruction set.
Nevertheless, it is a good way to expand the instruction set when you’ve run
out of opcodes.

10.4  Encoding 80x86 Instructions
The Y86 processor is simple to understand; we can easily encode instruc-
tions by hand for it, and it’s a great vehicle for learning how to assign
opcodes. It’s also a purely hypothetical device intended only as a teaching
tool. So, it’s time to take a look at the machine instruction format for a real
CPU: the 80x86. After all, the programs you write will run on a real CPU,
so to fully appreciate what your compilers are doing with your code—so
you can choose the best statements and data structures when writing that
code—you need to understand how real instructions are encoded.

Even if you’re using a different CPU, studying the 80x86 instruction
encoding is helpful. They don’t call the 80x86 a complex instruction set
computer (CISC) chip for nothing. Although more complex instruction

4. We could also have used values $f7, $ef, and $e7, as they correspond as well to an attempt to
store a register into a constant. However, $ff is easier to decode. Still, if you need even more
prefix bytes for instruction expansion, these three values are available.

302 Chapter 10

encodings do exist, no one would challenge the assertion that it’s one of the
more complex instruction sets in common use today. Therefore, exploring
it will provide valuable insight into the operation of other real-world CPUs.

The generic 80x86 32-bit instruction takes the form shown in
Figure 10-14.5

One- or two-byte instruction
opcode (2 bytes if the special
$0F opcode expansion prefix
is present)

Optional scaled-index byte
(if the instruction uses a scaled-
index memory addressing mode)

Constant data (this is a 0-,
1-, 2-, or 4-byte constant
value if the instruction has
an immediate operand)

Prefix bytes
(zero to four special
prefix values that
affect the operation
of the instruction)

mod-reg-r/m byte that
specifies the addressing
mode and instruction
operand size (this byte
is only required if the
instruction supports register
or memory operands)

Displacement (this is a 0-, 1-, 2-,
or 4-byte value that specifies a
memory address displacement
for the instruction)

Figure 10-14: 80x86 32-bit instruction encoding

N O T E 	 Although this diagram seems to imply that instructions can be up to 16 bytes long, 15
bytes is actually the limit.

The prefix bytes are not the same as the opcode expansion prefix byte
that we discussed in the previous section. Instead, the 80x86 prefix bytes
modify the behavior of existing instructions. An instruction may have a
maximum of four prefix bytes attached to it, but the 80x86 supports more
than four different prefix values. The behaviors of many prefix bytes are
mutually exclusive, and the results of an instruction will be undefined if you
prepend a pair of mutually exclusive prefix bytes to it. We’ll take a look at a
couple of these prefix bytes in a moment.

The (32-bit) 80x86 supports two basic opcode sizes: a standard 1-byte
opcode and a 2-byte opcode consisting of a $0f opcode expansion prefix
byte and a second byte specifying the actual instruction. One way to think
of this opcode expansion prefix byte is as an 8-bit extension of the iii
field in the Y86 encoding. This enables the encoding of up to 512 different
instruction classes, although the 80x86 doesn’t yet use them all. In reality,
various instruction classes use certain bits in this opcode expansion prefix
byte for decidedly non-instruction-class purposes. For example, consider
the add instruction opcode shown in Figure 10-15.

Bit 1 (d) specifies the direction of the transfer. If this bit is 0, then the
destination operand is a memory location, such as in add(al, [ebx]);. If this
bit is 1, the destination operand is a register, as in add([ebx], al);.

5. The 64-bit variants of the 80x86 instruction set complicate things even further.

Instruction Set Architecture 303

add opcode

d = 0 if adding from register to memory
d = 1 if adding from memory to register

s = 0 if adding 8-bit operands
s = 1 if adding 16-bit or 32-bit operands

00 00 0 0 d s

Figure 10-15: 80x86 add opcode

Bit 0 (s) specifies the size of the operands the add instruction operates
upon. There’s a problem here, however. The 32-bit 80x86 family supports
up to three different operand sizes: 8-bit operands, 16-bit operands, and
32-bit operands. With a single size bit, the instruction can encode only two of
these three different sizes. In 32-bit operating systems, the vast majority of
operands are either 8 bits or 32 bits, so the 80x86 CPU uses the size bit in
the opcode to encode those sizes. For 16-bit operands, which occur less fre-
quently than 8-bit or 32-bit operands, Intel uses a special opcode prefix byte
to specify the size. As long as instructions that have 16-bit operands occur
less than one out of every eight instructions (which is generally the case),
this is more compact than adding another bit to the instruction’s size. Using
a size prefix byte allowed Intel’s designers to extend the number of operand
sizes without having to change the instruction encoding inherited from the
original 16-bit processors in this CPU family.

Note that the AMD/Intel 64-bit architectures go even crazier with
opcode prefix bytes. However, the CPU operates in a special 64-bit mode;
effectively, the 64-bit 80x86 CPUs (often called the X86-64 CPUs) have two
completely different instruction sets, each with its own encoding. The X86-
64 CPUs can switch between 64- and 32-bit modes to handle programs writ-
ten in either of the different instruction sets. The encoding in this chapter
covers the 32-bit variant; see the Intel or AMD documentation for details on
the 64-bit version.

10.4.1  Encoding Instruction Operands
The mod-reg-r/m byte (see Figure 10-14) provides the encoding for instruc-
tion operands by specifying the base addressing mode used to access them
as well as their size. This byte contains the fields shown in Figure 10-16.

7 6 5 4 3 2 1 0

mod reg r/m

Figure 10-16: mod-reg-r/m byte

304 Chapter 10

The reg field almost always specifies an 80x86 register. However,
depending on the instruction, the register specified by reg can be either
the source or the destination operand. To distinguish between the two,
many instructions’ upcodes include the d (direction) field, which con-
tains a value of 0 when reg is the source and a value of 1 when it’s the
destination operand.

This field uses the 3-bit register encodings found in Table 10-1. As just
discussed, the size bit in the instruction’s opcode indicates whether the
reg field specifies an 8- or 32-bit register (when operating under a mod-
ern, 32-bit operating system). To make the reg field specify a 16-bit regis-
ter, you must set the size bit in the opcode to 1, as well as adding an extra
prefix byte.

Table 10-1: reg Field Encodings

reg value Register if data size
is 8 bits

Register if data size
is 16 bits

Register if data size
is 32 bits

%000 al ax eax

%001 cl cx ecx

%010 dl dx edx

%011 bl bx ebx

%100 ah sp esp

%101 ch bp ebp

%110 dh si esi

%111 bh di edi

With the d bit in the opcode of a two-operand instruction indicating
whether the reg field contains the source or destination operand, the mod
and r/m fields together specify the other of the two operands. In the case
of a single-operand instruction like not or neg, the reg field contains an
opcode extension, and mod and r/m combine to specify the only operand.
The operand addressing modes specified by the mod and r/m fields are listed
in Tables 10-2 and 10-3.

Table 10-2: mod Field Encodings

mod Description

%00 Specifies register-indirect addressing mode (with two exceptions: scaled-
index [sib] addressing modes with no displacement operand when
r/m = %100; and displacement-only addressing mode when r/m = %101).

%01 Specifies that a 1-byte signed displacement follows the addressing
mode byte(s).

%10 Specifies that a 1-byte signed displacement follows the addressing
mode byte(s).

%11 Specifies direct register access.

Instruction Set Architecture 305

Table 10-3: mod-r/m Encodings

mod r/m Addressing mode

%00 %000 [eax]

%01 %000 [eax+disp8]

%10 %000 [eax+disp32]

%11 %000 al, ax, or eax
%00 %001 [ecx]

%01 %001 [ecx+disp8]

%10 %001 [ecx+disp32]

%11 %001 cl, cx, or ecx
%00 %010 [edx]

%01 %010 [edx+disp8]

%10 %010 [edx+disp32]

%11 %010 dl, dx, or edx
%00 %011 [ebx]

%01 %011 [ebx+disp8]

%10 %011 [ebx+disp32]

%11 %011 bl, bx, or ebx
%00 %100 Scaled-index (sib) mode
%01 %100 sib + disp8 mode
%10 %100 sib + disp32 mode
%11 %100 ah, sp, or esp
%00 %101 Displacement-only mode (32-bit displacement)
%01 %101 [ebp+disp8]

%10 %101 [ebp+disp32]

%11 %101 ch, bp, or ebp
%00 %110 [esi]

%01 %110 [esi+disp8]

%10 %110 [esi+disp32]

%11 %110 dh, si, or esi
%00 %111 [edi]

%01 %111 [edi+disp8]

%10 %111 [edi+disp32]

%11 %111 bh, di, or edi

306 Chapter 10

There are a couple of interesting things to note about Tables 10-2
and 10-3. First, there are two different forms of the [reg+disp] addressing
modes: one form with an 8-bit displacement and one form with a 32-bit dis-
placement. Addressing modes whose displacement falls in the range –128
through +127 require only a single byte after the opcode to encode the
displacement. Instructions with a displacement that falls within this range
will be shorter and sometimes faster than instructions whose displacement
values are not within this range and thus require 4 bytes after the opcode.

The second thing to note is that there is no [ebp] addressing mode. If
you look at the entry in Table 10-3 where this addressing mode logically
belongs (where r/m is %101 and mod is %00), you’ll find that its slot is occupied
by the 32-bit displacement-only addressing mode. The basic encoding
scheme for addressing modes didn’t allow for a displacement-only address-
ing mode, so Intel “stole” the encoding for [ebp] and used that for the
displacement-only mode. Fortunately, anything you can do with the [ebp]
addressing mode you can also do with the [ebp+disp8] addressing mode by
setting the 8-bit displacement to 0. While such an instruction is a bit longer
than it would otherwise need to be if the [ebp] addressing mode existed,
the same capabilities are still there. Intel wisely chose to replace this par-
ticular register-indirect addressing mode, anticipating that programmers
would use it less often than the other register-indirect addressing modes.

Another thing you’ll notice missing from this table are addressing
modes of the form [esp], [esp+disp8], and [esp+disp32]. Intel’s designers
borrowed the encodings for these three addressing modes to support the
scaled-index addressing modes they added to their 32-bit processors in the
80x86 family.

If r/m  = %100 and mod  = %00, this specifies an addressing mode of the
form [reg132+reg232*n]. This scaled-index addressing mode computes the
final address in memory as the sum of reg2 multiplied by n (n = 1, 2, 4, or
8) and reg1. Programs most often use this addressing mode when reg1 is a
pointer holding the base address of an array of bytes (n = 1), words (n = 2),
double words (n = 4), or quad words (n = 8), and reg2 holds the index into
that array.

If r/m  = %100 and mod  = %01, this specifies an addressing mode of the
form [reg132+reg232*n+disp8]. This scaled-index addressing mode computes
the final address in memory as the sum of reg2 multiplied by n (n = 1, 2, 4,
or 8), reg1, and the 8-bit signed displacement (sign-extended to 32 bits).
Programs most often use this addressing mode when reg1 is a pointer hold-
ing the base address of an array of records, reg2 holds the index into that
array, and disp8 provides the offset to a desired field in the record.

If r/m = %100 and mod = %10, this specifies an addressing mode of the form
[reg132+reg232*n+disp32]. This scaled-index addressing mode computes the

Instruction Set Architecture 307

final address in memory as the sum of reg2 multiplied by n (n = 1, 2, 4, or 8),
reg1, and the 32-bit signed displacement. Programs most often use this
addressing mode to index into static arrays of bytes, words, double words,
or quad words.

If values corresponding to one of the sib modes appear in the mod and
r/m fields, the addressing mode is a scaled-index addressing mode with a
second byte (the sib) following the mod-reg-r/m byte, though don’t forget
that the mod field still specifies a displacement size of 0, 1, or 4 bytes. Figure
10-17 shows the layout of this extra sib, and Tables 10-4, 10-5, and 10-6
explain the values for each of the sib fields.

7 6 5 4 3 2 1 0

Scale Index Base

Figure 10-17: The sib (scaled-index byte) layout

Table 10-4: Scale Values

Scale value Index * scale value

%00 Index * 1
%01 Index * 2
%10 Index * 4
%11 Index * 8

Table 10-5: Register Values for sib Encoding

Index value Register

%000 EAX
%001 ECX
%010 EDX
%011 EBX
%100 Illegal
%101 EBP
%110 ESI
%111 EDI

308 Chapter 10

Table 10-6: Base Register Values for sib Encoding

Base value Register

%000 EAX
%001 ECX
%010 EDX
%011 EBX
%100 ESP
%101 Displacement only if mod = %00, EBP if mod = %01 or %10
%110 ESI
%111 EDI

The mod-reg-r/m and sib bytes are complex and convoluted, no question
about that. The reason is that Intel reused its 16-bit addressing circuitry
when it switched to the 32-bit format rather than simply abandoning it
at that point. There were good hardware reasons for retaining it, but the
result is a complex scheme for specifying addressing modes. As you can
imagine, things got even worse when Intel and AMD developed the x86-64
architecture.

Note that if the r/m field of the mod-reg-r/m byte contains %100 and mod
does not contain %11, the addressing mode is a sib mode rather than the
expected [esp], [esp+disp8], or [esp+disp32] mode. In this case the compiler
or assembler will emit an extra sib byte immediately following the mod-reg-
r/m byte. Table 10-7 lists the various combinations of legal scaled-index
addressing modes on the 80x86.

In each of the addressing modes listed in Table 10-7, the mod field of
the mod-reg-r/m byte specifies the size of the displacement (0, 1, or 4 bytes).
The base and index fields of the sib specify the base and index registers,
respectively. Note that this addressing mode does not allow the use of ESP
as an index register. Presumably, Intel left this particular mode undefined
to allow for extending the addressing modes to 3 bytes in a future version of
the CPU, although doing so seems a bit extreme.

Just as the mod-reg-r/m encoding replaced the [ebp] addressing mode
with a displacement-only mode, the sib addressing format replaces the
[ebp+index*scale] mode with a displacement-plus index mode (that is, no
base register). If it turns out that you really need to use the [ebp+index*scale]
addressing mode, you’ll have to use the [disp8+ebp+index*scale] mode
instead, specifying a 1-byte displacement value of 0.

Instruction Set Architecture 309

Table 10-7: The Scaled-Index Addressing Modes

mod Index Legal scaled-index addressing modes6

%00
Base ≠ %101

%000 [base32+eax*n]

%001 [base32+ecx*n]

%010 [base32+edx*n]

%011 [base32+ebx*n]

%100 n/a7

%101 [base32+ebp*n]

%110 [base32+esi*n]

%111 [base32+edi*n]

%00
Base = %1018

%000 [disp32+eax*n]

%001 [disp32+ecx*n]

%010 [disp32+edx*n]

%011 [disp32+ebx*n]

%100 n/a
%101 [disp32+ebp*n]

%110 [disp32+esi*n]

%111 [disp32+edi*n]

%01 %000 [disp8+base32+eax*n]

%001 [disp8+base32+ecx*n]

%010 [disp8+base32+edx*n]

%011 [disp8+base32+ebx*n]

%100 n/a
%101 [disp8+base32+ebp*n]

%110 [disp8+base32+esi*n]

%111 [disp8+base32+edi*n]

%10 %000 [disp32+base32+eax*n]

%001 [disp32+base32+ecx*n]

%010 [disp32+base32+edx*n]

%011 [disp32+base32+ebx*n]

%100 n/a
%101 [disp32+base32+ebp*n]

%110 [disp32+base32+esi*n]

%111 [disp32+base32+edi*n]

6. The base32 register can be any of the 80x86 32-bit general-purpose registers, as specified by
the base field.

7. The 80x86 does not allow a program to use the ESP as an index register.

8. The 80x86 doesn’t support a [base32+ebp*n] addressing mode, but you can achieve the same
effective address using [base32+ebp*n+disp8] with an 8-bit displacement value of 0.

310 Chapter 10

10.4.2  Encoding the add Instruction
To help you figure out how to encode an instruction using this complex
scheme, let’s look at an example of the 80x86 add instruction using various
addressing modes. The add opcode is either $00, $01, $02, or $03, depending
on its direction and size bits (see Figure 10-15). Figures 10-18 through 10-25
show how to encode various forms of the add instruction using different
addressing modes.

0 indicates that we are
adding 8-bit values together.

0 0 0 0 0 0 0 0

%11 indicates
that the r/m field
is a register.

0 0 0 0 01 1 1

%000000 indicates that
this is an add instruction.

0 indicates that we are adding
the reg field to the r/m field.

This field, along with the d bit
in the opcode, indicates that
the source field is the al register.

add(al, cl) = $00, $c1

This field, along
with the d bit
in the opcode,
indicates that the
destination field
is the cl register.

Figure 10-18: Encoding the add(al, cl); instruction

There is an interesting side effect of the mod-reg-r/m organization and
direction bit: some instructions have two different legal opcodes. For
example, we could also encode the add(al, cl); instruction shown in Figure
10-18 as $02, $c8 by reversing the positions of the AL and CL registers in
the reg and r/m fields and then setting the d bit (bit 1) in the opcode to 1.
This applies to all instructions with two register operands and a direction
bit, such as the add(eax, ecx); instruction in Figure 10-19, which can also be
encoded as $03, $c8.

Instruction Set Architecture 311

add(eax, ecx) = $01, $c1

1 indicates that we are
adding 32-bit values together.

%11 indicates
that the r/m field
is a register.

This field, along
with the d bit
in the opcode,
indicates that the
destination field
is the ecx register.

0 0 0 0 0 0 0 1

%000000 indicates that
this is an add instruction.

0 0 0 0 01 1 1

This field, along with the d bit
in the opcode, indicates that the
source field is the eax register.0 indicates that we are adding

the reg field to the r/m field.

Figure 10-19: Encoding the add(eax, ecx); instruction

Disp32

32-bit
displacement
follows the
instruction.

add(disp, edx) = $03, $1d, $ww, $xx, $yy, $zz

Note: $ww, $xx, $yy, $zz represent the four displacement byte
values, with $ww being the LO byte and $zz being the HO byte.

0 0 0 0 0 0 1 1 0 0 0 011 1 1

%000000 indicates that
this is an add instruction.

1 indicates that we are
adding 32-bit values together.

1 indicates that we are adding
the r/m field to the reg field.

The combination of mod = %00 and
r/m = %101 indicates that this is the
displacement-only addressing mode.

This field, along with the d bit
in the opcode, indicates that the
destination field is the edx register.

Figure 10-20: Encoding the add(disp, edx); instruction

312 Chapter 10

add([ebx], edi) = $03, $3b

1 indicates that we are
adding 32-bit values together.
1 indicates that we are
adding 32-bit values together.

0 0 0 0 0 0 1 1

%000000 indicates that
this is an add instruction.

1 indicates that we are adding
the r/m field to the reg field.
1 indicates that we are adding
the r/m field to the reg field.

%00 indicates
a 0-byte
displacement.

%011 indicates
the use of the [ebx]
addressing mode.

0 0 01 1 1 1 1

This field, along with the
d bit in the opcode, indicates
that the destination field is
the edi register.

Figure 10-21: Encoding the add([ebx], edi); instruction

Disp8

8-bit
displacement
follows the
mod-reg-r/m
byte.

add([esi + disp8], eax) = $03, $46, $xx

%110 indicates the use of
the [esi] addressing mode.
%110 indicates the use of
the [esi] addressing mode.

%01 indicates
a 1-byte
displacement.

%01 indicates
a 1-byte
displacement.

1 indicates that we are
adding 32-bit values together.
1 indicates that we are
adding 32-bit values together.

0 0 0 0 0 0 1 1 0 0 0 0 01 1 1

%000000 indicates that
this is an add instruction. This field, along with the

d bit in the opcode, indicates
that the destination field is
the eax register.

This field, along with the
d bit in the opcode, indicates
that the destination field is
the eax register.

1 indicates that we are adding
the r/m field to the reg field.
1 indicates that we are adding
the r/m field to the reg field.

Figure 10-22: Encoding the add([esi+disp8], eax); instruction

Instruction Set Architecture 313

Disp32

32-bit
displacement
follows the
instruction.

add([ebp + disp32], ebx) = $03, $9d, $ww, $xx, $yy, $zz

Note: $ww, $xx, $yy, $zz represent the four displacement byte
values, with $ww being the LO byte and $zz being the HO byte.

1 indicates that we are
adding 32-bit values together.
1 indicates that we are
adding 32-bit values together.

0 0 0 0 0 0 1 1

%000000 indicates that
this is an add instruction.

1 indicates that we are adding
the r/m field to the reg field.
1 indicates that we are adding
the r/m field to the reg field.

r/m = %101
is [ebp]

0 0 01 1 1 1 1

This field, along with the
d bit in the opcode, indicates
that the destination field is
the ebx register.

This field, along with the
d bit in the opcode, indicates
that the destination field is
the ebx register.

mod = %10 indicates
the use of a 32-bit
displacement.

Figure 10-23: Encoding the add([ebp+disp32], ebx); instruction

10000 10100000 Disp32101

add([disp32 + eax * 1], ebp) = $03, $2c, $05, $ww, $xx, $yy, $zz

%000000 indicates that
this is an add instruction.

1 indicates that we are
adding 32-bit values together.
1 indicates that we are
adding 32-bit values together.

1 indicates that we are adding
the r/m field to the reg field.
1 indicates that we are adding
the r/m field to the reg field.

ebp is the
destination
register.

00 0 0 0 0 11

These two fields select the
eax * 1 scaled-index mode.

mod = %00 and
r/m = %100
specifies the
disp32 + reg * 1 mode.

Note: $ww, $xx, $yy, $zz represent the four displacement byte
values, with $ww being the LO byte and $zz being the HO byte.

Base = %101 means
displacement-only
addressing mode.

Figure 10-24: Encoding the add([disp32+eax*1], ebp); instruction

314 Chapter 10

add([ebx + edi * 4], ecx) = $03, $0c, $bb

%000000 indicates that
this is an add instruction.

1 indicates that we are
adding 32-bit values together.
1 indicates that we are
adding 32-bit values together.

1 indicates that we are adding
the r/m field to the reg field.
1 indicates that we are adding
the r/m field to the reg field.

ecx is the
destination
register.

mod = %00 and
r/m = %100
specifies the sib mode.

mod = %00 and
r/m = %100
specifies the sib mode. Base = %011 = ebx

These two fields select the
edi * 4 scaled-index mode.

011111101000010000 0 0 0 0 11

Figure 10-25: Encoding the add([ebx+edi*4], ecx); instruction

10.4.3  Encoding Immediate (Constant) Operands on the x86
You may have noticed that the mod-reg-r/m and sib bytes don’t contain any
bit combinations you can use to specify that an instruction contains an
immediate operand. The 80x86 uses a completely different opcode to spec-
ify an immediate operand. Figure 10-26 shows the basic encoding for an add
immediate instruction.

0 indicates that the constant
is the same size as specified
by the s field.

s = 0: 8-bit operands
s = 1: 32-bit operands

A value of 1 indicates that
the constant is a 1-byte operand
that is sign-extended to the size
of the destination operand.

These fields have the usual
mod-reg-r/m meaning and
specify the destination operand.

Optional 1-
or 2-byte
displacement
(as specified
by mod-r/m).

An 8-, 16-,
or 32-bit
constant
follows the
instruction.

Opcode extension,
000 for add immediate.

%100000 indicates
that this is an immediate
mode instruction.

0 0 0 0 0 01 1 Constants1 0 0 0 0 0 x

Figure 10-26: Encoding an add immediate instruction

Instruction Set Architecture 315

There are three major differences between the encoding of the add
immediate instruction and the standard add instruction. First, and most
important, the opcode has a 1 in the HO bit position. This tells the CPU
that the instruction has an immediate constant. This change alone, how-
ever, does not tell the CPU that it must execute an add instruction, as you’ll
see shortly.

The second difference is that there’s no direction bit in the opcode.
This makes sense because you cannot specify a constant as a destination
operand. Therefore, the destination operand is always the location speci-
fied by the mod and r/m bits in the mod-reg-r/m field.

In place of the direction bit, the opcode has a sign-extension (x) bit.
For 8-bit operands, the CPU ignores the sign-extension bit. For 16-bit and
32-bit operands, the sign-extension bit specifies the size of the constant
following the add instruction. If the sign-extension bit contains 0, the con-
stant is already the same size as the operand (either 16 or 32 bits). If the
sign-extension bit contains 1, the constant is a signed 8-bit value, and the
CPU sign-extends this value to the appropriate size before adding it to the
operand. This little trick often makes programs much shorter, because you
commonly add small constants to 16- or 32-bit destination operands.

The third difference between the add immediate and the standard add
instruction is the meaning of the reg field in the mod-reg-r/m byte. Because
the instruction implies that the source operand is a constant, and the mod-r/m
fields specify the destination operand, the instruction does not need to use
the reg field to specify an operand. Instead, the 80x86 CPU uses these 3 bits
as an opcode extension. For the add immediate instruction, these 3 bits must
contain 0, and another bit pattern would correspond to a different instruction.

When a constant is added to a memory location, any displacement asso-
ciated with that memory location immediately precedes the constant data
in the instruction sequence.

10.4.4  Encoding 8-, 16-, and 32-Bit Operands
When designing the 8086, Intel used one opcode bit (s) to specify whether
the operand sizes were 8 or 16 bits. Later, when it extended the 80x86
architecture to 32 bits with the introduction of the 80386, Intel had a prob-
lem: with this single operand size bit, it could encode only two sizes, but
it needed to encode three (8, 16, and 32 bits). To solve this problem, Intel
used an operand-size prefix byte.

Intel studied its instruction set and concluded that in a 32-bit environ-
ment, programs were likely to use 8-bit and 32-bit operands far more often
than 16-bit operands. Therefore, it decided to let the size bit (s) in the
opcode select between 8- and 32-bit operands, as described in the previous
sections. Although modern 32-bit programs don’t use 16-bit operands very
often, they do need them now and then. So, Intel lets you prefix a 32-bit
instruction with the operand-size prefix byte, whose value is $66, and this
prefix byte tells the CPU that the operands contain 16-bit data rather than
32-bit data.

316 Chapter 10

You do not have to explicitly add an operand-size prefix byte to your
16-bit instructions; the assembler or compiler takes care of this automati-
cally for you. However, do keep in mind that whenever you use a 16-bit
object in a 32-bit program, the instruction is 1 byte longer because of the
prefix value. Therefore, you should be careful about using 16-bit instruc-
tions if size and, to a lesser extent, speed are important.

10.4.5  Encoding 64-Bit Operands
When running in 64-bit mode, Intel and AMD x84-64 processors use special
opcode prefix bytes to specify 64-bit registers. There are 16 REX opcode
bytes that handle 64-bit operands and addressing modes. Because there
weren’t 16 single-byte opcodes available, AMD (who designed the instruction
set) chose to repurpose 16 existing opcodes (the 1-byte opcode variants for
the inc(reg) and dec(reg) instructions). There are still 2-byte variants of these
instructions, so rather than eliminating the instructions altogether, AMD just
removed the 1-byte versions. However, standard 32-bit code (a lot of which
certainly uses those 1-byte increment and decrement instructions) can no
longer run on the 64-bit model. That’s why AMD and Intel introduced new
32-bit and 64-bit operation modes—so the CPUs could run both older 32-bit
code and newer 64-bit code on the same piece of silicon.

10.4.6  Alternate Encodings for Instructions
As noted earlier in this chapter, one of Intel’s primary design goals for the
80x86 was to create an instruction set that allowed programmers to write
very short programs in order to save memory, which was precious at the
time. One way Intel did this was to create alternative encodings of some
very commonly used instructions. These alternative instructions were
shorter than their standard counterparts, and Intel hoped that program-
mers would make extensive use of the shorter versions, thereby creating
shorter programs.

A good example of these alternative instructions are the add(constant,
accumulator); instructions, where the accumulator is al, ax, or eax. The 80x86
provides 1-byte opcodes for add(constant, al); and add(constant, eax);, which
are $04 and $05, respectively. With a 1-byte opcode and no mod-reg-r/m byte,
these instructions are 1 byte shorter than their standard add immediate
counterparts. The add(constant, ax); instruction requires an operand-size
prefix, so its opcode is effectively 2 bytes. However, this is still 1 byte shorter
than the corresponding standard add immediate.

You don’t have to specify anything special to use these instructions. Any
decent assembler or compiler will automatically choose the shortest possible
instruction it can use when translating your source code into machine code.
However, you should note that Intel provides alternative encodings only for
the accumulator registers. Therefore, if you have a choice of several instruc-
tions to use and the accumulator registers are among these choices, the AL,
AX, and EAX registers are often your best bet. However, this option is usu-
ally available only to assembly language programmers.

Instruction Set Architecture 317

10.5  Implications of Instruction Set Design
to the Programmer

Only by knowing the computer’s architecture and, in particular, how the
CPU encodes machine instructions, can you make the most efficient use of
the machine’s instructions. By studying instruction set design, you can gain
a clear understanding of the following:

•	 Why some instructions are shorter than others

•	 Why some instructions are faster than others

•	 Which constant values the CPU can handle efficiently

•	 Whether constants are more efficient than memory locations

•	 Why certain arithmetic and logical operations are more efficient
than others

•	 Which types of arithmetic expressions are more easily translated into
machine code than other types

•	 Why code is less efficient if it transfers control over a large distance in
the object code

. . . and so on.
By studying instruction set design, you become more aware of the impli-

cations of the code you write (even in an HLL) in terms of efficient opera-
tion on the CPU. Armed with this knowledge, you’ll be better equipped to
write great code.

10.6  For More Information
Hennessy, John L., and David A. Patterson. Computer Architecture:

A Quantitative Approach. 5th ed. Waltham, MA: Elsevier, 2012.

Hyde, Randall. The Art of Assembly Language. 2nd ed. San Francisco:
No Starch Press, 2010.

Intel. “Intel® 64 and IA-32 Architectures Software Developer Manuals.”
Last updated November 11, 2019. https://software.intel.com/en-us/articles​
/intel-sdm/.

https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm

This chapter discusses memory hierarchy—
the different types and performance levels

of memory found in computer systems.
Although programmers often treat all forms

of memory as though they are equivalent, using mem-
ory improperly can have a negative impact on perfor-
mance. In this chapter you’ll see how to make the best
use of the memory hierarchy within your programs.

11.1  The Memory Hierarchy
Most modern programs benefit by having a large amount of very fast mem-
ory. Unfortunately, as a memory device gets larger, it tends to be slower.
For example, cache memories are very fast, but they are also small and
expensive. Main memory is inexpensive and large, but it is slow, requiring

11
M E M O R Y A R C H I T E C T U R E

A N D O R G A N I Z A T I O N

320 Chapter 11

wait states. The memory hierarchy provides a way to compare the cost and
performance of different types of memory. Figure 11-1 shows one variant of
the memory hierarchy.

Registers

Level-one cache

Level-two cache

Main memory

NUMA

Virtual memory

Near-line storage

Offline storage

Hard copy

File storage

Network storage

Increasing
cost,
increasing
speed,
decreasing
size

Decreasing
cost,
decreasing
speed,
increasing
size

Figure 11-1: The memory hierarchy

At the top level of the memory hierarchy are the CPU’s general-purpose
registers. Registers provide the fastest access to data possible on the CPU. The
register file is also the smallest memory object in the hierarchy (for example,
the 32-bit 80x86 has just eight general-purpose registers, and the x86-64 vari-
ants have up to 16 general-purpose registers). Because it is impossible to add
more registers to a CPU, they are also the most expensive memory locations.
Even if we count the FPU, MMX/AltiVec/Neon, SSE/SIMD, AVX/2/-512,
and other CPU registers in this portion of the memory hierarchy, it does not
change the fact that CPUs have a very limited number of registers, and the
cost per byte of register memory is quite high.

Working our way down, the level-one (L1) cache system is the next high-
est performance subsystem in the memory hierarchy. As with registers,
the CPU manufacturer usually provides the L1 cache on the chip, and you
cannot expand it. Its size is usually small, typically between 4KB and 32KB,
though this is much larger than the register memory available on the CPU
chip. Although the L1 cache size is fixed on the CPU, the cost per cache
byte is much lower than the cost per register byte, because the cache con-
tains more storage than is available in all the registers combined, and the
system designer’s cost for both memory types equals the price of the CPU.

Level-two (L2) cache is present on some CPUs, but not all. For example,
Intel i3, i5, i7, and i9 CPUs include an L2 cache as part of their package, but
some of Intel’s older Celeron chips do not. The L2 cache is generally much

Memory Architecture and Organization 321

larger than the L1 cache (for example, 256KB to 1MB as compared with
4KB to 32KB). On CPUs with a built-in L2 cache, the cache is not expand-
able. It still costs less than the L1 cache, because we amortize the cost of the
CPU across all the bytes in the two caches, and the L2 cache is larger.

Level-three (L3) cache is present on all but the oldest Intel processors. The
L3 cache is larger still than the L2 cache (typically 8MB on later Intel chips).

The main-memory subsystem comes below the L3 (or L2, if there is no L3)
cache system in the memory hierarchy. Main memory is the general-purpose,
relatively low-cost memory—typically DRAM or something similarly inexpen-
sive—found in most computer systems. However, there are many differences
in main-memory technology that result in variations in speed. The main-
memory types include standard DRAM, synchronous DRAM (SDRAM),
double data rate DRAM (DDRAM), DDR3, DDR4, and so on. Generally, you
won’t find a mixture of these technologies in the same computer system.

Below main memory is the NUMA memory subsystem. NUMA, which
stands for Non-Uniform Memory Access, is a bit of a misnomer. The term
implies that different types of memory have different access times, which
describes the entire memory hierarchy; in Figure 11-1, however, it refers
to blocks of memory that are electronically similar to main memory but,
for one reason or another, operate significantly slower. A good example
of NUMA is the memory on a video (or graphics) card. Another example
is flash memory, which has significantly slower access and transfer times
than standard semiconductor RAM. Other peripheral devices that provide
a block of memory to be shared between the CPU and the peripheral usu-
ally have slow access times as well.

Most modern computer systems implement a virtual memory scheme that
simulates main memory using a mass storage disk drive. A virtual memory
subsystem is responsible for transparently copying data between the disk
and main memory as programs need it. While disks are significantly slower
than main memory, the cost per bit is also three orders of magnitude lower
for disks. Therefore, it’s far less expensive to keep data on magnetic storage
or on a solid-state drive (SSD) than in main memory.

File storage memory also uses disk media to store program data. However,
whereas the virtual memory subsystem is responsible for transferring data
between disk (or SSD) and main memory as programs require, it is the pro-
gram’s responsibility to store and retrieve file storage data. In many instances,
it’s a bit slower to use file storage memory than it is to use virtual memory,
which is why file storage memory is lower in the memory hierarchy.1

Next comes network storage. At this level in the memory hierarchy, pro-
grams keep data on a different memory system that connects to the com-
puter system via a network. Network storage can be virtual memory, file
storage memory, or distributed shared memory (DSM), where processes run-
ning on different computer systems share data stored in a common block of
memory and communicate changes to that block across the network.

1. Note, however, that in some degenerate cases virtual memory can be much slower than
file access.

322 Chapter 11

Virtual memory, file storage, and network storage are examples of
online memory subsystems. Memory access within these memory subsystems
is slower than accessing main memory. However, when a program requests
data from one of these three online memory subsystems, the memory device
will respond to the request as quickly as its hardware allows. This is not true
for the remaining levels in the memory hierarchy.

The near-line and offline storage subsystems may not be ready to respond
immediately to a program’s request for data. An offline storage system
keeps its data in electronic form (usually magnetic or optical) but on stor-
age media that are not necessarily connected to the computer system that
needs the data. Examples of offline storage include magnetic tapes, unat-
tached external disk drives, disk cartridges, optical disks, USB memory
sticks, SD cards, and floppy diskettes. When a program needs to access data
stored offline, it must stop and wait for someone or something to mount the
appropriate media on the computer system. This delay can be quite long
(perhaps the computer operator decided to take a coffee break?).

Near-line storage uses the same types of media as offline storage, but
rather than requiring an external source to mount the media before its
data is available for access, the near-line storage system holds the media in
a special robotic jukebox device that can automatically mount the desired
media when a program requests it.

Hardcopy storage is simply a printout, in one form or another, of data.
If a program requests some data, and that data exists only in hardcopy
form, someone will have to manually enter the data into the computer.
Paper or other hardcopy media is probably the least expensive form of
memory, at least for certain data types.

11.2  How the Memory Hierarchy Operates
The whole point of the memory hierarchy is to allow reasonably fast access
to a large amount of memory. If only a little memory were necessary, we’d
use fast static RAM (the circuitry that cache memory uses) for everything.
If speed wasn’t an issue, we’d use virtual memory for everything. The
memory hierarchy enables us to take advantage of the principles of spatial
locality of reference and temporality of reference to move frequently referenced
data into fast memory and leave rarely referenced data in slower memory.
Unfortunately, during the course of a program’s execution, the sets of oft-
used and seldom-used data change. We can’t simply distribute our data
throughout the various levels of the memory hierarchy when the program
starts and then leave the data alone as the program executes. Instead, the
different memory subsystems need to be able to accommodate changes in
spatial locality or temporality of reference during the program’s execution
by dynamically moving data between subsystems.

Moving data between the registers and memory is strictly a program
function. The program loads data into registers and stores register data
into memory using machine instructions like mov. It is the programmer’s

Memory Architecture and Organization 323

or compiler’s responsibility to keep heavily referenced data in the registers
as long as possible; the CPU will not automatically place data in general-
purpose registers in order to achieve higher performance.

Programs explicitly control access to registers, main memory, and
those memory-hierarchy subsystems only at the file storage level and below.
Programs are largely unaware of the memory hierarchy between the regis-
ter level and main memory. In particular, cache access and virtual memory
operations are generally transparent to the program; that is, access to these
levels of the memory hierarchy usually occurs without any intervention on
a program’s part. Programs simply access main memory, and the hardware
and operating system take care of the rest.

Of course, if a program always accesses main memory, it will run slowly,
because modern DRAM main-memory subsystems are much slower than
the CPU. The job of the cache memory subsystems and of the CPU’s cache
controller is to move data between main memory and the L1, L2, and L3
caches so that the CPU can quickly access oft-requested data. Likewise, it
is the virtual memory subsystem’s responsibility to move oft-requested data
from hard disk to main memory (if even faster access is needed, the cach-
ing subsystem will then move the data from main memory to cache).

With few exceptions, most memory subsystem accesses take place trans-
parently between one level of the memory hierarchy and the level immedi-
ately below or above it. For example, the CPU rarely accesses main memory
directly. Instead, when the CPU requests data from memory, the L1 cache
subsystem takes over. If the requested data is in the cache, the L1 cache sub-
system returns the data to the CPU, and that concludes the memory access.
If the requested data isn’t present in the L1 cache, the L1 cache subsystem
passes the request down to the L2 cache subsystem. If the L2 cache subsys-
tem has the data, it returns this data to the L1 cache, which then returns
the data to the CPU. Requests for the same data in the near future will be
fulfilled by the L1 cache rather than the L2 cache, because the L1 cache
now has a copy of the data. After the L2 cache, the L3 cache kicks in.

If none of the L1, L2, or L3 cache subsystems have a copy of the data,
the request goes to main memory. If the data is found in main memory, the
main-memory subsystem passes it to the L3 cache, which then passes it
to the L2 cache, which then passes it to the L1 cache, which then passes
it to the CPU. Once again, the data is now in the L1 cache, so any requests
for this data in the near future will be fulfilled by the L1 cache.

If the data is not present in main memory but exists in virtual memory
on some storage device, the operating system takes over, reads the data
from disk or some other device (such as a network storage server), and
passes the data to the main-memory subsystem. Main memory then passes
the data through the caches to the CPU as previously described.

Because of spatial locality and temporality, the largest percentage of
memory accesses takes place in the L1 cache subsystem. The next largest
percentage of accesses takes place in the L2 cache subsystem. After that,
the L3 cache system handles most accesses. The most infrequent accesses
take place in virtual memory.

324 Chapter 11

11.3  Relative Performance of Memory Subsystems
Looking again at Figure 11-1, notice that the speed of the various memory
hierarchy levels increases as you go up. Exactly how much faster is each suc-
cessive level in the memory hierarchy? The short answer is that the speed
gradient isn’t uniform. The speed difference between any two contiguous
levels ranges from “almost no difference” to “four orders of magnitude.”

Registers are, unquestionably, the best place to store data you need to
access quickly. Accessing a register never requires any extra time, and most
machine instructions that access data can access register data. Furthermore,
instructions that access memory often require extra bytes (displacement
bytes) as part of the instruction encoding. This makes instructions longer
and, often, slower.

Intel’s instruction timing tables for the 80x86 claim that an instruction
like mov(someVar, ecx); should run as fast as an instruction like mov(ebx, ecx);.
However, if you read the fine print, you’ll find that Intel makes this claim
based on several assumptions about the former instruction. First, it assumes
that someVar’s value is present in the L1 cache memory. If it is not, the cache
controller has to look in the L2 cache, in the L3 cache, in main memory, or,
worse, on disk in the virtual memory subsystem. All of a sudden, an instruc-
tion that should execute in 0.25 nanoseconds on a 4 GHz processor (that
is, in one clock cycle) requires several milliseconds to execute. That’s a dif-
ference of over six orders of magnitude. It’s true that future accesses of this
variable will take place in just one clock cycle because it will subsequently be
stored in the L1 cache. But even if you access someVar’s value one million times
while it’s still in the cache, the average time of each access will still be about
two cycles because of how long it takes to access someVar the very first time.

Granted, the likelihood that some variable will be located on disk in
the virtual memory subsystem is quite low. However, there’s still a difference
in performance of a couple orders of magnitude between the L1 cache sub-
system and the main-memory subsystem. Therefore, if the program has to
retrieve the data from main memory, 999 memory accesses later, you’re still
paying an average cost of two clock cycles to access data that Intel’s docu-
mentation claims should take one cycle.

The difference in speed between the L1, L2, and L3 cache systems isn’t
so dramatic unless the secondary or tertiary cache is not packaged together
on the CPU. On a 4 GHz processor, the L1 cache must respond within 0.25
nanoseconds if the cache operates with zero wait states (some processors
actually introduce wait states in L1 cache accesses, but CPU designers try
to avoid this). Accessing data in the L2 cache is always slower than in the
L1 cache, and always includes the equivalent of at least one wait state, and
probably more.

There are several reasons why L2 cache accesses are slower than L1
accesses. First, it takes the CPU time to determine that the data it’s seek-
ing is not in the L1 cache. By the time it does that, the memory access cycle
is nearly complete, and there’s no time to access the data in the L2 cache.

Memory Architecture and Organization 325

Secondly, the circuitry of the L2 cache may be slower than the circuitry
of the L1 cache in order to make the L2 cache less expensive. Third, L2
caches are usually 16 to 64 times larger than L1 caches, and larger memory
subsystems tend to be slower than smaller ones. All this amounts to addi-
tional wait states for accessing data in the L2 cache. As noted earlier, the L2
cache can be as much as one order of magnitude slower than the L1 cache.
The same situation occurs when you have to access data in the L3 cache.

The L1, L2, and L3 caches also differ in the amount of data the sys-
tem fetches when there is a cache miss (see Chapter 6). When the CPU
fetches data from or writes data to the L1 cache, it generally fetches or
writes only the data requested. If you execute a mov(al, memory); instruction,
the CPU writes only a single byte to the cache. Likewise, if you execute
the mov(mem32, eax); instruction, the CPU reads exactly 32 bits from the L1
cache. However, access to memory subsystems below the L1 cache does not
work in small chunks like this. Usually, memory subsystems move blocks of
data, or cache lines, whenever accessing lower levels of the memory hierar-
chy. For example, if you execute the mov(mem32, eax); instruction, and mem32’s
value is not in the L1 cache, the cache controller doesn’t simply read mem32’s
32 bits from the L2 cache, assuming that it’s present there. Instead, the
cache controller will actually read a whole block of bytes (generally 16, 32,
or 64 bytes, depending on the particular processor) from the L2 cache.
The hope is that the program exhibits spatial locality so that reading a
block of bytes will speed up future accesses to adjacent objects in memory.
Unfortunately, the mov(mem32, eax); instruction doesn’t complete until the
L1 cache reads the entire cache line from the L2 cache. This excess time is
known as latency. If the program does not access memory objects adjacent
to mem32 in the future, this latency is lost time.

A similar performance gulf separates the L2 and L3 caches and L3 and
main memory. Main memory is typically one order of magnitude slower
than the L3 cache; L3 accesses are much slower than L2 access. To speed
up access to adjacent memory objects, the L3 cache reads data from main
memory in cache lines. Likewise, L2 cache reads cache lines from L3.

Standard DRAM is two to three orders of magnitude faster than SSD
storage (which is an order of magnitude faster than hard drives, which is
why hard disks often have their own DRAM-based caches). To overcome
this, there’s usually a difference of two to three orders of magnitude
in size between the L3 cache and the main memory so that the differ-
ence in speed between disk and main memory matches that between the
main memory and the L3 cache. (Balancing performance characteristics
in the memory hierarchy is a goal to strive for in order to effectively use
the different types of memory.)

We won’t consider the performance of the other memory-hierarchy
subsystems in this chapter, as they are more or less under programmer con-
trol. Because their access is not automatic, very little can be said about how
frequently a program will access them. However, in Chapter 12 we’ll look at
some considerations for these storage devices.

326 Chapter 11

11.4  Cache Architecture
Up to this point, we have treated the cache as a magical place that auto-
matically stores data when we need it, perhaps fetching new data as the
CPU requires it. But how exactly does the cache do this? And what happens
when it is full and the CPU is requesting additional data that’s not there? In
this section, we’ll look at the internal cache organization and try to answer
these two questions, along with a few others.

Programs access only a small amount of data at a given time, and a cache
that is sized accordingly will improve their performance. Unfortunately, the
data that programs want rarely sits in contiguous memory locations—it’s
usually spread out all over the address space. Therefore, cache design has
to account for the fact that the cache must map data objects at widely vary-
ing addresses in memory.

As noted in the previous section, cache memory is not organized in a
single group of bytes. Instead, it’s usually organized in blocks of cache lines,
with each line containing some number of bytes (typically a small power of
2 like 16, 32, or 64), as shown in Figure 11-2.

 8KB (512 cache lines)

An 8KB cache is often organized as
a set of 512 lines of 16 bytes each. 16-byte

cache line

...

Figure 11-2: Possible organization of an 8KB cache

We can attach a different noncontiguous address to each of the cache
lines. Cache line 0 might correspond to addresses $10000 through $1000F, and
cache line 1 might correspond to addresses $21400 through $2140F. Generally,
if a cache line is n bytes long, it will hold n bytes from main memory that fall
on an n-byte boundary. In the example in Figure 11-2, the cache lines are
16 bytes long, so a cache line holds blocks of 16 bytes whose addresses fall
on 16-byte boundaries in main memory (in other words, the LO 4 bits of
the address of the first byte in the cache line are always 0).

When the cache controller reads a cache line from a lower level in the
memory hierarchy, where does the data go in the cache? The answer is
determined by the caching scheme in use. There are three different cach-
ing schemes: direct-mapped cache, fully associative cache, and n-way set
associative cache.

11.4.1  Direct-Mapped Cache
In a direct-mapped cache (also known as the one-way set associative cache), a par-
ticular block of main memory is always loaded into—mapped to—the exact

Memory Architecture and Organization 327

same cache line, determined by a small number of bits in the data block’s
memory address. Figure 11-3 shows how a cache controller could select the
appropriate cache line for an 8KB cache with 512 16‑byte cache lines and a
32-bit main-memory address.

034121331

An 8KB cache that
is organized as a
set of 512 lines of
16 bytes each

Nine bits (bits 4..12)
of the physical memory
address provide an
index to select one
of the 512 different
cache lines in the cache.

32-bit physical
memory address

...

Figure 11-3: Selecting a cache line in a direct-mapped cache

A cache with 512 cache lines requires 9 bits to select one of the cache
lines (29 = 512). In this example, bits 4 through 12 of the address deter-
mine which cache line to use (assuming we number the cache lines from
0 to 511), while bits 0 through 3 determine the particular byte within the
16‑byte cache line.

The direct-mapped caching scheme is very easy to implement.
Extracting 9 (or some other number of) bits from the memory address and
using the result as an index into the array of cache lines is trivial and fast,
though this design may not make effective use of all the cache memory.

For example, the caching scheme in Figure 11-3 maps address 0
to cache line 0. It also maps addresses $2000 (8KB), $4000 (16KB), $6000
(24KB), $8000 (32KB), and every other address that is a multiple of 8 kilo-
bytes to cache line 0. This means that if a program is constantly accessing
data at addresses that are multiples of 8KB and not accessing any other
locations, the system will use only cache line 0, leaving all the other cache
lines unused. In this extreme case, the cache is effectively limited to the size
of one cache line, and each time the CPU requests data at an address that
is mapped to, but not present in, cache line 0, it has to go down to a lower
level in the memory hierarchy to access that data.

11.4.2  Fully Associative Cache
In a fully associative cache subsystem, the cache controller can place a block
of bytes in any one of the cache lines present in the cache memory. While
this is the most flexible cache system, the extra circuitry to achieve full asso-
ciativity is expensive and, worse, can slow down the memory subsystem. Most
L1 and L2 caches are not fully associative for this reason.

328 Chapter 11

11.4.3  n-Way Set Associative Cache
If a fully associative cache is too complex, too slow, and too expensive to
implement, but a direct-mapped cache is too inefficient, an n-way set asso-
ciative cache is a compromise between the two. In an n-way set associative
cache, the cache is broken up into sets of n cache lines. The CPU deter-
mines the particular set to use based on some subset of the memory address
bits, just as in the direct-mapping scheme, and the cache controller uses a
fully associative mapping algorithm to determine which one of the n cache
lines within the set to use.

For example, an 8KB two-way set associative cache subsystem with
16-byte cache lines organizes the cache into 256 cache-line sets with two
cache lines each. Eight bits from the memory address determine which
one of these 256 different sets will contain the data. Once the cache-line
set is determined, the cache controller maps the block of bytes to one of
the two cache lines within the set (see Figure 11-4). This means two dif-
ferent memory addresses located on 8KB boundaries (addresses having
the same value in bits 4 through 11) can both appear simultaneously in the
cache. However, a conflict will occur if you attempt to access a third mem-
ory location at an address that is an even multiple of 8KB.

034111231 32-bit physical
memory address

A cache-line
set consisting
of two cache
lines. Each set
is given an
index between
0 and 255.

A 512KB two-way set associative cache
containing 256 sets of two cache lines each

The cache
controller
chooses one
of the two
different cache
lines within
the set.

Eight bits (bits 4..11)
provide an index to
select one of the 256
different sets of cache
lines in the cache.

Figure 11-4: A two-way set associative cache

A four-way set associative cache puts four associative cache lines in
each cache-line set. In an 8KB cache like the one in Figure 11-4, a four-way
set associative caching scheme would have 128 cache-line sets with four
cache lines each. This would allow the cache to maintain up to four differ-
ent blocks of data without a conflict, each of which would map to the same
cache line in a direct-mapped cache.

Memory Architecture and Organization 329

A two- or four-way set associative cache is much better than a direct-
mapped cache and considerably less complex than a fully associative cache.
The more cache lines we have in each cache-line set, the closer we come
to creating a fully associative cache, with all the attendant problems of com-
plexity and speed. Most cache designs are direct-mapped, two-way set asso-
ciative, or four-way set associative. The various members of the 80x86 family
make use of all three.

M ATCHING T HE C ACHING SCHE ME TO T HE ACCE SS T Y PE

Despite its downsides, the direct-mapped cache is, in fact, very effective for
data that you access sequentially rather than randomly. Because the CPU typi-
cally executes machine instructions sequentially, instruction bytes can be stored
very effectively in a direct-mapped cache. However, programs tend to access
data more randomly than they access code, so data is better stored in a two-
way or four-way set associative cache.

Because of these different access patterns, many CPU designers use
separate caches for data and machine instruction bytes—for example, an 8KB
data cache and an 8KB instruction cache rather than a single 16KB unified
cache. The advantage of this approach is that each cache can use the cach-
ing scheme that’s most appropriate for the particular values it will store. The
drawback is that the two caches are now each half the size of a unified cache,
which may cause more cache misses than would occur with a unified cache.
The choice of an appropriate cache organization is a difficult one, beyond the
scope of this book, and can be made only after you’ve analyzed many pro-
grams running on the target processor.

11.4.4  Cache-Line Replacement Policies
Thus far, we’ve answered the question, “Where do we put a block of data in
the cache?” Now we turn to the equally important question, “What happens
if a cache line isn’t available when we want to put a block of data in it?”

For a direct-mapped cache architecture, the cache controller simply
replaces whatever data was formerly in the cache line with the new data.
Any subsequent reference to the old data will result in a cache miss, and the
cache controller will have to restore that old data to the cache by replacing
whatever data is in that line.

For a two-way set associative cache, the replacement algorithm is a bit
more complex. As you’ve seen, whenever the CPU references a memory
location, the cache controller uses some subset of the address’s bits to deter-
mine the cache-line set that should be used to store the data. Then, using
some fancy circuitry, the cache controller determines whether the data is
already present in one of the two cache lines in the destination set. If the
data isn’t there, the CPU has to retrieve it from memory, and the controller
has to pick one of the two lines to use. If either or both of the cache lines

330 Chapter 11

are currently unused, the controller picks an unused line. However, if both
cache lines are currently in use, the controller must pick one of them and
replace its data with the new data.

The controller cannot predict the cache line whose data will be refer-
enced first and replace the other cache line, but it can use the principle of
temporality: if a memory location has been referenced recently, it’s likely
to be referenced again in the very near future. This implies the following
corollary: if a memory location hasn’t been accessed in a while, it’s likely
to be a long time before the CPU accesses it again. Therefore, many cache
controllers use the least recently used (LRU) algorithm.

An LRU policy is easy to implement in a two-way set associative cache
system, using a single bit for each set of two cache lines. Whenever the CPU
accesses one of the two cache lines this bit is set to 0, and whenever the
CPU accesses the other cache line, this bit is set to 1. Then, when a replace-
ment is necessary, the cache controller replaces the LRU cache line, indi-
cated by the inverse of this bit.

For four-way (and greater) set associative caches, maintaining the LRU
information is a bit more difficult, which is one reason the circuitry for
such caches is more complex. Because of the complications LRU might
introduce, other replacement policies are sometimes used instead. Two of
them, first-in, first-out (FIFO) and random, are easier to implement than LRU,
but they have their own problems. A full discussion of their pros and cons is
beyond the scope of this book, but you can find more information in a text
on computer architecture or operating systems.

11.4.5  Cache Write Policies
What happens when the CPU writes data to memory? The simple answer,
and the one that results in the quickest operation, is that the CPU writes
the data to the cache. However, what happens when the cache-line data is
subsequently replaced by data that is read from memory? If the modified
contents of the cache line are not written to main memory, they will be lost.
The next time the CPU attempts to access that data, it will reload the cache
line with the old data.

Clearly, any data written to the cache must ultimately be written to
main memory as well. Caches use two common write policies: write-through
and write-back.

The write-through policy states that any time data is written to the
cache, the cache immediately turns around and writes a copy of that cache
line to main memory. The CPU does not have to halt while the cache con-
troller writes the data from cache to main memory. So, unless the CPU
needs to access main memory shortly after the write occurs, this operation
takes place in parallel with the program’s execution. Because the write-
through policy updates main memory with the new value as soon as possi-
ble, it is a better policy to use when two different CPUs are communicating
through shared memory.

Still, a write operation takes some time, during which it’s likely that
a CPU will want to access main memory, so this policy may not be a

Memory Architecture and Organization 331

high-performance solution. Worse, suppose the CPU reads from and writes
to the memory location several times in succession. With a write-through
policy in place, the CPU will saturate the bus with cache-line writes, and
this will significantly hamper the program’s performance.

With the write-back policy, writes to the cache are not immediately writ-
ten to main memory; instead, the cache controller updates main memory
later. This scheme tends to be higher performance, because several writes
to the same cache line within a short time period won’t generate multiple
writes to main memory.

To determine which cache lines must be written back to main memory,
the cache controller usually maintains a dirty bit within each one. The cache
system sets this bit whenever it writes data to the cache. At some later time,
the cache controller checks the dirty bit to determine if it must write the
cache line to memory. For example, whenever the cache controller replaces
a cache line with other data from memory, it first checks the dirty bit, and
if that bit is set, the controller writes that cache line to memory before
going through with the cache-line replacement. Note that this increases
the latency time during a cache-line replacement. This latency could be
reduced if the cache controller were able to write dirty cache lines to main
memory while no other bus access was occurring. Some systems provide this
functionality, and others do not for economic reasons.

11.4.6  Cache Use and Software
A cache subsystem is not a panacea for slow memory access, and can in fact
actually hurt an application’s performance. In order for a cache system to
be effective, software must be written with the cache behavior in mind.
Particularly, good software must exhibit either spatial or temporal locality
of reference—which the software designer accomplishes by placing oft-
used variables adjacent in memory so they tend to fall into the same cache
lines—and avoid data structures and access patterns that force the cache to
frequently replace cache lines.

Suppose that an application accesses data at several different addresses
that the cache controller would map to the same cache line. With each access,
the cache controller must read in a new cache line (possibly flushing the old
one back to memory if it is dirty). As a result, each memory access incurs the
latency cost of retrieving a cache line from main memory. This degenerate
case, known as thrashing, can slow down the program by one to two orders of
magnitude, depending on the speed of main memory and the size of a cache
line. We’ll take another look at thrashing a little later in this chapter.

A benefit of the cache subsystem on modern 80x86 CPUs is that it
automatically handles many misaligned data references. Remember, there’s
a performance penalty for accessing words or double-word objects at an
address that is not an even multiple of that object’s size. By providing some
fancy logic, Intel’s designers have eliminated this penalty as long as the
data object is located completely within a cache line. However, if the object
crosses a cache line, the penalty still applies.

332 Chapter 11

11.5  NUMA and Peripheral Devices
Although most of the RAM in a system is based on high-speed DRAM
interfaced directly with the processor’s bus, not all memory is connected
to the CPU this way. Sometimes a large block of RAM is part of a peripheral
device—for example, a video card, network interface card, or USB control-
ler—and you communicate with that device by writing data to its RAM.
Unfortunately, the access time to the RAM on these peripheral devices is
often much slower than the access time to main memory. In this section,
we’ll use the video card as an example, although NUMA performance
applies to other devices and memory technologies as well.

A typical video card interfaces with a CPU through a Peripheral Component
Interconnect Express (PCI-e) bus inside the computer system. Though 16-lane
PCI-e buses are fast, memory access is still much faster. Game programmers
long ago discovered that manipulating a copy of the screen data in main
memory and writing that data to the video card RAM only periodically
(typically once every 1/60 of a second during video retrace, to avoid flicker)
is much faster than writing directly to the video card every time you want to
make a change.

Caches and the virtual memory subsystem operate transparently (that
is, applications are unaware of the underlying operations taking place), but
NUMA memory does not, so programs that write to NUMA devices must
minimize the number of accesses whenever possible (for example, by using
an offscreen bitmap to hold temporary results). If you’re actually storing
and retrieving data on a NUMA device, like a flash memory card, you must
explicitly cache the data yourself.

11.6  Virtual Memory, Memory Protection, and Paging
In a modern operating system such as Android, iOS, Linux, macOS, or
Windows, it is very common to have several different programs running
concurrently in memory. This presents several problems:

•	 How do you keep the programs from interfering with one another’s
memory?

•	 If two programs both expect to load a value into memory at address
$1000, how can you load both values and execute both programs at the
same time?

•	 What happens if the computer has 64GB of memory, and you decide
to load and execute three different applications, two of which require
32GB and one that requires 16GB (not to mention the memory that the
OS requires for its own purposes)?

The answers to all these questions lie in the virtual memory subsystem
that modern processors support.

Memory Architecture and Organization 333

Virtual memory on CPUs such as the 80x86 gives each process its own
32‑bit address space.2 This means that address $1000 in one program is phys-
ically different from address $1000 in a separate program. The CPU achieves
this sleight of hand by mapping the virtual addresses used by programs to dif-
ferent physical addresses in actual memory. The virtual address and the physi-
cal address don’t have to be the same, and usually they aren’t. For example,
program 1’s virtual address $1000 might actually correspond to physical
address $215000, while program 2’s virtual address $1000 might correspond to
physical memory address $300000. The CPU accomplishes this using paging.

The concept behind paging is quite simple. First, you break up memory
into blocks of bytes called pages. A page in main memory is comparable to
a cache line in a cache subsystem, although pages are usually much larger
than cache lines. For example, the 32-bit 80x86 CPUs use a page size of
4,096 bytes; 64-bit variants allow larger page sizes.

For each page, you use a lookup table to map the HO bits of a virtual
address to the HO bits of the physical address in memory, and you use the
LO bits of the virtual address as an index into that page. For example, with
a 4,096-byte page, you’d use the LO 12 bits of the virtual address as the
offset (0..4095) within the page, and the upper 20 bits as an index into a
lookup table that returns the actual upper 20 bits of the physical address
(see Figure 11-5).

0111231

32-bit virtual address

...

...

32-bit physical address

11 0

Bits 12..31
form an index
into the page
table. The entry
in the page
table provides
bits 12..31
of the physical
address.

Bits 0..11 are copied
directly to bits 0..11
in the physical address.

Page
table

Figure 11-5: Translating a virtual address to a physical address

2. On newer 64-bit processors, of course, each process gets its own 64-bit address space.

334 Chapter 11

A 20-bit index into the page table would require over one million entries
in the page table. If each entry is a 32-bit value, the page table would be
4MB long—larger than many of the programs that would run in memory!
However, by using a multilevel page table, you can easily create a page table
for most small programs that is only 8KB long. The details are unimport-
ant here. Just rest assured that you don’t need a 4MB page table unless your
program consumes the entire 4GB address space.

If you study Figure 11-5 for a few moments, you’ll probably discover one
problem with using a page table—it requires two separate memory accesses
in order to retrieve the data stored at a single physical address in memory:
one to fetch a value from the page table, and one to read from or write to
the desired memory location. To prevent cluttering the data or instruction
cache with page-table entries, which increases the number of cache misses
for data and instruction requests, the page table uses its own cache, known
as the translation lookaside buffer (TLB). This cache typically has 64 to 512
entries on modern Intel processors—enough to handle a fair amount of
memory without a miss. Because a program typically works with less data
than this at any given time, most page-table accesses come from the cache
rather than main memory.

As noted, each entry in the page table contains 32 bits, even though the
system really only needs 20 bits to remap each virtual address to a physical
address. Intel, on the 80x86, uses some of the remaining 12 bits to provide
memory protection information:

•	 One bit marks whether a page is read/write or read-only.

•	 One bit determines whether you can execute code on that page.

•	 A number of bits determine whether the application can access that
page or if only the operating system can do so.

•	 A number of bits determine if the CPU has written to the page but
hasn’t yet written to the physical memory address corresponding to it
(that is, whether the page is “dirty” or not, and whether the CPU has
accessed the page recently).

•	 One bit determines whether the page is actually present in physical
memory or if it exists on secondary storage somewhere.

Your applications do not have access to the page table (reading and
writing the page table is the operating system’s responsibility), so they can-
not modify these bits. However, some operating systems provide functions
you can call if you want to change certain bits in the page table (for exam-
ple, Windows allows you to set a page to read-only).

Beyond remapping memory so multiple programs can coexist in main
memory, paging also provides a mechanism whereby the operating system
can move infrequently used pages to secondary storage. Locality of refer-
ence applies not only to cache lines but to pages in main memory as well. At
any given time, a program will access only a small percentage of the pages
in main memory that contain data and instruction bytes; this set of pages is
known as the working set. Although the working set varies slowly over time,

Memory Architecture and Organization 335

for small periods of time it remains constant. Therefore, there’s little
need for the remainder of the program to consume valuable main-memory
storage that some other process could be using. If the operating system can
save the currently unused pages to disk, the main memory they would con-
sume is available for other programs that need it.

Of course, the problem with moving data out of main memory is that
eventually the program might actually need it. If you attempt to access a
page of memory, and the page-table bit tells the memory management unit
(MMU) that the page isn’t present in main memory, the CPU interrupts the
program and passes control to the operating system. The operating system
reads the corresponding page of data from the disk drive and copies it to
some available page in main memory. This process is nearly identical to the
process used by a fully associative cache subsystem, except that accessing
the disk is much slower than accessing main memory. In fact, you can think
of main memory as a fully associative write-back cache with 4,096-byte cache
lines, which caches the data that is stored on the disk drive. Placement and
replacement policies and other behaviors are very similar for caches and
main memory.

N O T E 	 For more information on how the operating system swaps pages between main memory
and secondary storage, consult a textbook on operating system design.

Because each program has a separate page table, and programs them-
selves don’t have access to the page tables, programs cannot interfere with
one another’s operation. That is, a program cannot change its page tables
in order to access data found in another process’s address space. If your pro-
gram crashes by overwriting itself, it cannot crash other programs at the
same time. This is a big benefit of a paging memory system.

If two programs want to cooperate and share data, they can do so by
placing that data in a memory area that they share. All they have to do is
tell the operating system that they want to share some pages of memory.
The operating system returns to each process a pointer to some segment
of memory whose physical address is the same for both processes. Under
Windows, you can achieve this by using memory-mapped files; see the operat-
ing system documentation for more details. macOS and Linux also support
memory-mapped files as well as some special shared-memory operations;
again, see the OS documentation for more details.

Although this discussion applies specifically to the 80x86 CPU, multi-
level paging systems are common on other CPUs as well. Page sizes tend to
vary from about 1KB to 4MB, depending on the CPU. For CPUs that sup-
port an address space larger than 4GB, some CPUs use an inverted page table
or a three-level page table. Although the details are beyond the scope of this
chapter, the basic principle remains the same: the CPU moves data between
main memory and the disk in order to keep oft-accessed data in main mem-
ory as much of the time as possible. These other page-table schemes are
good at reducing the size of the page table when an application uses only
a fraction of the available memory space.

336 Chapter 11

11.7  Writing Software That Is Cognizant of the
Memory Hierarchy

Software that is aware of memory performance behavior can run much
faster than software that is not. Although a system’s caching and paging
facilities may perform reasonably well for typical programs, it’s easy to
write software that would run faster even if the caching system were not
present. The best software is written to take maximum advantage of the
memory hierarchy.

T HR A SHING

Thrashing is a degenerate case that can cause the overall system performance
to drop to the speed of a lower level in the memory hierarchy, like main mem-
ory or, worse yet, the disk drive. There are two primary causes of thrashing:

•	 Insufficient memory at a given level in the memory hierarchy to properly
contain the programs’ working sets of cache lines or pages

•	 A program that does not exhibit locality of reference

If there is insufficient memory to hold a working set of pages or cache
lines, the memory system will constantly be replacing one block of data in the
cache or main memory with another block of data from main memory or the
disk. As a result, the system winds up operating at the speed of the slower
memory in the memory hierarchy. A common example of thrashing occurs with
virtual memory. A user may have several applications running at the same
time, and the sum total of the memory required by these programs’ working
sets is greater than all of the physical memory available to the programs. As a
result, when the operating system switches between the applications it has to
copy each application’s data, and possibly program instructions, to and from
disk. Because switching between programs is often much faster than retrieving
data from the disk, this slows the programs down tremendously.

As already discussed, if the program does not exhibit locality of reference
and the lower memory subsystems are not fully associative, thrashing can occur
even if there is free memory at the current level in the memory hierarchy. To
revisit our earlier example, suppose an 8KB L1 caching system uses a direct-
mapped cache with 512 16-byte cache lines. If a program references data
objects 8KB apart on every access, the system will have to replace the same
line in the cache over and over again with the data from main memory. This
occurs even though the other 511 cache lines are currently unused.

To reduce thrashing when insufficient memory is the problem, you can
simply add memory. If that’s not an option, you can try to run fewer processes
concurrently or modify your program so that it references less memory over a
given period. To reduce thrashing when locality of reference is the culprit, you
should restructure your program and its data structures so its memory refer-
ences are physically closer.

Memory Architecture and Organization 337

A classic example of a bad design is the following loop, which initializes
a two-dimensional array of integer values:

int array[256][256];
 . . .
 for(i=0; i<256; ++i)
 for(j=0; j<256; ++j)
 array[j][i] = i*j;

Believe it or not, that code runs much slower on a modern CPU than
the following sequence:

int array[256][256];
 . . .
 for(i=0; i<256; ++i)
 for(j=0; j<256; ++j)
 array[i][j] = i*j;

The only difference between the two code sequences is that the i and
j indices are swapped when accessing elements of the array. This minor
modification can be responsible for a one or two order of magnitude dif-
ference in their respective runtimes! To understand why, remember that
the C programming language uses row-major ordering for two-dimensional
arrays in memory. That means the second code sequence accesses sequen-
tial locations in memory, exhibiting spatial locality of reference. The first
code sequence, however, accesses array elements in the following order:

array[0][0]
array[1][0]
array[2][0]
array[3][0]
 . . .
array[254][0]
array[255][0]
array[0][1]
array[1][1]
array[2][1]
 . . .

If integers are 4 bytes each, then this sequence will access the double-
word values at offsets 0; 1,024; 2,048; 3,072; and so on, from the base
address of the array, which are distinctly not sequential. Most likely, this
code will load only n integers into an n-way set associative cache and then
immediately cause thrashing thereafter, as each subsequent array element
has to be copied from the cache into main memory to prevent that data
from being overwritten.

The second code sequence does not exhibit thrashing. Assuming
64-byte cache lines, the second code sequence will store 16 integer values
into the same cache line before having to load another cache line from
main memory, replacing an existing one. As a result, this second code
sequence spreads out the cost of retrieving the cache line from memory

338 Chapter 11

over 16 memory accesses rather than over a single access, as occurs with the
first code sequence.

In addition to accessing variables sequentially in memory, there are
several other variable declaration tricks you can use to maximize the per-
formance of the memory hierarchy. First, declare together all variables you
use within a common code sequence. In most languages, this will allocate
storage for the variables in physically adjacent memory locations, thus sup-
porting spatial locality as well as temporal locality. Second, use local (auto-
matic) variables, because most languages allocate local storage on the stack
and, as the system references the stack frequently, variables on the stack
tend to be in the cache. Third, declare your scalar variables together, and
separately from your array and record variables. Access to any one of several
adjacent scalar variables generally forces the system to load all of the adja-
cent objects into the cache.

In general, study the memory access patterns your program exhibits
and adjust your application accordingly. You can spend hours rewriting
your code in hand-optimized assembly language trying to achieve a 10
percent performance improvement, but if you instead modify the way your
program accesses memory, it’s not unheard of to see an order of magnitude
improvement in performance.

11.8  Runtime Memory Organization
Operating systems like macOS, Linux, or Windows put different types
of data into different sections (or segments) of main memory. Although it’s
possible to control the memory organization by running a linker and speci-
fying various parameters, by default Windows loads a typical program into
memory using the organization shown in Figure 11-6 (macOS and Linux
are similar, though they rearrange some of the sections).

High addresses

Stack

Heap

Code (program instructions)

Read-only data

Static variables

Constants (not user accessible)

Storage (uninitialized) variables

Reserved by OS (typically 128KB)Adrs = $0

Figure 11-6: Typical Windows runtime memory organization

Memory Architecture and Organization 339

The operating system reserves the lowest memory addresses, and your
application generally cannot access data (or execute instructions) at these
addresses. One reason the OS reserves this space is to help detect NULL
pointer references. Programmers often initialize a pointer with NULL (0) to
indicate that it is not valid. Should you attempt to access memory location
0 under such an OS, it will generate a general protection fault to indicate that
you’ve accessed a memory location that doesn’t contain valid data.

The remaining seven sections of memory hold different types of data
associated with your program:

•	 The code section holds the program’s machine instructions.

•	 The constant section contains compiler-generated read-only data.

•	 The read-only data section holds user-defined data that can only be
read, never written.

•	 The static section stores user-defined, initialized, static variables.

•	 The storage, or BSS, section holds user-defined uninitialized variables.

•	 The stack section maintains local variables and other temporary data.

•	 The heap section maintains dynamic variables.

N O T E 	 Often, a compiler will combine the code, constant, and read-only data sections
because they all contain read-only data.

Most of the time, a given application can live with the default layouts
chosen for these sections by the compiler and linker/loader. In some cases,
however, knowing the memory layout can help you develop shorter pro-
grams. For example, combining the code, constants, and read-only data
sections into a single read-only section can save padding space that the
compiler/linker might otherwise place between them. Although these sav-
ings are probably insignificant for large applications, they can have a big
impact on the size of a small program.

The following sections discuss each of these memory areas in detail.

11.8.1  Static and Dynamic Objects, Binding, and Lifetime
Before exploring the memory organization of a typical program, we need
to define a few terms: binding, lifetime, static, and dynamic.

Binding is the process of associating an attribute with an object. For
example, when you assign a value to a variable, the value is bound to that vari-
able at the point of the assignment. This bond remains until you bind some
other value to the variable (via another assignment operation). Likewise, if
you allocate memory for a variable while the program is running, the variable
is bound to the address at that point. They remain bound until you associate
a different address with the variable. Binding needn’t occur at runtime. For
example, values are bound to constant objects during compilation, and these
bonds cannot change while the program is running.

The lifetime of an attribute extends from the point when you first bind
that attribute to an object to the point when you break that bond, perhaps

340 Chapter 11

by binding a different attribute to the object. For example, the lifetime of a
variable is from the time you first associate memory with the variable to the
moment you deallocate that variable’s storage.

Static objects are those that have an attribute bound to them prior to
the application’s execution (usually during compilation or during the link-
ing phase, though it is possible to bind values even earlier). Constants are
good examples of static objects; they have the same value bound to them
throughout program execution. Global (program-level) variables in pro-
gramming languages like Pascal, C/C++, and Ada are also examples of
static objects in that they have the same address bound to them throughout
the program’s lifetime. The lifetime of a static object, therefore, extends
from the point at which the program first begins execution to the point
when the application terminates.

Associated with static binding is the notion of identifier scope—the sec-
tion of the program where the identifier’s name is bound to the object. As
names exist only during compilation, scope qualifies as a static attribute
in compiled languages. (In interpretive languages, where the interpreter
maintains the identifier names during program execution, scope can be a
nonstatic attribute.) The scope of a local variable is generally limited to the
procedure or function in which you declare it (or to any nested procedure
or function declarations in block structured languages like Pascal or Ada),
and the name is not visible outside the subroutine. In fact, it’s possible to
reuse an identifier’s name in a different scope (that is, in a different func-
tion or procedure). In that case, the second occurrence of the identifier will
be bound to a different object than its first occurrence.

Dynamic objects are those that have some attribute assigned to them
during program execution. While it is running, the program may choose
to change that attribute (dynamically). The lifetime of that attribute begins
when the application binds the attribute to the object and ends when the
program breaks that bond. If the program never breaks the bond, the
attribute’s lifetime extends from the point of association to the point the
program terminates. The system binds dynamic attributes to an object at
runtime, after the application begins execution.

N O T E 	 An object may have a combination of static and dynamic attributes. For example, a
static variable has an address bound to it for the entire execution time of the program,
but it could have different values bound to it throughout the program’s lifetime. Any
given attribute, however, is either static or dynamic; it cannot be both.

11.8.2  The Code, Read-Only, and Constant Sections
The code section in memory contains the machine instructions for a pro-
gram. Your compiler translates each statement you write into a sequence of
one or more byte values. The CPU interprets these byte values as machine
instructions during program execution.

Most compilers also attach a program’s read-only data to the code
section because, like the code instructions, the read-only data is already
write-protected. However, it is perfectly possible under Windows, macOS,

Memory Architecture and Organization 341

Linux, and many other operating systems to create a separate section in the
executable file and mark it as read-only. As a result, some compilers support
a separate read-only data section. Such sections contain initialized data,
tables, and other objects that the program should not change during pro-
gram execution.

The constant section shown in Figure 11-6 typically contains data that
the compiler generates (as opposed to user-defined read-only data). Most
compilers actually emit this data directly to the code section. This is why, as
previously noted, in most executable files, you’ll find a single section that
combines the code, read-only data, and constant data sections.

11.8.3  The Static Variables Section
Many languages enable you to initialize a global variable during the compi-
lation phase. For example, in C/C++ you could use statements like the fol-
lowing to provide initial values for these static objects:

static int i = 10;
static char ch[] = { 'a', 'b', 'c', 'd' };

In C/C++ and other languages, the compiler places these initial values
in the executable file. When you execute the application, the OS loads the
portion of the executable file that contains these static variables into mem-
ory so that the values appear at the addresses associated with those static
variables. Therefore, when the program shown here first begins execution,
i and ch will have these values bound to them.

11.8.4  The Storage Variables Section
The storage variables (or BSS) section is where compilers typically put static
objects that don’t have an explicit value associated with them. BSS stands for
“block started by a symbol,” which is an old assembly language term describ-
ing a pseudo-opcode you would use to allocate storage for an uninitialized
static array. In modern operating systems like Windows and Linux, the com-
piler/linker puts all uninitialized variables into a BSS section that simply tells
the OS how many bytes to set aside for that section. When the OS loads the
program into memory, it reserves sufficient memory for all the objects in the
BSS section and fills this range of memory with 0s.

Note that the BSS section in the executable file doesn’t actually contain
any data, so programs that declare uninitialized static objects (especially
large arrays) in a BSS section will consume less disk space.

However, not all compilers actually use a BSS section. Some Microsoft
languages and linkers, for example, simply place the uninitialized objects
in the static/read-only data section and explicitly give them an initial value
of 0. Although Microsoft claims that this scheme is faster, it certainly makes
executable files larger if your code has large, uninitialized arrays (because
each byte of the array winds up in the executable file—something that
would not happen if the compiler placed the array in a BSS section).

342 Chapter 11

11.8.5  The Stack Section
The stack is a data structure that expands and contracts in response to
procedure invocations and returns to calling routines, among other things.
At runtime, the system places all automatic variables (nonstatic local vari-
ables), subroutine parameters, temporary values, and other objects in the
stack section of memory in a special data structure called an activation
record (which is aptly named, as the system creates it when a subroutine
first begins execution, and deallocates it when the subroutine returns to its
caller). Therefore, the stack section in memory is very busy.

Most CPUs implement the stack using a register called the stack pointer.
Some CPUs, however, don’t provide an explicit stack pointer, instead using
a general-purpose register for stack implementation. If a CPU provides a
stack pointer, we say that it supports a hardware stack; if it uses a general-
purpose register, then we say that it uses a software-implemented stack. The
80x86 provides a hardware stack, while the MIPS Rx000 CPU family uses a
software-implemented stack. Systems that provide hardware stacks can gen-
erally manipulate data on the stack using fewer instructions than systems
that implement the stack in software. In theory, a hardware stack actually
slows down all instructions the CPU executes, but in practice, the 80x86
CPU is one of the fastest CPUs around, providing ample proof that having a
hardware stack doesn’t necessarily mean you’ll wind up with a slow CPU.

11.8.6  The Heap Section and Dynamic Memory Allocation
Although simple programs may need only static and automatic variables,
sophisticated programs need to be able to allocate and deallocate stor-
age dynamically (at runtime) under program control. The C and HLA
languages provide the malloc() and free() functions for this purpose, C++
provides new() and delete(), Pascal uses new() and dispose(), and other lan-
guages include comparable routines. These memory allocation routines
have a few things in common: they let the programmer request how many
bytes of storage to allocate, they return a pointer to the newly allocated
storage (that is, the address of that storage), and they provide a facility for
returning the storage space to the system once it is no longer needed, so the
system can reuse it in a future allocation call. Dynamic memory allocation
takes place in a section of memory known as the heap.

Generally, an application refers to data on the heap using pointer
variables either implicitly or explicitly; some languages, like Java, implicitly
use pointers behind the scenes. Thus, objects in heap memory are usually
known as anonymous variables because we refer to them by their memory
address (via pointers) rather than by name.

The OS and application create the heap section in memory after the
program begins execution; the heap is never a part of the executable file.
Generally, the OS and language runtime libraries maintain the heap for
an application. Despite the variations in memory management implementa-
tions, it’s still a good idea for you to have a basic idea of how heap allocation
and deallocation operate, because using them inappropriately will have a
very negative impact on your application performance.

Memory Architecture and Organization 343

11.8.6.1  A Simple Memory Allocation Scheme

An extremely simple (and fast) memory allocation scheme would return a
pointer to a block of memory whose size the caller requests. It would carve
out allocation requests from the heap, returning blocks of memory that are
currently unused.

A very simple memory manager might maintain a single variable (a free
space pointer) pointing to the heap. Whenever a memory allocation request
comes along, the system makes a copy of this heap pointer and returns it
to the application; then the heap management routines add the size of the
memory request to the address held in the pointer variable and verify that
the memory request doesn’t try to use more memory than is available in the
heap (some memory managers return an error indication, like a NULL pointer,
when the memory request is too large, and others raise an exception). As the
heap management routines increment the free space pointer, they effectively
mark all previous memory as “unavailable for future requests.”

11.8.6.2  Garbage Collection

The problem with this simple memory management scheme is that it wastes
memory, because there’s no garbage collection mechanism for the application
to free the memory so it can be reused later. Garbage collection—that is,
reclaiming memory when an application has finished using it—is one of the
main purposes of a heap management system.

The only catch is that supporting garbage collection requires some
overhead. The memory management code will need to be more sophisti-
cated, will take longer to execute, and will require some additional memory
to maintain the internal data structures the heap management system uses.

Let’s consider an easy implementation of a heap manager that supports
garbage collection. This simple system maintains a (linked) list of free
memory blocks. Each free memory block in the list requires two double-
word values: one specifying the size of the free block, and the other con-
taining a link to the next free block in the list (that is, a pointer), as shown
in Figure 11-7.

The system initializes the heap with a NULL link pointer, and the size field
contains the size of the heap’s entire free space. When a memory allocation
request comes along, the heap manager searches through the list to find a
free block with enough memory to satisfy the request. This search process is
one of the defining characteristics of a heap manager. Some common search
algorithms are first-fit search and best-fit search. A first-fit search, as its name
suggests, scans the list of blocks until it finds the first block of memory large
enough to satisfy the allocation request. A best-fit search scans the entire list
and finds the smallest block large enough to satisfy the request. The advan-
tage of the best-fit algorithm is that it tends to preserve larger blocks better
than the first-fit algorithm, so the system is still able to satisfy larger subse-
quent allocation requests when they arrive. The first-fit algorithm, on the
other hand, just grabs the first suitably large block it finds, even if there’s
a smaller block that would suffice, which may limit the system’s ability to
handle future large memory requests.

344 Chapter 11

L
I
N
K

S
I
Z
E

Free/unused memory

Memory in use

Free memory list

Figure 11-7: Heap management using a list of free memory blocks

Still, the first-fit algorithm does have a couple of advantages over the
best-fit algorithm. The most obvious is that it is usually faster. The best-fit
algorithm has to scan through every block in the free block list in order to
find the smallest one large enough to satisfy the allocation request (unless,
of course, it finds a perfectly sized block along the way). The first-fit algo-
rithm can stop once it finds a block large enough to satisfy the request.

The first-fit algorithm also tends to suffer less from a degenerate con-
dition known as external fragmentation. Fragmentation occurs after a long
sequence of allocation and deallocation requests. Remember, when the
heap manager satisfies a memory allocation request, it usually creates two
blocks of memory: one in-use block for the request, and one free block
that contains the remaining bytes from the original block (assuming the
request did not exactly match the block size). After operating for a while,
the best-fit algorithm may have produced lots of leftover blocks of memory
that are too small to satisfy an average memory request, making them effec-
tively unusable. As these small fragments accumulate throughout the heap,
they can end up consuming a fair amount of memory. This can lead to a
situation where the heap doesn’t have a sufficiently large block to satisfy a
memory allocation request even though there is enough total free memory
available (spread throughout the heap). See Figure 11-8 for an example of
this condition.

Memory Architecture and Organization 345

Free/unused memory

Memory in use
Desired allocation size

Figure 11-8: Memory fragmentation

There are other memory allocation strategies in addition to the first-fit
and best-fit search algorithms. Some of these execute faster, some have less
memory overhead, some are easy to understand (and some are very com-
plex), some produce less fragmentation, and some can combine and use
noncontiguous blocks of free memory. Memory/heap management is one
of the more heavily studied subjects in computer science, and there’s a con-
siderable amount of literature explaining the benefits of one scheme over
another. For more information on memory allocation strategies, check out
a good book on OS design.

11.8.6.3  Freeing Allocated Memory

Memory allocation is only half of the story. As mentioned earlier, the heap
manager has to provide a call that allows an application to return memory
it no longer needs for future reuse. In C and HLA, for example, an applica-
tion accomplishes this by calling the free() function.

At first blush, free() might seem like a very simple function to write: just
append the previously allocated and now unused block to the end of the
free list. The problem with this trivial implementation is that it almost guar-
antees that the heap becomes fragmented to the point of being unusable in
very short order. Consider the situation in Figure 11-9.

Free/unused memory

Memory in useBlock to be freed

Figure 11-9: Freeing a memory block

If a trivial implementation of free() simply takes the block to be freed
and appends it to the free list, the memory organization in Figure 11-9 pro-
duces three free blocks. However, because these three blocks are contigu-
ous, the heap manager should really combine them into a single free block,
so that it will be able to satisfy a larger request. Unfortunately, this opera-
tion would require it to scan the free block list to determine if there are any
free blocks adjacent to the block the system is freeing.

346 Chapter 11

While you could come up with a data structure that makes it easier to
combine adjacent free blocks, such schemes generally add 8 or more bytes
of overhead with each block on the heap. Whether or not this is a reason-
able tradeoff depends on the average size of a memory allocation. If the
applications that use the heap manager tend to allocate small objects, the
extra overhead for each memory block could wind up consuming a large
percentage of the heap space. However, if the most allocations are large,
then the few bytes of overhead won’t matter much.

11.8.6.4  The OS and Memory Allocation

The performance of the algorithms and data structures used by the heap
manager is only one piece of the performance puzzle. Ultimately, the
heap manager needs to request blocks of memory from the operating
system. At one extreme, the OS handles all memory allocation requests
directly. At the other extreme, the heap manager is a runtime library rou-
tine that links with your application, first requesting large blocks of mem-
ory from the OS and then doling out pieces of them as allocation requests
arrive from the application.

The problem with making direct memory allocation requests to the
operating system is that OS API calls are often very slow. This is because
they generally involve switching between kernel mode and user mode on
the CPU (which is not fast). Therefore, a heap manager that the OS imple-
ments directly will not perform well if your application makes frequent calls
to the memory allocation and deallocation routines.

Because of the high overhead of an OS call, most languages implement
their own versions of the malloc() and free() functions within their runtime
library. On the very first memory allocation, the malloc() routine requests
a large block of memory from the OS, and the application’s malloc() and
free() routines manage this block of memory themselves. If an allocation
request comes along that the malloc() function cannot fulfill in the block it
originally created, malloc() will request another large block (generally much
larger than the request) from the OS and add that block to the end of its
free list. Because the application’s malloc() and free() routines call the OS
only occasionally, the application doesn’t suffer the performance hit associ-
ated with frequent OS calls.

Most standard heap management functions perform reasonably
for a typical program. However, keep in mind that the procedures are
very implementation- and language-specific; it’s dangerous to assume
that malloc() and free() are relatively efficient when writing software that
requires high-performance components. The only portable way to ensure
a high-performance heap manager is to develop your own application-
specific set of allocation/deallocation routines. Writing such routines is
beyond the scope of this book, but you should know you have this option.

Memory Architecture and Organization 347

11.8.6.5  Heap Memory Overhead

A heap manager often exhibits two types of overhead: performance (speed)
and memory (space). Until now, this discussion has mainly dealt with the
performance aspects, but now we’ll turn our attention to memory.

Each block the system allocates requires some amount of overhead
beyond the storage the application requests; at the very least, this overhead
is a few bytes to keep track of the block’s size. Fancier (higher-performance)
schemes may require additional bytes, but typically the overhead is between
4 and 16 bytes. The heap manager can keep this information in a separate
internal table, or it can attach the block size and other memory manage-
ment information directly to the block it allocates.

Saving this information in an internal table has a couple of advantages.
First, it is difficult for the application to accidentally overwrite the informa-
tion stored there; attaching the data to the heap memory blocks themselves
doesn’t protect as well against this possibility. Second, putting memory man-
agement information in an internal data structure allows the memory man-
ager to determine whether a given pointer is valid (that is, whether it points
at some block of memory that the heap manager believes it has allocated).

The advantage of attaching the control information directly to each
block that the heap manager allocates is that it’s very easy to locate this
information, whereas storing the information in an internal table might
require a search operation.

Another issue that affects the overhead associated with the heap man-
ager is the allocation granularity—the minimum number of bytes the heap
manager supports. Although most heap managers allow you to request an
allocation as small as 1 byte, they may actually allocate some minimum
number of bytes greater than 1. To ensure an allocated object is aligned on
a reasonable address for that object, most heap managers allocate memory
blocks on a 4-, 8-, or 16-byte boundary. For performance reasons, many
heap managers begin each allocation on a typical cache-line boundary,
usually 16, 32, or 64 bytes.

Whatever the granularity, if the application requests some number of
bytes that is less than or not a multiple of the heap manager’s granularity,
the heap manager will allocate extra bytes of storage so that the complete
allocation is an even multiple of the granularity value. This amount varies
by heap manager (and possibly even by version of a specific heap manager),
so an application should never assume that it has more memory available
than it requests.

The extra memory the heap manager allocates results in another form
of fragmentation called internal fragmentation. Like external fragmenta-
tion, internal fragmentation produces small amounts of leftover memory
throughout the system that cannot satisfy future allocation requests.
Assuming random-sized memory allocations, the average amount of inter-
nal fragmentation that occurs on each allocation is half the granular-
ity size. Fortunately, the granularity size is quite small for most memory
managers (typically 16 bytes or less), so after thousands and thousands of
memory allocations you’ll lose only a couple dozen or so kilobytes to inter-
nal fragmentation.

348 Chapter 11

Between the costs associated with allocation granularity and the mem-
ory control information, a typical memory request may require between 4
and 16 bytes, plus whatever the application requests. If you’re making large
memory allocation requests (hundreds or thousands of bytes), the overhead
bytes won’t consume a large percentage of memory on the heap. However,
if you allocate lots of small objects, the memory consumed by internal frag-
mentation and memory control information may represent a significant
portion of your heap area. For example, consider a simple memory man-
ager that always allocates blocks of data on 4-byte boundaries and requires
a single 4-byte length value that it attaches to each allocation request for
memory storage. This means that the minimum amount of storage the
heap manager requires for each allocation is 8 bytes. If you make a series
of malloc() calls to allocate a single byte, the application won’t be able to
use almost 88 percent of the memory it allocates. Even if you allocate 4-byte
values on each allocation request, the heap manager consumes 67 percent
of the memory for overhead purposes. However, if your average allocation
is a block of 256 bytes, the overhead requires only about 2 percent of the
total memory allocation. In short, the larger your allocation request, the
less impact the control information and internal fragmentation will have
on your heap.

Many software engineering studies in computer science journals have
found that memory allocation/deallocation requests cause a significant loss
of performance. In such studies, the authors often obtained performance
improvements of 100 percent or better just by implementing their own sim-
plified, application-specific, memory management algorithms rather than
calling the standard runtime library or OS kernel memory allocation code.
Hopefully, this section has made you aware of this potential problem in
your own code.

11.9  For More Information
Hennessy, John L., and David A. Patterson. Computer Architecture:

A Quantitative Approach. 5th ed. Waltham, MA: Elsevier, 2012.

A typical program has three basic tasks:
input, computation, and output. So far

we’ve concentrated on the computational
aspects of the computer system, but now we’ll

turn to input and output.
This chapter will focus on the primitive input/output (I/O) activities

of the CPU, rather than on the abstract file or character I/O that high-level
applications usually employ. It will discuss how the CPU transfers data to
and from the outside world, paying special attention to the performance
issues behind I/O operations. As all high-level I/O activities are eventually
routed through the low-level I/O systems, it’s crucial to understand how
these processes work if you want to write programs that communicate effi-
ciently with the outside world.

12
I N P U T A N D O U T P U T

350 Chapter 12

12.1  Connecting a CPU to the Outside World
The first thing to know is that I/O in a typical computer system is radically
different from I/O in a typical high-level programming language. At the
primitive I/O levels of a computer system, you’ll rarely find machine instruc-
tions that behave like Pascal’s writeln, C++’s cout, C’s printf, Swift’s print, or
even the HLA stdin and stdout statements. In fact, most I/O machine instruc-
tions behave exactly like the 80x86’s mov instruction. To send data to an out-
put device, the CPU simply moves that data to a special memory location;
and to read data from an input device, the CPU retrieves the data from the
device’s address. I/O operations behave much like memory read and write
operations, except that I/O usually involves more wait states.

Based on the CPU’s ability to read and write data at a given port
address, I/O ports can be grouped into five categories: read-only, write-
only, read/write, dual I/O, and bidirectional.

A read-only port is an input port. If the CPU can only read the data
from the port, then the data must come from some source external to the
computer system. It’s never a good idea to try to write to a read-only port
because, although the hardware typically ignores such attempts, it can
cause some devices to fail. A good example of a read-only port is the status
port on the original IBM PC’s parallel printer interface. Data from this port
specifies the current status of the printer, while the hardware ignores any
data written to this port.

A write-only port is always an output port. Data written to such a port
is available for use by an external device. Attempting to read data from a
write-only port generally returns whatever garbage value happens to be on
the data bus, so your programs shouldn’t depend on the meaning of such
values. An output port typically uses a latch device to hold data to be sent to
the outside world. When a CPU writes to a port address associated with an
output latch, the latch stores the data and makes it available on an external
set of signal lines (see Figure 12-1).

CPU write control line

Address decode line

W

En

Data Data to outside worldData bus from CPU

L
A
T
C
H

Figure 12-1: A typical write-only port

A perfect example of an output port is a parallel printer port. The CPU
typically writes an ASCII character to a byte-wide output port that con-
nects to the DB-25F connector on the back of the computer’s case. A cable
transmits this data to the printer, where it arrives on the printer’s input port
(from the printer’s perspective, it is reading the data from the computer sys-
tem). A processor inside the printer typically converts this ASCII character
to a sequence of dots that it prints on paper.

Input and Output 351

Output ports can be write-only or read/write. The port in Figure 12-1,
for example, is a write-only port. Because the outputs on the latch do not
loop back to the CPU’s data bus, the CPU can’t read the data the latch
contains. Both the address decode line (En) and the write control line (W)
must be active for the latch to operate. If the CPU tries to read the data
located at the latch’s address, the address decode line is active but the write
control line is not, so the latch does not respond to the read request.

A read/write port is an output (write-only) port as far as the outside world
is concerned. However, as the name implies, the CPU can also read data
from such a port—specifically, it reads the data that was last written to the
port. Doing so does not affect the data presented to the external peripheral
device.1 Figure 12-2 illustrates a read/write port.

Data bus to CPU

CPU write control line

Address decode line

W

En

Data

CPU read control line

Address decode line

R

En

Data

Data bus from CPU

L
A
T
C
H

L
A
T
C
H

Data to outside world

Figure 12-2: A read/write port

As you can see, the data written to the output port loops back to a
second latch. Placing the address of these two latches on the address bus
asserts the address decode lines on both latches. Therefore, to select between
the two latches, the CPU must also assert either the read line or the write
line. Asserting the read line (which happens during a read operation) will
enable the lower latch. This places the data previously written to the output
port on the CPU’s data bus, allowing the CPU to read that data.

The port in Figure 12-2 is not an input port—true input ports read data
from external pins. Although the CPU can read data from this latch, the
organization of this circuit simply allows the CPU to read the data it previ-
ously wrote to the port, thus saving the program from having to maintain
this value in a separate variable. The data on the external connector is out-
put only, and you can’t connect real-world input devices to these signal pins.

1. Historically, “peripheral” meant any device external to the computer system itself. This
book will use the modern form of this term to refer to any device that is not part of the CPU
or memory.

352 Chapter 12

A dual I/O port is also a read/write port, but when you read a dual I/O
port, you read data from an external input device rather than the last data
written to the output side of the port’s address. Writing data to a dual I/O
port transmits data to some external output device, just as writing to a write-
only port does. Figure 12-3 shows how you could interface a dual I/O port
with the system.

CPU write control line

Address decode line

W

En

Data

CPU read control line

Address decode line

R

En

Data

Data to the
outside world

Data from the
outside world

Data bus

Data bus to CPU

Data bus from CPU

L
A
T
C
H

L
A
T
C
H

Figure 12-3: A dual I/O port

A dual I/O port is actually created with two ports—a read-only port
and a write-only port—that share the same port address. Reading from the
address accesses the read-only port, and writing to the address accesses the
write-only port. Essentially, this port arrangement uses the read (R) and
write (W) control lines to provide an extra address bit that specifies which
of the two ports to use.

Finally, a bidirectional port allows the CPU to both read data from and
write data to an external device. To function properly, a bidirectional
port must pass various control lines, such as read and write enable, to the
peripheral device so that the device can change the direction of data trans-
fer based on the CPU’s read/write request. In effect, a bidirectional port is
an extension of the CPU’s bus through a bidirectional latch or buffer.

Generally, a given peripheral device utilizes multiple I/O ports. The
original IBM PC parallel printer interface, for example, uses three port
addresses: a read/write I/O port, a read-only input port, and a write-only
output port. The read/write data port allows the CPU to read the last ASCII
character written through it. The input port returns control signals from the
printer, which indicate whether the printer is ready to accept another charac-
ter, offline, out of paper, and other statuses. The output port transmits con-
trol information to the printer. Later-model PCs substituted a bidirectional
port for the data port, allowing data transfer from and to a device through
the parallel port. The bidirectional data port improved performance for vari-
ous devices such as disk and tape drives connected to the PC’s parallel port.
(Of course, modern PCs talk to printers over the USB port—that’s quite a
different animal from the hardware perspective, though.)

Input and Output 353

12.2  Other Ways to Connect Ports to the System
The examples thus far may have given you the impression that the CPU
always reads and writes peripheral data using the data bus. However, while
the CPU generally transfers the data it has read from input ports across the
data bus, it doesn’t always use the data bus to write data to output ports.
In fact, a very common output method is to simply access a port’s address
directly without writing any data to it. Figure 12-4 illustrates a simple exam-
ple of this technique using a set/reset (S/R) flip-flop.

Address decode line 1 S

R

S/R
flip-flop

Q

Address decode line 2

Single-bit
output to
the outside
world

Figure 12-4: Outputting data to a port by directly accessing that port

In this circuit, an address decoder decodes two separate addresses. Any
read or write access to the first address sets the output line to a 1; any read
or write access to the second address sets the output line to a 0. This circuit
ignores the data on the CPU’s data lines, as well as the status of the read
and write lines. The only thing that matters is that the CPU accesses one
of these two addresses.

Another possible way to connect an output port to a system is to connect
the read/write status lines to the data input of a D flip-flop. Figure 12-5 shows
how you could design such a device.

Address decode line 1 Clk

D

D
flip-flop

Q

Read control line
(active low)

Single-bit
output to
the outside
world

Figure 12-5: Outputting data using the read/write control as the data to output

In this diagram, any read of the port sets the output bit to 0, while any
write to this port sets the output bit to 1 (the read control line will be HIGH
when writing to the specified address).

These are only two examples of an amazing variety of designs that
engineers have devised to avoid using the data bus (largely to reduce hard-
ware costs or improve performance). However, unless otherwise noted, the
remaining examples in this chapter presume that the CPU reads and writes
data to and from an external device using the data bus.

354 Chapter 12

12.3  I/O Mechanisms
There are three basic I/O mechanisms that computer systems use to
communicate with peripheral devices: memory-mapped input/output,
I/O‑mapped input/output, and direct memory access (DMA). Memory-
mapped I/O uses ordinary locations within the CPU’s memory address
space to communicate with peripheral devices. I/O-mapped input/output
uses an address space separate from memory, as well as special machine
instructions to transfer data between that I/O address space and the out-
side world. Direct memory access (DMA) is a special form of memory-mapped
I/O where the peripheral device reads and writes data located in memory
without CPU intervention. Each I/O mechanism has its own set of advan-
tages and disadvantages, as we will discuss in this section.

Usually, the hardware system designer determines how a device con-
nects to a computer system; programmers have little control over this deci-
sion. Nevertheless, by paying attention to the costs and benefits of the I/O
mechanism used for communication between the CPU and the peripheral
device, you can choose code sequences that will maximize I/O perfor-
mance within your applications.

12.3.1  Memory-Mapped I/O
A memory-mapped peripheral device is connected to the CPU’s address
and data lines exactly like regular memory, so whenever the CPU writes to
or reads from the address associated with the peripheral device, the CPU
transfers data to or from the device. This mechanism has several benefits
and only a few disadvantages.

The principle advantage of a memory-mapped I/O subsystem is that
the CPU can use any instruction that accesses memory, such as mov, to trans-
fer data between the CPU and a peripheral. For example, if you’re trying to
access a read/write or bidirectional port, you can use an 80x86 read/modify/
write instruction, like add, to read the port, manipulate the value, and then
write data back to the port, all with a single instruction. Of course, if the
port is read-only or write-only, such an instruction will be of little use.

The big disadvantage of memory-mapped I/O devices is that they con-
sume addresses in the CPU’s memory map. Every byte of address space that
a peripheral device consumes is one less byte available for installing actual
memory. Generally, the minimum amount of space you can allocate to a
peripheral (or block of related peripherals) is a page of memory (4,096
bytes on an 80x86). Fortunately, a typical PC has only a couple dozen such
devices, so this usually isn’t much of a problem. However, it can become
a problem with some peripheral devices, like video cards, that consume a
large chunk of the address space. Some video cards have between 1GB and
32GB of on-board memory that they map into the memory address space,
which means that the 1GB to 32GB address range consumed by such a card
is not available to the system for use as regular RAM (though this is hardly
a concern on a 64-bit processor).

Input and Output 355

12.3.2  I/O-Mapped Input/Output
As noted previously, I/O-mapped input/output uses a special I/O address
space separate from the normal memory space, coupled with special
machine instructions to access device addresses. For example, the 80x86
CPUs provide the in and out instructions specifically for this purpose. These
instructions behave like mov except that they transmit data to and from the
special I/O address space rather than the normal memory address space.
Typically, processors that provide I/O-mapped input/output capabili-
ties use the same physical address bus to transfer both memory addresses
and I/O device addresses. Additional control lines differentiate between
addresses that belong to the normal memory space and those that belong
to the special I/O address space. This means that such CPUs could use both
I/O-mapped input/output or memory-mapped I/O. Therefore, if the num-
ber of I/O-mapped locations in the CPU’s address space is insufficient, a
hardware designer can always use memory-mapped I/O instead (as a video
card does on a typical PC).

In modern 80x86 PC systems that utilize the PCI bus (or later variants),
special peripheral chips on the system’s motherboard remap the I/O address
space into the main memory space, allowing programs to access I/O-mapped
devices using either memory-mapped or I/O-mapped input/output.

12.3.3  Direct Memory Access
Memory-mapped I/O subsystems and I/O-mapped subsystems are both
forms of programmed I/O, as they require the CPU to move data between the
peripheral device and memory. To store into memory a sequence of 10 bytes
taken from a programmed I/O input port, the CPU must read each value
from the input port and store it into memory.

I/O A ND T HE C ACHE

The CPU cannot cache values intended for memory-mapped I/O ports. Caching
data from an input port would mean that subsequent reads of the port would
access the value in the cache rather than the port data, which could be different.
Similarly, with a write-back cache mechanism, some writes might never reach an
output port because the CPU might save up several writes in the cache before
sending the last one to the actual I/O port. In order to avoid these potential prob-
lems, we need some mechanism to tell the CPU not to cache accesses to certain
memory locations.

The solution is found in the CPU’s memory management subsystem. The
80x86’s page table entries, for example, contain a flag that the CPU can use to
determine whether it is okay to map data from a page in memory to the cache.
If this flag is set one way, the cache operates normally; if the flag is set the
other way, the CPU does not cache accesses to that page.

356 Chapter 12

However, processing data 1 byte (or word or double word) at a time via
the CPU may be too slow for very high-speed I/O devices. Such devices gener-
ally have an interface to the CPU’s bus so they can read and write memory
directly—that is, without the CPU as an intermediary. Direct memory access
(DMA) allows I/O operations to proceed in parallel with other CPU opera-
tions, which increases the overall speed of the system—unless the CPU and
the DMA device both try to use the address and data buses at the same time.
Concurrent processing occurs only if the bus is free for use by the I/O device,
which happens when the CPU has a cache and is accessing cached code and
data. Nevertheless, even if the CPU must halt and wait for a DMA operation
to complete before beginning a different operation, the DMA approach is
still much faster, because many of the bus operations are instruction fetches
or I/O port accesses that don’t occur during DMA operations.

A typical DMA controller consists of a pair of counters and other cir-
cuitry that interfaces with memory and the peripheral device. One of the
counters serves as an address register, supplying an address on the address
bus for each transfer. The second counter specifies the number of data
transfers. The application initializes the DMA controller’s address counter
with the address of the block where it should begin transferring data. Each
time the peripheral device wants to transfer data to or from memory, it
sends a signal to the DMA controller, which places the value of the address
counter on the address bus. In coordination with the DMA controller, the
peripheral device places data on the data bus to write to memory during
an input operation, or it reads data from the data bus, taken from memory,
during an output operation.2 After a successful data transfer, the DMA con-
troller increments its address register and decrements the transfer counter.
This process repeats until the transfer counter decrements to zero.

12.4  I/O Speed Hierarchy
Different peripheral devices have different data transfer rates. Some
devices, like keyboards, are extremely slow compared to CPU speeds.
Other devices, like solid-state disk drives, can actually transfer data faster
than the CPU can process it. The appropriate programming technique
for data transfer depends strongly on the transfer speed of the peripheral
device involved in the I/O operation. Therefore, before discussing how to
write the most appropriate code, we should establish some terminology to
describe the different transfer rates of peripheral devices.

Low-speed devices  Devices that produce or consume data at a rate
much slower than the CPU is capable of processing. For the purposes of
discussion, we’ll assume that low-speed devices operate at speeds that
are three or more orders of magnitude slower than the CPU.

2. Don’t forget that “input” and “output” are from the perspective of the computer system, not
the device. Hence, the device writes data during an input operation and reads data during an
output operation.

Input and Output 357

Medium-speed devices  Devices that transfer data at approximately
the same rate as, or up to three orders of magnitude slower than, the
CPU (accessing the device using programmed I/O).

High-speed devices  Devices that transfer data faster than the CPU is
capable of handling using programmed I/O.

The speed of the peripheral device determines the type of I/O mecha-
nism used for the I/O operation. Clearly, high-speed devices must use DMA
because programmed I/O is too slow. Medium- and low-speed devices can
use any of the three I/O mechanisms for data transfer (though low-speed
devices rarely use DMA because of the cost of the extra hardware involved).

With typical bus architectures, CPUs are capable of one transfer per
microsecond or better. Therefore, high-speed devices are those that trans-
fer data more rapidly than once per microsecond. Medium-speed transfers
are those that involve a data transfer every 1 to 100 microseconds. Low-
speed devices usually transfer data less often than once every 100 micro-
seconds. Of course, these definitions for low-, medium-, and high-speed
devices are system dependent. Faster CPUs with faster buses allow faster
medium-speed operations.

Note that one transfer per microsecond is not the same as a 1MB-per-
second transfer rate. A peripheral device can actually transfer more than
1 byte per data transfer operation. For example, when using the 80x86
in(dx, eax); instruction, the peripheral device can transfer 4 bytes in one
transfer. Therefore, if the device is capable of one transfer per microsec-
ond, it can transfer 4MB per second using this instruction.

12.5  System Buses and Data Transfer Rates
In Chapter 6, you saw that the CPU communicates with memory and I/O
devices using the system bus. If you’ve ever looked inside a computer or
read the specifications for a system, you’ve probably seen terms like PCI,
ISA, EISA, or even NuBus used to refer to the computer’s system bus. In this
section, we’ll discuss how these different computer system buses relate to
the CPU bus, and how they affect the performance of a system.

A single computer system often employs multiple buses. Therefore, a soft-
ware engineer can choose which peripheral devices to use based upon their
bus connections. Maximizing performance for a particular bus may require
different programming techniques than for other buses. Although it’s not
possible to choose the buses a particular computer system employs, a software
engineer can select among the available buses to improve an application.

Computer system buses like PCI (Peripheral Component Interconnect)
and ISA (Industry Standard Architecture) define physical connectors inside
a computer system. Specifically, they describe the set of electronic signals
(connector pins on the bus), physical dimensions (that is, connector layouts
and distances from one another), and a data transfer protocol for connect-
ing different electronic devices. These buses are often extensions of the
CPU’s local bus (the address, data, and control lines), because many of the
signals on the system buses are identical to the CPU’s signals.

358 Chapter 12

However, peripheral buses themselves are not necessarily identical to
the CPU’s bus—they may have additional or fewer signals compared to
those on the CPU. For example, the ISA bus supports only 24 address lines
compared with the Intel and AMD’s x86-64 40 to 52 address lines.

Different peripheral devices are designed to use different peripheral
buses. Figure 12-6 shows the organization of the PCI and ISA buses in a
typical computer system.3

CPU
Address and
data buses

PCI bus
controller

ISA bus
controller

PCI slots
(connectors)

ISA slots
(connectors)

Figure 12-6: Connection of the PCI and ISA buses in a typical PC

Notice how the CPU’s address and data buses connect to a PCI bus con-
troller peripheral device, but not to the PCI bus itself. The PCI bus controller
contains two sets of pins, providing a bridge between the CPU’s local bus and
the PCI bus. The signal lines on the local bus are not connected directly
to the corresponding lines on the PCI bus; instead, the PCI bus controller
acts as an intermediary, rerouting all data transfer requests between the
CPU and the PCI bus.

Also note that the ISA bus controller is usually connected to the PCI
bus controller, not directly to the CPU. This is typically for cost or perfor-
mance reasons (there may be a limit to the number of devices that can con-
nect directly to the CPU bus without additional buffering, for example).

The CPU’s local bus usually runs at some fraction of the CPU’s fre-
quency. Typical local bus frequencies are currently 66 MHz, 100 MHz, 133
MHz, 400 MHz, 533 MHz, and 800 MHz, but they may become even faster.
Usually, only memory and a few selected peripherals like the PCI bus con-
troller sit on the CPU’s bus and operate at this high frequency.

Because a typical CPU’s bus is 64 bits wide and it’s theoretically possible
to achieve one data transfer per clock cycle, the CPU’s bus has a maximum
data transfer rate of 8 bytes times the clock frequency, or 800MB per sec-
ond for a 100 MHz bus. In practice, CPUs rarely achieve the maximum data
transfer rate, but they do achieve some percentage of it, so the faster the
bus, the more data can move in and out of the CPU (and caches) in a given
amount of time.

3. The ISA bus is the original IBM PC/AT bus. You won’t see it very often on modern com-
puter systems.

Input and Output 359

12.5.1  Performance of the PCI Bus
The PCI bus comes in several configurations. The base configuration has
a 32-bit-wide data bus operating at 33 MHz. Like the CPU’s local bus, the
PCI bus is theoretically capable of transferring data on each clock cycle.
This means that the bus has a theoretical maximum data transfer rate
of 4 bytes times 33 MHz, or 132MB per second. In practice, though, the
PCI bus doesn’t come anywhere near this level of performance except in
short bursts. Newer versions of the PCI-e offer up to 16 “lanes,” allowing for
much faster data transfer (largely for high-performance video cards).

Whenever the CPU wants to access a peripheral on the PCI bus, it must
negotiate with other peripheral devices for the right to use the bus. This
negotiation can take several clock cycles before the PCI controller grants
the CPU access to the bus. If a CPU writes a double word per bus transfer,
the negotiation time actually slows the transfer rate dramatically. The only
way to achieve anywhere near the maximum theoretical bandwidth on the
bus is to use a DMA controller and move blocks of data in burst mode. In
burst mode, the DMA controller negotiates just once for the bus and then
makes many transfers without giving up the bus between each one.

There are a couple of enhancements to the PCI bus that improve per-
formance. Some PCI buses support a 64-bit-wide data path. This, obviously,
doubles the maximum theoretical data transfer rate from 4 bytes per trans-
fer to 8 bytes per transfer. Another enhancement is running the bus at 66
MHz, which also doubles the throughput. With a 64-bit-wide, 66 MHz bus,
you would quadruple the data transfer rate of the baseline configuration.
These optional enhancements to the PCI bus allow it to grow with the CPU
as CPUs increase their performance. A high-performance version of the
PCI bus, PCI-X, was available for a while, but it has largely been replaced by
the PCI-e bus. PCI-e is a serial bus, transmitting data serially over a few data
lines. However, it uses lanes to pass additional data in parallel. For example,
a 16-lane PCI-e bus is 16 times faster than a single-lane variant.

12.5.2  Performance of the ISA Bus
The ISA bus is a carryover from the original PC/AT computer system. This
bus is 16 bits wide and operates at 8 MHz. It requires four clock cycles for
each bus cycle (a bus cycle is the time it takes to transfer one 16-bit word of
data across the ISA bus). For this and other reasons, the ISA bus is capable
of about only one data transmission per microsecond. With a 16-bit-wide
bus, data transfer is limited to about 2MB per second. This is much slower
than both the CPU’s local bus and the PCI bus. Generally, the ISA bus is
really only capable of supporting low-speed and medium-speed devices—
like an RS-232 communications device, a modem, or a parallel printer
interface—to the ISA bus. Most other devices, like disks, scanners, and net-
work cards, are too fast for the ISA bus.

Accessing the ISA bus on most systems involves first negotiating for the
PCI bus, but the PCI bus is so much faster than the ISA bus that this nego-
tiation time has very little impact on the performance of peripherals on

360 Chapter 12

the ISA bus. Therefore, connecting the ISA controller directly to the CPU’s
local bus wouldn’t noticeably improve performance.

Fortunately, the ISA bus is thoroughly obsolete these days, and you
won’t find it on modern PCs. A few industrial PCs and SBCs (single-board
computers) support ISA bus connections for legacy applications, but other
than that the ISA bus is dead.

12.5.3  The AGP Bus
Video display (aka graphics) cards are very special peripherals that need
maximum bus performance to ensure quick screen updates and fast graphic
operations. Unfortunately, if the CPU has to constantly negotiate with other
peripherals for the use of the PCI bus, graphics performance can suffer. To
overcome this problem, video card designers created the Accelerated Graphics
Port (AGP), an interface between the CPU’s local bus and the video display
card that provides various control lines and bus protocols specifically designed
for video display cards.

The AGP connection lets the CPU quickly move data to and from the
video display RAM (see Figure 12-7).

CPU

Video display card

AGP interface

Address and
data buses

PCI bus
controller

Figure 12-7: The AGP bus interface

Because there’s only one AGP port per system, only one card can use
the AGP slot at a time. The upside of this is that the system never has to
negotiate for access to the AGP bus. However, by 2008 the performance of
video cards surpassed that of the AGP bus. Most modern video cards use
multilane PCI-e bus interfaces instead.

12.6  Buffering
If a particular I/O device produces or consumes data faster than the system
is capable of transferring data to or from that device, the system designer
has two choices: provide a faster connection between the CPU and the
device, or slow down the rate of transfer between the two.

Input and Output 361

If the peripheral device is connected to a slow bus like ISA, a system
designer can create a faster connection by switching to a wider bus like
the 64-bit PCI, a faster bus (one with a higher frequency), or a higher-
performance bus like PCI-e. System designers can also sometimes create
a faster interface to the bus, as they did with the AGP connection.

The alternative—slowing down the transfer rate between the periph-
eral and the computer system—isn’t always as bad an option as it might
initially seem. Most high-speed devices don’t transfer data to the system at
a constant rate. Instead, they typically transfer a block of data rapidly and
then sit idle for some time. Although the burst rate is higher than the CPU
or memory can handle, the average data transfer rate is usually lower. If
you can average out the high-bandwidth peaks and transfer some of the
data when the peripheral is inactive, you can easily move data between the
peripheral and the computer system without resorting to an expensive,
high-bandwidth bus or connection.

The trick is to use memory on the peripheral side to buffer the data.
The peripheral can rapidly fill this buffer with data during an input opera-
tion, and rapidly extract data from the buffer during an output operation.
Once the peripheral device is inactive, the system either empties or refills
the buffer at a sustainable rate. As long as the average data transfer rate
of the peripheral device is below the maximum bandwidth the system sup-
ports, and the buffer is large enough to hold bursts of data going to and
from the peripheral, this scheme lets the peripheral communicate with the
system at a lower average data transfer rate.

Often, to save costs, the buffering takes place in memory on the CPU
rather than on the peripheral device. In this case, it is often the software
engineer’s responsibility to initialize the buffer for a peripheral device. In
some cases, neither the peripheral device nor the OS provides a buffer for
the peripheral’s data, so the application must do so in order to maintain
maximum performance and avoid data loss. In other cases, the device or OS
may provide a small buffer, but the application itself might not process the
data often enough to avoid data overruns in the small buffer; in these situa-
tions, an application can create a larger buffer that is local to the application.

12.7  Handshaking
Many I/O devices cannot accept data at just any rate. For example, an
i9-based PC is capable of sending several hundred million characters per
second to a printer, but printers can’t print that many characters each
second. Likewise, an input device such as a keyboard will never transmit
several million keystrokes per second to the system (because the keyboard
operates at human speeds, not computer speeds). Because of these differ-
ences in capabilities, the CPU needs some way to coordinate data transfer
between the computer system and its peripheral devices.

One common approach is to send and receive status bits on a port sepa-
rate from the data port. For example, a printer could send a single bit to tell

362 Chapter 12

the system whether it is ready to accept more data. Likewise, a single status
bit in a different port could specify whether a keystroke is available at the
keyboard data port. The CPU can test these bits prior to writing a character
to the printer or reading a key from the keyboard.

Using status bits to indicate that a device is ready to accept or transmit
data is known as handshaking, so named because the protocol is similar to
two people signifying agreement with a handshake.

The following 80x86 assembly language program segment demon-
strates how handshaking works:

mov($379, dx); // Initialize DX with the address of the status port.
repeat

 in(dx, al); // Get the parallel port status into the AL register.
 and($80, al); // Clear z flag if the HO bit is set.

until(@nz); // Repeat until the HO bit contains a 1.

// Okay to write another byte to the printer data port here.

This code fragment will continuously loop while the HO bit of the
printer status register (at input port $379) contains 0 and will exit once the
HO bit is set (indicating that the printer is ready to accept data).

12.8  Timeouts on an I/O Port
One problem with the repeat..until loop in the previous section is that it
could spin indefinitely as it waits for the printer to become ready to accept
additional input. If someone turns the printer off or the printer cable
becomes disconnected, the program could freeze up, forever waiting for
the printer to become available. Usually, it’s a better idea to inform the
user when something goes wrong rather than allowing the system to hang.
To do this, include a timeout period in the loop; once exceeded, the time-
out causes the program to alert the user that something is wrong with the
peripheral device.

You can expect some sort of response from most peripheral devices
within a reasonable amount of time. For example, even in the worst case,
most printers will be ready to accept additional character data within a few
seconds of the last transmission. Therefore, something is probably wrong
if 30 seconds or more has passed without the printer accepting a new char-
acter. A program written to detect this kind of problem typically pauses,
asking the user to check the printer, and then resumes printing once the
user indicates the problem is resolved.

Choosing a good timeout period is not an easy task. You must carefully
balance the irritation of possible false alarms from the program with the
pain of having it lock up for long periods when something actually is wrong.
Both situations are equally annoying.

Input and Output 363

An easy way to create a timeout period is to count the number of times
the program loops while waiting for a handshake signal from a peripheral.
Consider the following modification to the repeat..until loop from the pre-
vious section:

mov($379, dx); // Initialize DX with the address of the status port.
mov(30_000_000, ecx); // Timeout period of approximately 30 seconds,
 // assuming port access time is about 1 microsecond.
HandshakeLoop:

 in(dx, al); // Get the parallel port status into the AL register.
 and($80, al); // Clear z flag if the HO bit is set.

loopz HandshakeLoop; // Decrement ECX and loop while ECX <> 0 and
 // the HO bit of AL contains a 0.

if(ecx <> 0) then

 // Okay to write another byte to the printer data port here.

else

 // We had a timeout condition if we get here.

endif;

This code will exit once the printer is ready to accept data or when
approximately 30 seconds have expired. You might question the 30-second
figure, since a software-based loop (counting down ECX to 0) should run at
different speeds on different processors. However, the in() instruction reads
a port on the bus, and that means this instruction will take approximately
1 microsecond to execute (I/O ports often inject lots of wait states). Hence,
one million times through the loop will take about a second (plus or minus
50 percent, but close enough for our purposes). This is true almost regard-
less of the CPU frequency.

12.9  Interrupts and Polled I/O
Polling is the process of constantly testing a port to see if data is available.
The handshaking loops of the previous sections provide good examples
of polling—the CPU waits in a short loop, testing the printer port’s status
value until the printer is ready to accept more data, and then the CPU can
transfer more data to the printer. Polled I/O is inherently inefficient. If the
printer in this example takes 10 seconds to accept another byte of data, the
CPU spins, doing nothing productive for those 10 seconds.

In early personal computer systems, this is exactly how a program
would behave. When a program wanted to read a key from the keyboard,
it would poll the keyboard status port until a key was available. These early
computers could not do other processing while waiting for the keyboard.

364 Chapter 12

The solution to this problem is to use an interrupt mechanism. An inter-
rupt is triggered by an external hardware event, such as the printer becom-
ing ready to accept another character, that causes the CPU to interrupt its
current instruction sequence and call a special interrupt service routine (ISR).
Typically, an ISR runs through the following sequence of events:

1.	 It preserves the current values of all machine registers and flags so that
the interrupted computation can be continued later.

2.	 It does whatever operation is necessary to service the interrupt.

3.	 It restores the registers and flags to the values they had before
the interrupt.

4.	 It resumes execution of the code that was interrupted.

In most computer systems, typical I/O devices generate an interrupt
whenever they make data available to the CPU, or when they become able
to accept data from the CPU. The ISR quickly processes the interrupt
request in the background, allowing some other computation to proceed
normally in the foreground.

Though ISRs are usually written by OS designers or peripheral device
manufacturers, most OSes enable you to pass an interrupt to an applica-
tion via signals or some similar mechanism. This allows you to include ISRs
directly within an application. You could use this facility, for example, to
have a peripheral device notify your application when its internal buffer is
full and the application needs to copy data from the peripheral’s buffer to
an application buffer to prevent data loss.

12.10  Protected-Mode Operation and Device Drivers
If you’re working on an ancient Windows 95 or 98 system, you can write
assembly code to access I/O ports directly. The handshaking code shown
earlier is a good example of this. However, modern versions of Windows
and all versions of Linux and macOS employ a protected mode of operation.
In this mode, direct access to devices is restricted to the OS and certain
privileged programs. Standard applications, even those written in assembly
language, are not so privileged. If you write a simple program that attempts
to send data to an I/O port, the system will generate an illegal access excep-
tion and halt your program.

Linux won’t allow just any program to access I/O ports; only programs
with “superuser” (root) privileges can do so. For limited I/O access, it’s pos-
sible to use the Linux ioperm system call to make certain I/O ports accessi-
ble from user applications. (For more details, read the man page on ioperm.)

If Linux, macOS, and Windows don’t allow direct access to peripheral
devices, how does a program communicate with these devices? Clearly,
this can be done, because applications interact with real-world devices all
the time. The answer is that these OSes permit specially written modules,
known as device drivers, to access I/O ports. A complete discussion of writing
device drivers is well beyond the scope of this book, but understanding how

Input and Output 365

they work may help you understand the possibilities and limitations of I/O
under a protected-mode OS.

12.10.1  The Device Driver Model
A device driver is a special type of program that links with the OS. It must
follow some specific protocols, and it must make some special calls to the
OS that are not available to standard applications. Furthermore, in order
to install a device driver in your system, you must have administrator
privileges, because device drivers pose all kinds of security and resource
allocation risks, and you can’t leave your system vulnerable. Therefore,
installation is not a trivial process, and application programs cannot load
and unload drivers at will.

Fortunately, there are only a limited number of devices found on
a typical PC, so you only need a limited number of device drivers. You
would typically install a device driver in the OS at the same time you
install the device, or, if the device is built into the PC, at the same time
you install the OS. About the only time you’d really need to write your
own device driver is when building your own device, or in unique cases
where you need to take advantage of some device’s capabilities that stan-
dard device drivers don’t handle.

The device driver model works well with low-speed devices, where
the OS and device driver can respond to the device much more quickly
than it requires. The model is also great for use with medium- and high-
speed devices where the system transmits large blocks of data to and from
the device. However, the device driver model does have a few drawbacks,
one being that it does not support medium- and high-speed data transfers
that require substantial interaction between the device and the application.

The problem is that calling the OS is an expensive process. Whenever
an application makes a call to the OS to transmit data to the device, it can
potentially take hundreds of microseconds, if not milliseconds, before
the device driver actually sees the application’s data. If the interaction
between the device and the application requires a constant flurry of bytes
moving back and forth, there will be a big delay if each transfer has to go
through the OS. For applications of this sort, you’ll need to write a special
device driver that can handle the transactions itself rather than continually
returning to the application.

Because applications can’t access devices directly (in modern OSes),
all communication between them must take place through a device driver
intermediary. The question, then, is how do applications communicate with
device drivers?

12.10.2  Communication with Device Drivers
For the most part, communicating with a peripheral device under a mod-
ern OS is exactly like writing data to a file or reading data from a file. In
most OSes, you open a “file” using a special filename like COM1 (the serial
port) or LPT1 (the parallel port) and the OS automatically creates a con-
nection to the specified device. When you are finished using the device, you

366 Chapter 12

“close” the associated file, which tells the OS that the application is done
with the device so other applications can use it.

Of course, most devices don’t support the same semantics as disk files.
Some devices, like printers or modems, can accept a long stream of unfor-
matted data, but others may require that you preformat the data into blocks
and write the blocks to the device with a single write operation. The exact
semantics depend upon the particular device. Nevertheless, the typical way
to send data to a peripheral is to use an OS “write” function to which you
pass a buffer containing some data, and the way to read data from a device
is to call an OS “read” function to which you pass the address of some buf-
fer into which the OS will place the data it reads.

But not all devices conform to these stream-I/O data semantics of file
I/O, either. Therefore, most OSes provide a device-control API that lets you
pass information directly to the peripheral’s device driver to handle the
cases where a stream-I/O model fails.

Because it varies by OS, the exact details concerning the OS API inter-
face are a bit beyond the scope of this book. Though most OSes use a simi-
lar scheme, they differ enough to make it impossible to describe them in a
general way. So, for further details, consult the programmer’s reference for
your particular OS.

12.11  For More Information
Silberschatz, Abraham, Peter Baer Galvin, and Greg Gagne. “Chapter 13:

I/O Systems.” In Operating System Concepts. 8th ed. Hoboken, NJ: John
Wiley & Sons, 2009.

N O T E 	 Early editions of Patterson and Hennessy’s Computer Architecture: A Quantitative
Approach provided a good chapter on I/O devices and buses; sadly, as it covered
very old peripheral devices, the authors dropped the chapter rather than updating it
in subsequent revisions. Internet searches seem to be the last place you can find consis-
tent information on this subject (outside of this book, of course).

System buses are not the only buses you’ll
find in a computer system. There are many

specialized peripheral buses as well. This
chapter discusses the SCSI, IDE/ATA, SATA,

SAS, FibreChannel, Firewire, and USB buses that con-
nect computers with various peripheral devices.

13.1  The Small Computer System Interface
The Small Computer System Interface (SCSI, pronounced “scuzzy”) is a periph-
eral interconnection bus used to connect high-speed peripheral devices to
personal computer systems. Designed in the early 1980s, the SCSI bus was
popularized by its introduction on the Apple Macintosh computer system in
the mid 1980s. The original SCSI bus supported an 8-bit bidirectional data
bus and was capable of transferring 5MB of data per second, which was con-
sidered high performance for hard-disk subsystems of that era. Although its
early performance is quite slow by modern standards, SCSI has gone through

13
C O M P U T E R P E R I P H E R A L B U S E S

368 Chapter 13

several revisions over the years and remains a high-performance peripheral
interconnection system. At the height of its popularity, these older SCSI
devices were capable of transferring 320MBps (megabytes per second).

Although the SCSI interconnection system is most commonly used for
disk drive subsystems, SCSI was designed to support a whole host of PC
peripherals using a cable connection. Indeed, as SCSI became popular
during the late 1980s and into the 1990s, you could find printers, scanners,
imaging machines, phototypesetters, network and display adapters, and
many other devices interfacing with the SCSI bus.

However, the prevalence of SCSI as a general-purpose peripheral bus
has diminished since the emergence of the USB, FireWire, and Thunderbolt
peripheral connection systems. Except for very high-performance disk drive
subsystems and some very specialized peripheral devices, few new peripherals
use the interface. To understand why SCSI’s popularity waned, let’s look at
the problems SCSI users have faced over the years.

13.1.1  Limitations
When SCSI was first introduced, the SCSI bus supported concurrent
connection of the SCSI adapter card and up to seven actual peripheral
devices. To connect multiple devices, you ran a cable from the host con-
troller card to the first peripheral device. To connect a second device,
you ran a cable from a second connector on the first device to the second
device. To connect a third device, you ran a cable from a separate connec-
tor on the second device to the third device, and so on. At the end of this
“daisy chain” of devices, you attached a special terminating device to the
last connector of the last peripheral device. Without the special “termina-
tor” at the end of the SCSI chain, many SCSI systems would work unreli-
ably, if at all.

As a “convenience” to their customers, many peripheral manufacturers
built the terminating circuitry into their devices. Unfortunately, connect-
ing multiple terminators in the middle of the SCSI chain was just as bad as
not having a terminator at all. Though most manufacturers who designed
the terminating circuitry into their peripherals often provided an option to
disable the terminator, some did not. Ensuring that those devices with the
active terminator circuitry were at the end of the SCSI chain was often cum-
bersome, and even if a device provided an option to enable or disable the
terminator, knowing the appropriate DIP switch settings was challenging if
the documentation wasn’t handy. As a result, many computer owners had
problems with a chain of SCSI devices not working properly in their system.

On the original SCSI bus, the computer system owner had to assign each
device one of eight numeric “addresses” from 0 to 7, with address 7 gener-
ally reserved for the host controller card. If two devices in the SCSI chain
had the same address, they wouldn’t operate properly. This made moving
SCSI peripherals from one computer system to another somewhat difficult,
because the address of the device being moved was usually already taken by
another device on the new system.

Computer Peripheral Buses 369

The original SCSI bus had other limitations as well. First, it supported
only seven peripheral devices. When SCSI was first designed, this wasn’t
usually a problem because common SCSI peripherals like hard drives and
scanners were very expensive, costing thousands of dollars each. Connecting
more than seven devices wasn’t something your average computer owner would
have done back then. As the price of hard drives and other SCSI peripher-
als came down, however, the seven-peripheral limit became burdensome.

Second, SCSI was not hot-swappable ; that is, you couldn’t unplug or con-
nect a peripheral device while the power was on. Doing so could cause elec-
trical damage to the SCSI controller, the peripheral, or even some other
peripheral on the SCSI bus. As SCSI peripherals became more affordable
and people began connecting multiple devices to their computer systems,
the desire to unplug a device from one system and plug it into another
grew, but SCSI did not support that capability.

13.1.2  Improvements
Despite these drawbacks, SCSI’s popularity grew. To maintain that popu-
larity, SCSI was modified over time to improve its functionality. SCSI-2,
the first modification, increased the speed from 5 MHz to 10 MHz, thus
doubling the data transfer rate on the bus. This was necessary because the
speed of high-performance devices like disk drives improved so much that
the original SCSI was actually slowing them down. Next, expanding the size
of the bidirectional SCSI data bus from 8 bits to 16 bits not only doubled
the data transfer rate from 10MBps to 20MBps, but also increased the num-
ber of peripherals you could place on the bus from 7 to 15. Variations of
SCSI-2 were known as Fast SCSI (10 MHz), Wide SCSI (16 bits), and Fast and
Wide SCSI (16 bits at 10 MHz).

It should come as no surprise that SCSI-3 followed SCSI-2. SCSI-3 offers
a veritable smorgasbord of different connection options while maintaining
compatibility with the older standards. Although SCSI-3 (using names like
Ultra, Ultra-Wide, Ultra2, Wide Ultra2, Ultra3, and Ultra320) still operates
as a 16-bit bus in the parallel cable mode, and still supports a maximum
of 15 peripherals, it vastly increased the operating speed of the bus and
the maximum permissible physical distance across which SCSI peripherals
could be chained. In short, SCSI-3 operates at speeds of up to 160 MHz,
allowing the SCSI bus to transfer data in bursts up to 320MBps (that is,
faster than many PCI bus interconnects!).

SCSI was originally a parallel interface. Today, it supports four differ-
ent interconnection standards: SCSI Parallel Interface (SPI), Serial SCSI
across FireWire, Fibre Channel Arbitrated Loop, and Serial-Attached SCSI
(SAS). The SPI is the original standard that most people associate with
SCSI. SCSI parallel cables contain either 8 or 16 data lines, depending on
the type of SCSI interface in use. This makes SCSI cables bulky, heavy, and
expensive. The parallel SCSI interface also limits the maximum length of
the SCSI chain in the system to just a few meters. These concerns, especially

370 Chapter 13

the economic ones, are why modern computer systems use SCSI peripherals
only when they require extremely high performance.

Note that the computer system doesn’t own the SCSI bus and doesn’t
necessarily direct the traffic between various peripherals on the bus. SCSI is
a true peer-to-peer bus, and any two peripherals on it may communicate with
each other. Indeed, it’s possible (though unusual) for two computer systems
to share the same SCSI bus.

This peer-to-peer operation can improve the performance of the over-
all system tremendously. To illustrate this point, consider a tape backup
system. In practice, most tape backup programs read a block of data from
a disk drive into the computer’s memory and then write that block of data
from the computer’s memory to the tape drive. On the SCSI bus (in theory,
at least), it’s possible to have the tape and disk drives communicate directly
with each other. The tape backup software would send two commands, one
to the disk drive and one to the tape drive, telling the disk drive to trans-
fer the block of data directly to the tape drive rather than going through
the computer system. Not only does this reduce the number of transfers
across the SCSI bus by half, speeding up the transfer, but it also frees up
the computer’s CPU to do other things. In reality, few tape backup systems
work this way, but there are many examples where two peripherals commu-
nicate across the SCSI bus without using the computer as an intermediary.
Software that programs SCSI peripherals to operate this way (rather than
running the data through the computer’s memory) is a prime example of
great programming.

13.1.3  SCSI Protocol
SCSI is not only an electrical interconnection, but a protocol as well. You
don’t communicate with a SCSI peripheral device by writing some data to
a couple of registers on the SCSI interface card, sending that data down
the SCSI cable to the peripheral device. Instead, you build up a data struc-
ture in memory containing a SCSI command, command parameters, any
data you want to send to the SCSI peripheral, and possibly a pointer with
the memory address where the SCSI controller should store any data the
peripheral device returns. Once you construct this data structure, you nor-
mally provide the SCSI controller with the data structure’s address, and the
SCSI controller then fetches the command from system memory and sends
it to the appropriate peripheral device on the SCSI bus.

13.1.3.1  SCSI Command Set

As SCSI hardware has evolved over the years, so has the SCSI protocol—
or the SCSI command set. SCSI was never intended to serve as just a hard-
disk interface, and the breadth of peripherals that it supports has steadily
increased over time with the advent of new types of computer peripherals.
To accommodate these new and unanticipated uses for the SCSI bus, SCSI’s
designers created a device-independent command protocol that could be
easily extended as new devices were invented. Contrast this with certain

Computer Peripheral Buses 371

device interfaces, such as the original Integrated Disk Electronics (IDE)
interface, which was suitable only for disk drives.

The SCSI protocol transmits a packet containing the peripheral’s
address, the command, and the command’s data. The SCSI-3 standard has
roughly grouped these commands into the following classes:

SCSI Controller Commands (SCC)  Controller commands for
RAID arrays

SCSI Enclosure Services (SES) Commands  Enclosure services
commands

SCSI Graphics Commands (SGC)  Graphics commands for printers

SCSI Block Commands (SBC)  Hard-disk interface commands

Management Server Commands (MSC)  Commands for converting
between SCSI protocols

Multimedia Commands (MMC)  Multimedia commands for devices
such as DVD drives

Object-based Storage Device (OSD) Commands  Commands for
managing how objects are allocated, placed, and accessed

SCSI Primary Commands (SPC)  Primary commands

Reduced Block Commands (RBC)  Commands for simplified hard-
drive subsystems

SCSI Stream Commands (SSC)  Stream commands for tape drives

Although the SCSI commands themselves are standardized, the actual
interface to the SCSI host controller is not. Different host controller manu-
facturers use different hardware to connect their SCSI controller chips to
the host computer system, so how you talk to a SCSI controller chip depends
on the particular host controller device. Because SCSI controllers are very
complex and difficult to program, and because there is no “standard” SCSI
interface chip, programmers are faced with having to write several different
variants of their software to control SCSI devices.

13.1.3.2  SCSI Device Drivers

To correct this situation, SCSI host controller manufacturers like Adaptec
have created specialized device driver modules that provide a uniform
interface to their devices. Rather than writing data directly to a SCSI chip,
a programmer creates an in-memory data structure with SCSI commands
to be placed on the SCSI bus, calls the device driver software, and lets the
device driver transfer the SCSI commands to the SCSI bus. There are sev-
eral benefits of this approach:

•	 It frees the programmer from having to learn the complexities of each
particular host controller.

•	 It allows different manufacturers to provide a compatible interface to
their SCSI controller devices.

372 Chapter 13

•	 It allows manufacturers to create a single optimized driver that properly
supports the capabilities of their device, rather than prompting indi-
vidual programmers to write (possibly mediocre) code for the device.

•	 It allows manufacturers to change the hardware of future versions of
their device without destroying compatibility with existing software.

This concept was carried forward into modern OSes. Today, SCSI host
controller manufacturers write SCSI miniport drivers for OSes like Windows.
These miniport drivers provide a hardware-independent interface to the
host controller so that the OS can simply say, “Here is a SCSI command.
Put it on the SCSI bus.”

13.1.4  SCSI Advantages
One big advantage of the SCSI interface is that it provides parallel process-
ing of SCSI commands. That is, a host system can place several different
SCSI commands on the bus, and different peripheral devices can process
those commands simultaneously. Some devices, like disk drives, can even
accept multiple commands at once and process them in the order that is most
efficient. As an example, suppose that a disk drive is currently near block
1,000. If the system sends block read requests for blocks 5,000; 4,560; 3,000;
and 8,000; the disk controller can rearrange these requests and satisfy them
in the most efficient order (probably 3,000; 4,560; 5,000; and then 8,000) as
it moves the read/write head across the surface of the disk. This results in a
big performance improvement on multitasking OSes that process requests for
disk I/O from several different applications simultaneously.

SCSI is also a great interface for RAID systems because SCSI is one of
the few disk controller interfaces that supports a large number of drives
on the same interface.

The original SPI (parallel SCSI) is all but dead. Even SCSI over FireWire
is almost gone (as is FireWire). However, today SCSI still lives on in the form
of SAS (Serial-Attached SCSI). Very-high-performance hard-disk drives use
the SAS command set (rather than the standard SATA command set). The
highest-performing RAID systems are still built around SAS drives.

The SCSI command set is very powerful, and it is designed for high-
performance applications. It is sufficiently large and complex that space
limitations prevent its inclusion here. Readers interested in a deeper look
at SCSI programming should refer to The Book of SCSI, 2nd ed., by Gary
Field, Peter M. Ridge et al. (No Starch Press, 2000). The complete SCSI
specifications appear at various sites on the web. A quick search for “SCSI
specifications” should turn up several copies.

13.2  The IDE/ATA Interface
Although SCSI is very high performance, it is also expensive. A SCSI device
requires a sophisticated and fast processor in order to handle all the opera-
tions that are possible on the SCSI bus. Furthermore, because SCSI devices
can operate on a peer-to-peer basis (that is, one peripheral may talk to

Computer Peripheral Buses 373

another without intervention from a host computer system), each SCSI
device must carry around a considerable amount of sophisticated software
in ROM on the device’s controller board. Adding all the extra functional-
ity needed to support full SCSI when all you want to do is to attach a single
hard disk to a personal computer system is overkill. The Integrated Drive
Electronics (IDE) interface was an effort to provide a bare-bones, low-cost
mass storage option.

The idea behind the IDE interface was to lower the cost of the disk
drive by using the host computer’s CPU to do the processing (SCSI used
embedded CPUs to handle a lot of the work). Because the PC’s CPU was
usually idle (during SCSI transfers) anyway, this seemed like a good use of
resources. IDE drives, because they were often hundreds of dollars less than
SCSI drives, became incredibly popular on PC systems. The much lower
cost of the IDE interface and of IDE drives ensured its popularity.

Because the original IDE specification was geared specifically to hard-
disk drives and was not particularly well suited for other types of storage
devices, the committee that designed the IDE interface went back to work
and developed the Advanced Technology Attachment with Packet Interface (ATAPI),
which is usually shortened to ATA. Like SCSI, the ATA standard has gone
through several revisions and improvements over the years. The ATAPI speci-
fication (in its eighth version as of 2013) extends IDE to support a wide range
of mass storage devices, including tape drives, zip drives, CD-ROMs, DVDs,
removable cartridge drives, and more. In order to extend the IDE interface
to support all these different storage devices, ATAPI’s designers adopted a
packet command format that is very similar to—in some cases, identical to—
the SCSI packet command format.

In modern protected-mode OSes like Windows or Linux, however, an
application programmer is never allowed to talk directly to the hardware.
In theory, it would be possible to write a miniport driver for IDE to simulate
how SCSI works. In practice, though, the OS vendor generally supplies a
software library that provides an application programming interface (API) to
the IDE/ATAPI devices. The application programmer can then make func-
tion calls to the API, passing appropriate parameters, and the underlying
library routines take care of the remaining tasks associated with actually
talking to the hardware.

Programming ATAPI devices in a modern system is quite similar to
programming SCSI devices. You load up a memory-based data structure
with a command code and a set of parameters, and then pass the memory
structure to a driver library function that passes the data across ATAPI to
the target storage device. If such a low-level library is not available, and your
OS allows it, you can program the ATAPI device to grab this data (generally
using DMA on modern systems).

The full ATAPI specification is almost 500 pages long, so we don’t have
sufficient space to cover it here. If you’re interested in a more detailed look
at IDE/ATAPI, search for “ATAPI specifications” online.

Modern machines use a serial ATA (SATA) controller. This is a high-
performance serial version of the venerable IDE/ATAPI parallel interface.
However, to the programmer, it looks exactly like ATAPI.

374 Chapter 13

13.2.1  The SATA Interface
As time passed, hard drives became sufficiently fast that the IDE/ATA
interface was reducing drive performance. Serial AT Attachment (SATA) and,
later, SATA-II and SATA-III, provided several advantages over the parallel
IDE/ATA (often shortened to PATA, for “Parallel ATA”). Whereas PATA was
capable of running at 133MBps, SATA-I, II, and III were capable of transfer-
ring data at 1.5Gbps (gigabits per second; 150MBps), 3.0Gbps (300MBps),
and 6.0Gbps (600MBps), respectively, though few (RAID) systems even
come close to achieving these data transfer rates. SATA also offered other
advantages over PATA, including smaller cables (7 conductors rather than
40 or 80) and hot swapping. Today, most hard-disk drives connecting to PCs
use the SATA interface (and most of the others use SAS, which is effectively
SCSI over SATA, or Fibre Channel interfaces).

13.2.2  Fibre Channel
Fibre Channel is a very high-performance transport mechanism (up to
128Gbps). While it is a generic network protocol for large mainframe com-
puters, one of its predominant uses is to connect very high-performance
disk arrays to computer system (usually servers). For disk drive use, Fibre
Channel transports SCSI commands across the Fibre Channel cabling. So,
the 1980s SCSI interface lives on today in Fibre Channel, still the highest-
performance disk interface protocol.

13.3  The Universal Serial Bus
The Universal Serial Bus (USB) is a mechanism that allows you to use a
single interface to connect a wide variety of peripheral devices to a PC,
similar to SCSI. The USB supports hot-pluggable devices, meaning you can
plug and unplug devices without shutting down the power or rebooting
your machine, and it supports plug-and-play devices, meaning the OS will
automatically load a device driver, if available, once you plug in a device.
This flexibility comes at a cost, however. Programming devices on the USB
is considerably more complex than programming a serial or parallel port.
You cannot communicate with USB peripherals by reading or writing a
few device registers.

13.3.1  USB Design
To understand the motivation behind USB, consider the situation PC users
faced when Windows 95 first arrived, nearly 14 years after the introduction
of the IBM PC. IBM designed its PC with a variety of peripheral intercon-
nects that were common on PCs and minicomputers in the late 1970s.
However, the IBM designers didn’t anticipate (or allow for) the wide variety
of peripheral devices that people would invent to attach to PCs in the fol-
lowing decades. They also did not count on any individual PC owners con-
necting more than a few different peripheral devices to their machines.

Computer Peripheral Buses 375

Certainly, three parallel ports, four serial ports, and a single hard-disk drive
should have been sufficient!

By the time Windows 95 was introduced, people were connecting their
PCs to all kinds of devices, including sound cards, video digitizers, digital
cameras, advanced gaming devices, scanners, telephones, mice, digitizing
tablets, SCSI devices, and literally hundreds of other devices the original
PC’s designers hadn’t dreamed of. The creators of these devices interfaced
their hardware to the PC using peripheral I/O port addresses, interrupts,
and DMA channels that were originally intended for other devices. The
problem with this approach was that there were a limited number of port
addresses, interrupts, and DMA channels, and a large number of devices
competing for them. As a workaround, the device manufacturers added
“ jumpers” to their cards that would allow the purchaser to select from a
small set of different port addresses, interrupts, and DMA channels, to alle-
viate conflicts with other devices.

Creating a conflict-free system was a complex process, though, and it
was impossible to achieve with some combinations of peripherals. In fact,
one of the big selling points of the Apple Macintosh during this period was
that you could easily connect multiple peripheral devices without worrying
about device conflicts. What was needed was a new peripheral connection
system that supported a large number of devices without conflicts. USB was
the answer.

USB allows the connection of up to 127 devices simultaneously by using
a 7-bit address. USB reserves the 128th slot, address 0, for autoconfigura-
tion purposes. In real life, it’s doubtful that you’d ever successfully connect
so many devices to a single PC, but it’s good to know that USB has a fair
amount of potential for growth, unlike the original PC.

Despite the name, USB isn’t a true “bus” in the sense of allowing several
devices to communicate with one another. Instead, the USB is a controller/
peripheral connection, with the PC always acting as controller. This means,
for example, that a digital camera can’t talk directly to a printer across the
USB. To transmit information from the camera to the printer, both of which
are connected to a PC, the camera must first send its data to the PC before
the PC can pass the data along to the printer. The PCIe, ISA, FireWire
(IEEE 1394), and Thunderbolt buses allow two devices to communicate peer-
to-peer (that is, independent of the host’s CPU), but USB wasn’t designed to
support this method of communication (to keep down the cost of peripherals
and the USB interface chips they contain).1

USB also keeps peripheral costs down by moving as much complexity as
possible to the host (PC) side of the connection. The thinking here is that
the PC’s CPU will offer much higher performance than the low-cost micro-
controllers found in most USB peripheral devices. This means that writing
software to be embedded in a USB peripheral isn’t much more work than

1. Recently, the USB Interface Group (or USB-IF) has defined an extension to the USB,
known as USB On-the-Go, that allows a limited amount of (pseudo-)peer-to-peer operation.
Rather than supporting true peer-to-peer operation, this scheme allows different peripherals
to take turns being the master on the USB.

376 Chapter 13

using another interface. On the other hand, writing USB software on the
host side is very complex—so complex, in fact, that it isn’t realistic to expect
programmers to do so.

Instead, the OS supplier must provide a USB host controller stack that
enables communication with USB devices, and most application program-
mers talk to those devices using the OS’s device driver interface. Even pro-
grammers who need to write custom USB device drivers for their particular
device don’t talk directly to the USB hardware. Instead, they make OS calls
to the USB host controller stack with requests for their particular device.
Because a typical USB host controller stack is generally around 20,000 to
50,000 lines of C code and requires several years of development, there’s
little chance of programming USB devices on a system that doesn’t provide
a native USB stack (such as MS-DOS).

13.3.2  USB Performance
The initial USB design supported two different types of peripherals—
slow and fast—to support devices with different price points. Slow devices
could transfer up to 1.5Mbps (megabits per second) across the USB, while
fast devices were capable of transferring up to 12Mbps (1.5MBps). Cost-
sensitive devices could be built inexpensively as low-speed devices. Non-
cost-sensitive devices could use the 12Mbps data rate.

The USB 2.0 specifications added a high-speed mode supporting up
to 480Mbps data transfer rates (60MBps), at considerable extra complex-
ity and cost. USB 3.0 upped the performance to 635MBps (super-speed).
Finally, the USB 3.1 and USB-C (Thunderbolt 3) interfaces bumped
the speed up to 5GBps (gigabytes per second; SuperSpeed), 10GBps
(SuperSpeed+), and 40GBps, respectively. USB 4.0 is expected to be capa-
ble of up to 80GBps.

USB does not dedicate the entire available bandwidth to one periph-
eral. Instead, the host controller stack multiplexes the data on the USB,
effectively giving each peripheral a “time slice” of the bus. The USB oper-
ates with a 1-millisecond clock. At the start of each millisecond period,
the USB host controller begins a new USB frame, and during a frame, each
peripheral may transmit or receive a packet of data. Packets vary in size,
depending on the speed of the device and the transmission time, but typi-
cally contain between 4 and 64 bytes of data. If you’re transferring data
between four peripherals at an equal rate, you’d typically expect the USB
stack to transmit one packet of data between the host and each peripheral
in a round-robin fashion, taking care of the first peripheral first, the second
peripheral second, and so on. Like time slicing in a multitasking OS, this
data transfer mechanism gives the appearance of transferring data concur-
rently between the host and every USB peripheral, even though there can
be only one transmission on the USB at a time.

Although USB provides a very flexible and expandable system, because
the bandwidth on the bus is shared between all attached peripherals, it
can slow devices down. For example, if you connect two disk drives to the
USB and access both drives simultaneously, the two drives must share

Computer Peripheral Buses 377

the available bandwidth on the USB. For USB 1.x devices, this produces a
noticeable speed degradation. For USB 2.x devices, the available bandwidth
is sufficiently high (typically higher than what two disk drives can sustain)
that you won’t notice the performance degradation. For USB 3.x (and later)
and USB-C, the performance is as high as many native bus controllers. (For
example, Thunderbolt-3/USB-C provides a transport mechanism for the
PCI bus and SCSI.) Theoretically, you could use multiple host controllers
to provide multiple USB buses in a system (with full bandwidth available on
each bus), but this addresses only part of the performance problem.

 Another performance consideration is the overhead of the USB host
controller stack. Although the USB 1.x hardware may be capable of 12Mbps
bandwidth, there is some dead time—that is, time during which no trans-
mission takes place on the USB—because the host controller stack takes
a while to set up data transfers. In some USB systems, you can achieve at
most half the theoretical USB bandwidth, because the host controller stack
uses so much of the available CPU time setting up the transfer and moving
data around. On some embedded systems using slower processors (such as
486, StrongArm, or MIPS) running an embedded USB 1.x host controller
device, this can be a real problem.

If a particular host controller stack is incapable of maintaining the full
USB bandwidth, it usually means that the CPU can’t process USB informa-
tion as fast as the USB produces it, because the CPU’s processing capabili-
ties are saturated—and no time is available for other computations, either.
Remember, USB leaves all the complex computations for the host controller
on the USB, and executing code in the USB stack on the host requires CPU
cycles. It’s quite possible for the host controller to get so involved processing
USB traffic that overall system performance for non-USB traffic suffers.

Fortunately, on PCs with USB 2.x controllers, the host controller con-
sumes only a small percentage of the USB bandwidth. When USB-3 and
USB-C came along, USB hardware began supporting other transmission
protocols, such as SCSI and PCI, eliminating many of the performance
issues associated with USB.

13.3.3  Types of USB Transmissions
The USB protocol supports four different types of data transmissions: con-
trol, bulk, interrupt, and isochronous. The peripheral manufacturer, not the
application programmer, determines the data transfer mechanism between
the host and a given peripheral device. That is, if a device uses the isochro-
nous data transfer mode to communicate with the host PC, a programmer
can’t decide to use bulk transfers instead. The application program may not
even be aware of the underlying transmission scheme, as long as the software
can handle the rate at which the device produces or consumes the data.

USB generally uses control transmissions to initialize a peripheral
device by reading and writing data from and to a peripheral’s registers. For
example, if you have a USB-to-serial converter device, you would typically
use control transfers to set the baud rate, number of data bits, parity, num-
ber of stop bits, and so on, just as you would store data into the 8250 SCC’s

378 Chapter 13

register set.2 USB guarantees correct delivery of control transmissions and
also guarantees that at least 10 percent of the USB bandwidth is available
for control transmissions to prevent starvation, a situation where a particu-
lar transmission never occurs because some higher-priority transmission is
always taking place.

USB bulk transmissions are used to transmit large blocks of data
between the host and a peripheral device. Bulk transmissions are available
only on full-speed (12Mbps), high-speed (480Mbps), and super-speed (USB
3/USB-C) devices, not on low-speed ones. On full-speed devices, a bulk
transmission generally carries between 4 and 64 bytes of data per packet;
on high- and super-speed devices, you can transmit up to 1,023 bytes per
packet. USB guarantees correct delivery of a bulk packet between the host
and the peripheral device, but it does not guarantee timely delivery. If the
USB is handling a large number of other transmissions, it may take a while
for a bulk transmission to complete. In theory, a bulk transmission might
never occur if the USB is sufficiently busy with the right combination of iso-
chronous, interrupt, and control transmissions. In practice, however, most
USB stacks do set aside a small amount of guaranteed bandwidth for bulk
transmissions (generally about 2 to 2.5 percent) to prevent starvation.

USB intends bulk transmissions to be used by devices that need to trans-
mit a fair amount of data correctly, but not necessarily quickly. For example,
when you’re transferring data to a printer or between a computer and a disk
drive, correct transfer is far more important than timely transfer. Sure, it may
be annoying to wait what seems like forever to save a file to a USB disk drive,
but operating slowly is much better than writing incorrect data to the disk file.

For devices that require both correct data transmission and timely deliv-
ery, USB uses interrupt transfers. Despite their name, interrupt transfers do
not involve interrupts on the computer system. Instead, the USB protocol
marks interrupt transfers as high-priority events. The host polls all devices on
the USB, but the devices do not interrupt the host when they have data avail-
able. A peripheral device using the interrupt transfer type may request how
often the host polls it, choosing an interval from 1 to 255 milliseconds.3

In order to guarantee correct and timely delivery of interrupt trans-
missions between a host and a peripheral device, the USB host controller
stack must reserve a portion of the USB bandwidth whenever an applica-
tion opens a device for interrupt transmission. For example, if a particular
device wants to be serviced every millisecond and needs to transmit 16
bytes per packet, the USB host controller stack must reserve a little bit more
than 128Kbps (kilobits per second) of bandwidth (16 bytes × 8 bits per byte
× 1,000 packets per second) from the total bandwidth available. You need to
reserve a little bit more than this, because there’s some protocol overhead
on the bus as well—at least 10 to 20 percent, but it could be more depend-
ing upon how the USB stack is written.

2. In theory, you could use control transmissions to pass data between the peripheral and the
host, but very few devices do so.

3. The host may legally poll the device more often than the device requests. The specified
polling time is a minimum polling interval.

Computer Peripheral Buses 379

Because there’s a limited amount of bandwidth available on the USB,
and because interrupt transmissions consume a fixed amount of that band-
width whenever you open a device for use, you can’t have an arbitrary number
of interrupt transmissions active at any one time. Once the USB bandwidth
(minus the 10 percent that USB reserves for control transmissions) is con-
sumed, the stack refuses to activate any new interrupt transmissions.

Interrupt transmission packets are between 4 and 64 bytes long, though
most of the time they fall into the low end of this range. Larger packets
would prevent the system from guaranteeing the desired polling frequency.

Many devices use interrupt transmissions to notify the host CPU
that some data is available, and then the host uses a bulk transmission to
actually read the data from the device. If the amount of data to transmit
between the host and the peripheral is small enough, the peripheral may
transmit the data as part of the interrupt’s data payload to avoid a second
transmission. Keyboards, mice, joysticks, and similar devices typically trans-
mit their data this way. Disk drives, scanners, and other such devices use
interrupt transmissions to notify the host that data is available and then use
bulk transfers to move the data around.

Isochronous (or iso) transfers are the fourth transfer type that USB sup-
ports. Like interrupt transfers, iso transfers require a timely delivery. Like
bulk transfers, they generally involve larger data packets. However, unlike
the other three transfer types, they do not guarantee correct delivery
between the host and the peripheral device. Timely delivery is so important
for iso transfers that if a packet arrives late, it might as well not arrive at all.
Peripheral devices such as audio input (microphones) and output (speak-
ers) and video cameras use iso transmissions. If you lose a packet, or if a
packet is transmitted incorrectly between the peripheral and host, you’ll
get a momentary glitch on the video display or in the audio signal, but such
problems are not disastrous as long as they don’t occur too frequently.

Like interrupt transfers, iso transfers consume USB bandwidth. Whenever
you open a connection to an iso USB peripheral device, that device requests
a certain amount of bandwidth. If the bandwidth is available, the USB host
controller stack reserves it for the device until the application is finished with
the device. If sufficient bandwidth is not available, the USB stack notifies the
application that it cannot use the desired device until the user stops using
other iso and interrupt devices to free up some bandwidth.

13.3.4  USB-C
USB originally competed with FireWire for mindshare among peripheral
developers. Early on, FireWire was a much higher-performing interface and
protocol. However, with the advent of USB-2 and, especially, USB-3, FireWire
became less attractive. During this time, Apple worked with Intel to create
a new external peripheral bus protocol—Thunderbolt. Thunderbolt totally
smoked USB on performance. The race was on again, this time between
USB and Thunderbolt. However, Intel (which promoted both USB and
Thunderbolt) decided to merge the two standards into one: USB-C. USB-C is
actually a Thunderbolt 3 hardware interface that happens to carry USB, PCI,

380 Chapter 13

SCSI, and other protocols over the serial bus. Now, you don’t really have to
decide—USB-C (or Thunderbolt-3) is the interface of choice.

13.3.5  USB Device Drivers
Most OSes that provide a USB stack support dynamic loading and unload-
ing of USB device drivers, known as client drivers in USB terminology.
Whenever you attach a USB device to the USB, the host system gets a sig-
nal telling it that the bus topology has changed (that is, there’s a new device
on the USB). The host controller scans for the new device, a process known
as enumeration, and then reads some configuration information from the
peripheral. Among other things, this configuration information tells the
USB stack the type of the device, the manufacturer, and model informa-
tion. The USB host stack uses this information to determine which device
driver to load into memory. If the USB stack can’t find a suitable driver, it
generally opens up a dialog box requesting help from the user; if the user
can’t provide the path to an appropriate driver, the system simply ignores
the new device. Similarly, when the user unplugs a device, the USB stack
unloads the appropriate device driver from memory if it’s not also being
used for some other device.

To simplify device driver implementation for many common devices,
such as keyboards, disk drives, mice, and joysticks, the USB standard
defines certain device classes. Peripheral manufacturers who create devices
that adhere to one of these standardized device classes don’t have to supply
a device driver with their equipment. Instead, the class drivers that come
with the USB host controller stack provide the only interface necessary.
Examples of class drivers include HID (Human Interface Devices, such as
keyboards, mice, and joysticks), STORAGE (disk, CD, and tape drives),
COMMUNICATIONS (modems and serial converters), AUDIO (speakers,
microphones, and telephony equipment), and PRINTERS. Peripheral man-
ufacturers can always opt to supply their own specialized features that add
bells and whistles to their product, but a customer will often get basic func-
tionality from some existing class driver by simply plugging in the device
without installing a device driver specifically for it.

13.4  For More Information
Axelson, Jan. USB Complete: The Developer’s Guide. 4th ed. Madison, WI:

Lakeview Publishing, 2009.

Field, Gary, Peter M. Ridge et al. The Book of SCSI. 2nd ed. San Francisco:
No Starch Press, 2000.

N O T E 	 For the USB, FireWire, and TCP/IP (network) protocol stacks, you’ll find considerable
information online. For example, http://www.usb.org/ contains all the technical
specifications for the USB protocol as well as programming information for various com-
mon USB host controller chip sets. You’ll also find plenty of online code resources, such
as complete source code from Linux for TCP/IP and USB host controller stacks.

The most prevalent I/O device on modern
computers is probably the mass storage

device. Whereas some PCs don’t have a
display (they’re operated headlessly), or even

a keyboard or mouse (they’re accessed remotely),
almost every computer system recognizable as a PC
has a mass storage device of some sort. This chapter will focus on the types
of mass storage devices—hard drives, floppy disks, tape drives, flash drives,
solid state drives, and more—as well as the special filesystem format they
use to organize the data they store.

14.1  Disk Drives
Almost all modern computer systems include some sort of disk drive unit
to provide online mass storage. At one time, certain workstation vendors
produced diskless workstations, but the relentless drop in price and increas-
ing storage space of fixed (aka “hard”) disk and solid-state drive (SSD)

14
M A S S S T O R A G E D E V I C E S A N D

F I L E S Y S T E M S

382 Chapter 14

units have all but obliterated the diskless computer system. Disk drives are
so ubiquitous in modern systems that most people take them for granted.
However, it’s dangerous for a programmer to take a disk drive for granted.
Software constantly interacts with the disk drive as a medium for applica-
tion file storage, so it’s very important to understand how disk drives oper-
ate if you want to write efficient code.

14.1.1  Floppy Disk Drives
Floppy disks have all but disappeared from today’s PCs. Their limited stor-
age capacity (typically 1.44MB) is far too small for modern applications
and the data they produce. It’s hard to believe that at the beginning of the
PC revolution a 143KB (that’s kilobytes, not megabytes or gigabytes) floppy
drive was considered a high-ticket item. However, floppy disk drives have
failed to keep up with technological advances in the computer industry.
Therefore, we won’t consider them further in this chapter.

14.1.2  Hard Drives
The fixed disk drive, more commonly known as the hard drive, is the most
common mass storage device in use today (though, as of 2020, SSDs are
rapidly replacing hard drives). The modern hard drive is truly an engineer-
ing marvel. Between 1982 and 2020, the capacity of a single drive unit has
increased over 2,400,000-fold, from 5MB to over 16TB (terabytes). At the
same time, the minimum price for a new unit has dropped from $2,500
(US) to below $50. No other component in the computer system has enjoyed
such a radical increase in capacity and performance along with a compara-
ble drop in price. (Semiconductor RAM probably comes in second: paying
the 1982 price today would get you about 40,000 times the capacity.)

While hard drives were decreasing in price and increasing in capac-
ity, they were also becoming faster. In the early 1980s, a hard-drive sub-
system was doing well to transfer 1MBps between the drive and the CPU’s
memory; modern hard drives can transfer more than 2,500MBps.1 While
this increase in performance isn’t as great as that of memory or CPUs, keep
in mind that disk drives are mechanical units on which the laws of physics
place greater limitations. In some cases, the dropping cost of hard drives
has allowed system designers to improve their performance by using disk
arrays (see “RAID Systems” on page 388 for details). By using certain
hard-disk subsystems like disk arrays, you could achieve 2500MBps (or bet-
ter) transfer rates, though it’s not especially cheap to do so.

 Hard drives are so named because their data is stored on a small, rigid
disk that is usually made out of aluminum or glass and is coated with a mag-
netic material. Floppy disks, in contrast, store their information on a thin
piece of flexible Mylar plastic.

1. Well, at least when connected in a high-performance RAID system.

Mass Storage Devices and Filesystems 383

In disk-drive terminology, the small aluminum or glass disk is known as
a platter. Each platter has two surfaces, front and back (or top and bottom),
both of which have the magnetic coating. During operation, the hard-drive
unit spins this platter at a particular speed, which these days is usually 3,600;
5,400; 7,200; 10,000; or 15,000 revolutions per minute (RPM). Generally,
though not always, the faster the platter spins, the faster the data is read
from the disk and the higher the data transfer rate between the disk and
the system. The smaller disk drives in laptop computers typically spin at
much slower speeds, like 2,000 or 4,000 RPM, to conserve battery life and
generate less heat.

A hard-disk subsystem contains two main active components: the disk
platter(s) and the read/write head. The read/write head, when held sta-
tionary, floats above concentric circles, or tracks, on the disk surface. Each
track is broken up into a sequence of sections known as sectors or blocks. The
actual number of sectors varies by drive design, but a typical hard drive has
between 32 and 128 sectors per track (see Figure 14-1). Each sector typically
holds between 256 and 4,096 bytes of data. Many disk-drive units let the OS
choose between several different sector sizes, the most common being 512
bytes and 4,096 bytes.

Sectors on a track

Platter

Tracks

Figure 14-1: Tracks and sectors on a hard-disk platter

384 Chapter 14

The disk drive records data when the read/write head sends a series of
electrical pulses to the platter, which translates them into magnetic pulses
that the platter’s magnetic surface retains. The frequency at which the disk
controller can record these pulses is limited by the quality of the electron-
ics, the read/write head design, and the quality of the magnetic surface.

The magnetic medium is capable of recording two adjacent bits on
its disk surface and then differentiating between them during a later
read operation. However, as you record bits closer and closer together, it
becomes increasingly difficult to differentiate between them in the mag-
netic domain. Bit density is a measure of how closely a particular hard disk
can pack data into its tracks—the higher the bit density, the more data
you can squeeze onto a single track. However, recovering densely packed
data requires faster and more expensive electronics.

The bit density has a big impact on the performance of the drive. If
the drive’s platters are rotating at a fixed number of RPM, then the higher
bit density, the more bits will rotate underneath the read/write head over
a certain duration. Larger disk drives tend to be faster than smaller disk
drives because they employ a higher bit density.

By moving the disk’s read/write head in a roughly linear path from
the center of the disk platter to the outside edge, the system can position a
single read/write head over any one of several thousand tracks. Yet the use
of only one read/write head means that it will take a fair amount of time to
move the head among the disk’s many tracks. Indeed, two of the most cited
hard-disk performance parameters are the read/write head’s average seek
time and track-to-track seek time.

The average seek time is half the amount of time it takes to move the
read/write head from the edge of the disk to the center, or vice versa. A typ-
ical high-performance disk drive has an average seek time between 5 and
10 milliseconds. On the other hand, its track-to-track seek time—that is, the
amount of time it takes to move the disk head from one track to the next—
is on the order of 1 or 2 milliseconds. From these numbers, you can see
that the acceleration and deceleration of the read/write head consumes a
much greater percentage of the track-to-track seek time than of the average
seek time. It takes only 20 times longer to traverse 1,000 tracks than it does
to move to the next track. And because moving the read/write heads from
one track to the next is usually the most common operation, the track-to-
track seek time is probably a better indication of the disk’s performance.
Regardless of which metric you use, however, keep in mind that moving the
disk’s read/write head is one of the most expensive operations you can do
on a disk drive, so it’s something you want to minimize.

Because most hard-drive subsystems record data on both sides of a
disk platter, there are two read/write heads associated with each platter—
one for the top and one for the bottom. And because most hard drives
incorporate multiple platters in their disk assembly in order to increase
storage capacity (see Figure 14-2), a typical drive has multiple pairs of
read/write heads.

Mass Storage Devices and Filesystems 385

Disk platters

Figure 14-2: Multiple-platter hard-disk assembly

The various read/write heads are physically connected to the same
actuator. Therefore, each head sits above the same track on its respective
platter, and all the heads move across the disk surfaces as a unit. The set of
all tracks over which the read/write heads are currently sitting is known as
a cylinder (see Figure 14-3).

A cylinder is
the set of the
same tracks
across all
platters.

Figure 14-3: A hard-disk cylinder

Although using multiple heads and platters increases the cost of a hard-
disk drive, it also improves the performance. The performance boost occurs
when data the system needs isn’t located on the current track. In a hard-
disk subsystem with only one platter, the read/write head would need to
move to another track to locate the data. But in a subsystem with multiple
platters, the next block of data to read is usually located within the same
cylinder. And because the hard-disk controller can quickly switch between
read/write heads electronically, doubling the number of platters in a disk

386 Chapter 14

subsystem nearly doubles the disk unit’s track-to-track seek performance
because it winds up doing half the number of seek operations. Of course,
increasing the number of platters also increases the unit’s capacity, which
is another reason why high-capacity drives are often higher-performance
drives as well.

With older disk drives, when the system wants to read a particular sec-
tor from a particular track on one of the platters, it commands the disk
to position the read/write head over the appropriate track, and the disk
drive then waits for the desired sector to rotate underneath. But by the
time the head settles down, there’s a chance that the desired sector has
just passed under the head, in which case the disk has to wait for almost
one complete rotation before it can read the data. On average, the desired
sector appears halfway across the disk. If the disk is rotating at 7,200 RPM
(120 revolutions per second), it requires 8.333 milliseconds for one com-
plete rotation of the platter. Typically, 4.2 milliseconds will pass before
the sector rotates underneath the head. This delay is known as the average
rotational latency of the drive, and it is usually equal to the time needed for
one rotation, divided by 2.

To see how average rotational latency can be a problem, consider that
an OS usually manipulates disk data in sector-sized chunks. For example,
when reading data from a disk file, the OS typically requests that the disk
subsystem read a sector of data and return that data. Upon receiving the
data, the OS processes it and then very likely makes a request for additional
data from the disk. But what happens when this second request is for data
located on the next sector of the current track? Unfortunately, while the
OS is processing the first sector’s data, the disk platters are still moving
underneath the read/write heads. If the OS wants to read the next sector
on the disk’s surface but doesn’t notify the drive immediately after read-
ing the first sector, the second sector will rotate underneath the read/write
head. When this happens, the OS will have to wait for almost a complete
disk rotation before it can read the second sector. This is known as blowing
revs (revolutions). If the OS (or application) is constantly blowing revs when
reading data from a file, filesystem performance suffers dramatically. In
early “single-tasking” OSes running on slower machines, blowing revs was
an unpleasant fact of life. If a track had 64 sectors, it would often take 64
revolutions of the disk in order to read all the data on a single track.

To combat this problem, the disk-formatting routines for older drives
allow the user to interleave sectors. Interleaving is the process of spreading
out sectors within a track so that logically adjacent sectors are not physically
adjacent on the disk surface (see Figure 14-4).

The advantage of interleaving sectors is that once the OS reads a sector,
it will take a full sector’s rotation time before the logically adjacent sector
moves under the read/write head. This gives the OS time to do some pro-
cessing and to issue a new disk I/O request before the desired sector moves
underneath the head. However, in modern multitasking OSes, it’s difficult
to guarantee that an application will gain control of the CPU so that it can
respond before the next logical sector moves under the head, so interleav-
ing isn’t very effective.

Mass Storage Devices and Filesystems 387

1

2

3

4

5

6

7

8

9

10

11
12

13

14

2:1 Sector interleaving

Figure 14-4: Interleaving sectors

To solve this problem, as well as improve disk performance in general,
most modern disk drives include memory on the disk controller that allows
it to read data from an entire track in one disk revolution. Once it caches
the track data in memory, the controller can communicate disk read/write
operations at RAM speed rather than at disk rotation speeds, which can
dramatically improve performance. Reading the first sector from a track
still exhibits rotational latency, but once the disk controller reads the entire
track, the latency is all but eliminated for that track.

A typical track may have 64 sectors of 512 bytes each, for a total of 32KB
per track. Because newer disks usually have between 8MB and 512MB of on-
controller memory, the controller can buffer hundreds of tracks in its mem-
ory. Therefore, the disk controller cache improves not only the performance
of disk read/write operations on a single track, but also overall disk perfor-
mance. Note that the disk controller cache speeds up read operations and
write operations. For example, the CPU can often write data to the disk con-
troller’s cache memory within a few microseconds and then return to normal
data processing while the disk controller moves the disk read/write heads
into position. When the disk heads are finally in position at the appropriate
track, the controller can write the data from the cache to the disk surface.

From an application designer’s perspective, advances in disk subsystem
design have reduced the need to understand how disk-drive geometries
(track and sector layouts) and disk-controller hardware affect the applica-
tion’s performance. Despite these attempts to make the hardware transpar-
ent to the application, though, software engineers wanting to write great

388 Chapter 14

code must always remain cognizant of the disk drive’s underlying operation.
For example, it’s valuable to know that sequential file operations are usually
much faster than random-access operations because sequential operations
require fewer head seeks. Also, if you know that a disk controller has an on-
board cache, you can write file data in smaller blocks, doing other process-
ing between the block operations, to give the hardware time to write the
data to the disk surface. Though the techniques early programmers used
to maximize disk performance don’t apply to modern hardware, by under-
standing how disks operate and how they store their data, you can avoid
various pitfalls that produce slow code.

14.1.3  RAID Systems
Because a modern disk drive typically has between 8 and 16 heads, you
might wonder if you could improve performance by simultaneously reading
or writing data on multiple heads. While this is certainly possible, it really
didn’t happen until SATA and larger disk caches came along. But there’s yet
another way to improve disk drive performance using parallel read and write
operations—the redundant array of inexpensive disks (RAID) configuration.

The RAID concept is quite simple: you connect multiple hard-disk
drives to a special host controller card (sometimes known as an adapter),
which simultaneously reads and writes the various disk drives. By hooking
up two disk drives to a RAID controller card, you can read and write data
about twice as fast as you could with a single disk drive. By hooking up four
disk drives, you can improve average performance by almost a factor of 4.

RAID controllers support different configurations depending on the
purpose of the disk subsystem. So-called RAID 0 subsystems use multiple
disk drives simply to increase the data transfer rate. If you connect two
150GB disk drives to a RAID controller, you’ll produce the equivalent of
a 300GB disk subsystem with double the data transfer rate. This is a typi-
cal configuration for personal RAID systems—those systems that are not
installed on a file server.

Many high-end file-server systems are RAID 1 (and higher) subsystems
that store multiple copies of the data across the multiple disk drives, rather
than increasing the data transfer rate between the system and the disk
drive. In such configurations, should one disk fail, a copy of the data is still
available on another disk drive. Some even higher-level RAID subsystems
combine four or more disk drives to increase the data transfer rate and pro-
vide redundant data storage. This type of configuration usually appears on
high-end, high-availability file server systems.

Modern RAID system configurations can be categorized as follows:

RAID 0  Interleaves data across all disks to increase performance
(at the expense of reliability). This is known as striping. Requires a
minimum of two disks.

RAID 1  Replicates data on pairs of drives to increase reliability (at
the cost of performance; also cuts in half the total amount of storage
available). Allows failure of at least one drive without data loss (depend-
ing on the drives that fail, could support two or more drive failures).

Mass Storage Devices and Filesystems 389

Requires an even number of drives, with a minimum of two disks. This
is known as mirroring.

RAID 5  Stores parity information on the drives. Faster than RAID
1, slower than RAID 0. Allows failure of one drive without data loss.
Requires a minimum of three drives. At three drives, 66 percent of
the total storage is available for data; any drives you add beyond three
increase data storage by the size of the added drive.

RAID 6  Stores duplicate parity information across the drives. Faster
than RAID 1, slower than RAID 0 and 5. Allows failure of two drives
without data loss. Requires a minimum of four drives. At four drives,
half the total storage is available for data, but any drives you add
beyond four increase system storage by the size of the added drive.

RAID 10  Combination of RAID 1 + RAID 0. Minimum four drives;
expansion has to be in pairs of drives. Interleaved (striped) data across
drives to speed up performance, plus redundant storage on pairs of drives
for reliability. Faster than RAID 1 (but slower than RAID 0).

RAID 50, 60  Combination of RAID 5 + RAID 0 or RAID 6 + RAID 0.

There are other RAID combinations (like 2, 3, and 4), but most are
obsolete and you won’t find them in use in modern systems.

RAID systems enable you to dramatically increase disk subsystem per-
formance without having to purchase exotic and expensive mass storage
solutions. Though a software engineer can’t assume that every computer
system in the world has a fast RAID subsystem available, for those applica-
tions that demand the absolute highest-performance storage subsystem,
RAID (possibly using SSDs) could be a solution.

14.1.4  Optical Drives
An optical drive uses a laser beam and a special photosensitive medium to
record and play back digital data. Optical drives have a few advantages over
hard-disk subsystems that use magnetic media:

•	 They are more shock resistant, so banging the disk drive around during
operation won’t destroy the drive unit as easily as it would a hard disk.

•	 The medium is usually removable, allowing you to maintain an almost
unlimited amount of offline or near-line storage.

•	 They’re fairly high-capacity (though modern USB memory sticks and
SD cards have greater capacities).

At one time, optical storage systems appeared to be the wave of the
future because they offered very high storage capacity in a small space.
Unfortunately, they have fallen out of favor in all but a few niche markets
because they also have several drawbacks:

•	 While their read performance is okay, their write speed is very slow—an
order of magnitude slower than a hard drive and only a few times faster
than a floptical (older combined magnetic/optical floppy) drive.

390 Chapter 14

•	 Although the optical medium is far more robust than the magnetic
medium, the magnetic medium in a hard drive is usually sealed away
from dirt, humidity, and abrasion. In contrast, optical media is easily
accessible to someone who really wants to do damage to the disk’s surface.

•	 Seek times for optical-disk subsystems are much slower than for
magnetic disks.

•	 Optical disks have limited storage capacity, currently less than about
128GB (Blu-ray).

Ultimately, the low price and increasing capacity of USB flash drives
killed off optical drives for personal computer use.

One area where optical-disk subsystems are still in use, however, is in
near-line storage subsystems, which typically use a robotic jukebox to manage
hundreds or thousands of optical disks. Although you could argue that a
rack of high-capacity hard-disk drives would provide a more space-efficient
storage solution, it would consume far more power, generate far more heat,
and require a more sophisticated interface than an optical jukebox, which
usually has only a single optical-drive unit and a robotic disk-selection
mechanism. For archival storage, where the server system rarely needs
access to any particular piece of data in the storage subsystem, a jukebox
system is a very cost-effective solution.

If you wind up writing software that manipulates files on an optical-
drive subsystem, the most important thing to remember is that read access
is much faster than write access. You should try to use the optical system
as a “read-mostly” device and avoid writing data as much as possible to the
device. You should also avoid random access on an optical disk’s surface, as
seek times are very slow.

CD, DVD, and Blu-ray drives are also optical drives. However, because
of their widespread use, and their sufficiently different organization and
performance when compared with standard optical drives, they warrant a
separate discussion.

14.1.5  CD, DVD, and Blu-ray Drives
CD-ROM was the first optical drive subsystem to gain wide acceptance in
the personal computer market. CD-ROM disks were based on the audio CD
digital recording standard, and they provided a large amount of storage
(650MB) when compared to hard-disk-drive storage capacities at the time
(typically 100MB). As time passed, of course, this relationship reversed. Still,
CD-ROMs became the preferred distribution vehicle for most commercial
applications, completely replacing the floppy-disk medium for this purpose.

Although the CD-ROM format is a very inexpensive distribution
medium in large quantities, often costing only a few cents per disk, it’s not
appropriate for small production runs. The problem is that it typically costs
several hundreds or thousands of dollars to produce a disk master (from
which the run of CD-ROMs are made), meaning that CD-ROM is usually
cost-effective only when the quantity of disks being produced is at least in
the thousands.

Mass Storage Devices and Filesystems 391

The solution was a new CD medium, CD-Recordable (CD-R), which
allowed the production of one-off CD-ROMs. CD-R uses a write-once opti-
cal disk technology, known euphemistically as WORM (write-once, read-
many). When first introduced, CD-R disks cost about $10 to $15. However,
once the drives reached critical mass and media manufacturers began pro-
ducing blank CD-R disks in huge quantities, their bulk retail price fell to
about $0.25. As a result, CD-R made it possible to distribute a fair amount
of data in small quantities.

One obvious drawback to CD-R is the “write-once” limitation. To
overcome it, the CD-Rewriteable (CD-RW) drive and medium were cre-
ated. CD-RW, as its name suggests, supports both reading and writing.
Unlike with optical disks, however, you can’t simply rewrite a single sector
on CD-RW. Instead, to rewrite the data on a CD-RW disk, you must first
erase the whole disk.

Although the 650MB of storage on a CD seemed like a gargantuan
amount when CDs were first introduced, the old maxim that data and
programs expand to fill up all available space certainly held true. Though
CDs were ultimately expanded to 700MB, various games (with embedded
video), large databases, developer documentation, programmer devel-
opment systems, clip art, stock photographs, and even regular applica-
tions reached the point where a single CD was woefully inadequate. The
DVD-ROM (and later, DVD-R, DVD-RW, DVD+RW, and DVD-RAM) disk
reduced this problem by offering between 3GB and 17GB of storage on a
single disk. Except for the DVD-RAM format, you can view the DVD for-
mats as faster, higher-capacity versions of the CD formats. There are some
clear technical differences between the two, but most of them are trans-
parent to the software. Today, Blu-ray optical discs deliver up to 128GB of
storage (Blu-ray BDXL). However, electronic distribution via the internet
has largely replaced physical media, so Blu-ray discs have never become as
popular as distribution or storage media.

The CD and DVD formats were created for reading data in a continu-
ous stream—streaming data—from the storage medium. The track-to-track
head movement time required to read data stored on a hard disk creates
a big gap in the streaming sequence, which is unacceptable for audio and
video applications. CDs and DVDs record information on a single, very long
track that forms a spiral across the surface of the whole disk. Thus, the CD
or DVD player can continuously read the data simply by moving the laser
beam along the disk’s single spiral track at a constant rate.

Although having a single track is great for streaming data, it does make
it a bit more difficult to locate a specific sector on the disk. The CD or DVD
drive can only approximate a sector’s position by mechanically positioning
the laser beam to some point on the disk. Next, it must actually read data
from the disk surface to determine where the laser is positioned, and then
do some fine-tuning to locate the desired sector. As a result, searching for a
specific sector on a CD or DVD disk can take an order of magnitude longer
than searching for a specific sector on a hard disk.

The most important thing to remember for a programmer writing code
that interacts with CD or DVD media is that random access is verboten.

392 Chapter 14

These media were designed for sequential streaming access, and seeking
data on such media will hinder your application performance. If you’re
using these disks to deliver your application and its data to the end user,
you should have the user copy the data to a hard disk before use if high-
performance random access is necessary.

14.2  Tape Drives
Tape drives were also popular mass storage devices. Traditionally, PC own-
ers used tape drives to back up data stored on hard-disk drives back in the
days when hard drives were much smaller. For many years, tape storage was
far more cost-effective than hard-disk storage on a cost-per-megabyte basis.
Indeed, at one time there was an order of magnitude difference in cost per
megabyte between tape storage and magnetic disk storage. And because
tape drives held more data than most hard-disk drives, they were more
space-efficient too.

However, because of competition and technological advances in the
hard-disk-drive marketplace, tapes have lost these advantages. Hard-disk
drives now exceed 16TB in storage, and the optimum price point for hard
disks is about $0.25 per gigabyte. Tape storage today costs far more per
megabyte than hard-disk storage. Plus, only a few tape technologies allow
you to store 250GB on a single tape, and those that do (such as Digital
Linear Tape, or DLT) are extremely expensive. It’s not surprising that tape
drives are seeing less and less use these days in home PCs and are typically
found only in larger file server machines. Linear Tape-Open (LTO) drives
extend the capacity to around 12TB (expected to increase to around 200TB
in the future). Nevertheless, today a typical LTO-8 tape costs almost $130
(US), about half the price per megabyte of a hard drive.

Back in the days of mainframes, application programs interacted with
tape drives in much the same way that today’s applications interact with
hard-disk drives. A tape drive, however, is not an efficient random-access
device. That is, although software can read a random set of blocks from a
tape, it cannot do so with acceptable performance. Of course, in the days
when most applications ran on mainframes, applications generally were not
interactive, and CPUs were much slower; thus, the standard for “acceptable
performance” was different.

In a tape drive, the read/write head is fixed, and the tape transport
mechanism moves the tape past the head linearly, from the beginning of
the tape to the end, or vice versa. If the beginning of the tape is currently
positioned over the read/write head and you want to read data at the end
of the tape, you have to move the entire tape past the head to get to the
desired data. This can be very slow, requiring tens or even hundreds of
seconds, depending on the length and format of the tape. Compare this
with the tens of milliseconds it takes to reposition a hard disk’s read/write
head (or the negligible time it takes to get data from an SSD). Therefore,
to perform well on a tape drive, software must be written to account for the

Mass Storage Devices and Filesystems 393

limitations of a sequential access device. In particular, data should be read
or written sequentially on a tape.

Originally, data was written to tapes in blocks (much like sectors on a
hard disk), and the drives were designed to allow quasi-random access to
the tape’s blocks. If you’ve ever watched old movies that used the reel-to-reel
drives, with the reels constantly stopping, starting, stopping, reversing, stop-
ping, and continuing, you’ve seen “random access” in action. Such tape drives
were very expensive because they required powerful motors, finely tooled
tape-path mechanisms, and so on. As hard drives became larger and less
expensive, applications stopped using tape as a data manipulation medium
and used it only for offline storage (to back up data from hard disks).

Because sequential data access on tape does not require the heavy-duty
mechanics of the original tape drives, tape-drive manufacturers sought to
make a lower-cost product suitable for sequential access only. Their solution
was the streaming tape drive, which was designed to keep the data constantly
moving from the CPU to the tape, or vice versa. For example, while backing
up the data from a hard disk to tape, a streaming tape drive treats the data
like a video or audio recording and just lets the tape run, constantly writing
the data from the hard disk to the tape. Because of the way streaming tape
drives work, very few applications deal directly with the tape unit. Today, it’s
very rare for anything other than a tape backup utility program, run by the
system administrator, to access the tape hardware.

14.3  Flash Storage
An interesting storage medium that has become popular because of its
compact form factor2 is flash storage. The flash medium is actually a semi-
conductor device, based on electrically erasable programmable read-only memory
(EEPROM) technology, which, despite its name, is both readable and writ-
able. Unlike regular semiconductor memory, flash storage is nonvolatile,
meaning it maintains its data even when disconnected from power. Like
other semiconductor technologies, flash storage is purely electronic and
doesn’t require any motors or other electromechanical devices for proper
operation. Therefore, flash storage devices are more reliable and shock
resistant, and they use far less power than mechanical storage solutions
such as disk drives. This makes flash storage especially valuable in portable
battery-powered devices like cell phones, tablets, laptop computers, elec-
tronic cameras, MP3 playback devices, and recorders.

Flash storage modules now provide in excess of 1TB of storage, and
their optimal price point is about $0.15 (US) per gigabyte. This makes
them comparable, per bit, to hard-disk storage.

Flash devices are sold in many different form factors. OEMs (origi-
nal equipment manufacturers) can buy flash storage devices that look
like other semiconductor chips and mount them directly on their circuit
boards. However, most flash memory devices sold today are built into one

2. In this context, “form factor” means shape and size.

394 Chapter 14

of several standard forms, including SDHC cards, CompactFlash cards,
smart-memory modules, memory sticks, USB/flash modules, or SSDs. For
example, you might remove a CompactFlash card from your camera, insert
it into a special CompactFlash card reader on your PC, and access your pho-
tographs just as you would files on a disk drive.

Memory in a flash storage module is organized in blocks of bytes, not
unlike sectors on a hard disk. In contrast to regular semiconductor memory
or RAM, however, you can’t write individual bytes in a flash storage module.
Although you can generally read an individual byte from a flash storage
device, to write to a particular byte you must first erase the entire block
on which it resides. The block size varies by device, but most OSes treat
these flash blocks like a disk sector for the purposes of reading and writ-
ing. Although the basic flash storage device itself could connect directly
to the CPU’s memory bus, most common flash storage packages (such as
CompactFlash cards and memory sticks) contain electronics that simulate
a hard-disk interface, and you access the flash device just as you would a
hard-disk drive.

One interesting aspect to flash memory devices, and EEPROM devices
in general, is that they have a limited write lifetime. That is, you can write
to a particular memory cell in a flash memory module only a certain num-
ber of times before that cell begins to have problems retaining the infor-
mation. This was a big concern in early EEPROM/flash devices, because
the average number of write cycles before failures began occurring was
around 10,000. That is, if some software wrote to the same memory block
10,000 times in a row, the EEPROM/flash device would probably develop
a bad memory cell in that block, effectively rendering the entire chip use-
less. On the other hand, if the software wrote just once to 10,000 separate
blocks, the device could still take 9,999 more writes to each memory cell.
Therefore, the OSes of these early devices would try to spread out write
operations across the entire device to minimize damage. Although modern
flash devices still exhibit this problem, technological advances have reduced
it almost to the point where we can ignore it. A modern flash memory cell
supports an average of about a million write cycles before it will go bad.
Furthermore, today’s OSes simply mark bad flash blocks, the same way they
mark bad sectors on a disk, and will skip a block once they determine that it
has gone bad.

Being electronic, flash devices do not exhibit rotational latency times
at all, and they don’t exhibit much in the way of seek times either. There’s
a tiny amount of time needed to write an address to a flash memory mod-
ule, but it’s nothing compared to the head seek times on a hard disk.
Despite this, flash memory is generally nowhere near as fast as typical RAM.
Reading data from a flash device itself usually takes microseconds (rather
than nanoseconds), and the interface between the flash memory device and
the system may require additional time to set up a data transfer. In addi-
tion, it’s common to interface a flash storage module to a PC using a USB
flash reader device, and this can further reduce the average read time per
byte to hundreds of microseconds.

Mass Storage Devices and Filesystems 395

Write performance is even worse. To write a block of data to flash,
you must write the data, read it back, compare it to the original data, and
rewrite it if they don’t match. This process can take several tens or even
hundreds of milliseconds.

As a result, flash memory modules are generally quite a bit slower
than high-performance hard-disk subsystems. However, thanks mainly to
demand from high-end digital camera users who want to be able to snap as
many pictures as possible in a short time, technological advances are boost-
ing their performance. Though flash memory performance probably won’t
catch up with hard-disk performance any time soon, you can expect it to
continue improving over time.

14.4  RAM Disks
Another interesting mass storage device is the RAM disk, a semiconduc-
tor solution that treats a large block of the computer system’s memory as
though it were a disk drive, simulating blocks and sectors using memory
arrays. The advantage of memory-based disks is that they are very high
performance. RAM disks don’t suffer from the time delays associated with
head seek time and rotational latency that you find on hard, optical, and
floppy drives. Their interface to the CPU is also much faster, so data trans-
fer times are very short, often running at the maximum bus speed. It’s hard
to imagine a faster storage technology than a RAM disk.

RAM disks, however, have two disadvantages: cost and volatility. The
cost per byte of storage in a RAM disk system is very high. Indeed, byte for
byte, semiconductor storage is as much as 10,000 times more expensive
than magnetic hard-disk storage. As a result, RAM disks usually have low
storage capacities, typically no more than several gigabytes. And RAM
disks are volatile—they lose their memory unless they are powered at all
times. This generally means that semiconductor disks are great for storing
temporary files and files you’ll copy back to some permanent storage device
before shutting down the system. They are not particularly well suited for
maintaining important information over long periods of time.

14.5  Solid-State Drives
Modern high-performance PCs use solid-state drives (SSDs). SSDs use flash
memory (like USB sticks) with a high-performance interface to the system.
But SSDs aren’t simply USB flash drives in different clothing. USB flash
drives are designed for low cost per bit—except for certain camera applica-
tions (particularly 4K and 8K camcorders), speed is secondary to cost and
capacity. A typical USB flash drive, for example, is quite a bit slower than
a mediocre hard drive. SSDs, on the other hand, must be fast. Because of
their solid-state design, they’re typically an order of magnitude faster than
rotating magnetic media. With a RAID configuration, SSDs can actually
achieve the performance limits of SATA interfaces.

396 Chapter 14

As this was being written, SSDs cost between 4 and 16 times as much as
high-capacity hard drives (8TB drives and 1TB SSDs both cost about $100
US). However, the price-per-gigabyte gap has been closing. SSDs are rapidly
replacing rotating magnetic drives, and rotating magnetic media will likely
be relegated to the trash bin of history (much like tape drives). Before that
point, why would anyone pay more for an SSD?

SSDs typically use a different underlying technology to store data and
provide a much faster electronic interface to the PC. This is why an SSD
tends to be much more expensive than a USB flash drive. That’s also why
SSDs can achieve 2,500MBps data transfer rates, while high-quality memory
cards are capable of only around 100MBps (and USB flash/thumb drives
are even worse).

From a programmer’s perspective, one of the big advantages of SSDs is
that you no longer have to worry about seek times and other latency issues.
SSDs tend to be true(r) random-access devices (at least when compared
with hard drives). Accessing data at the beginning of the drive and then at
the end takes only a little longer than accessing any pair of data elements
elsewhere on the SSD.

There are a couple of disadvantages to SSDs, though. First of all, their
write performance is usually much slower than their read performance
(though writing to an SSD is still much faster than writing to a hard drive).
Fortunately, data is read far more often than it is written, but this is some-
thing to consider when you’re working on software that writes data to a
SSD. The second drawback is that SSDs wear out after a while. Writing to
the same location over and over again will eventually cause the associated
memory cell(s) to fail. Fortunately, modern OSes work around these fail-
ures. However, when you write applications that continuously overwrite file
data, keep this issue in mind.

14.6  Hybrid Drives
Most modern hard drives contain an on-board RAM cache (to hold entire
tracks of data to eliminate rotational latency, for example). Hybrid drives,
such as Apple’s older Fusion Drive, combine a small SSD with a large hard
drive—typically a 32GB to 128GB SSD and a 2TB magnetic disk, in Apple’s
case. Frequently accessed data stays in the SSD cache, and is swapped out to
the hard drive when space is needed for new data. This works the same way
as caching in main memory, boosting the system performance to near-SSD
speeds for data that is accessed regularly.

14.7  Filesystems on Mass Storage Devices
Very few applications access mass storage devices directly. That is, appli-
cations do not generally read and write tracks, sectors, or blocks on
a mass storage device; instead, they open, read, write, and otherwise
manipulate files on it. The OS’s file manager abstracts away the physical

Mass Storage Devices and Filesystems 397

configuration of the underlying storage device and provides a convenient
storage facility for multiple independent files on a single device.

On the earliest computer systems, applications were responsible for
tracking the physical location of data on a mass storage device, because
there was no file manager available to do so. They were able to maximize
their performance by carefully considering the layout of data on the disk.
For example, they could manually interleave data across various sectors on a
track to give the CPU time to process it between reading and writing those
sectors on the track. Such software was often many times faster than com-
parable software using a generic file manager. Later, when file managers
were commonly available, some application authors still managed their files
on a storage device for performance reasons. This was especially true back
in the days of floppy disks, when low-level software written to manipulate
data at the track and sector level often ran 10 times faster than the same
application using a file manager system.

In theory, today’s software could benefit from this approach as well,
but in practice you rarely see this kind of low-level disk access in modern
applications, for several reasons. First, writing software that manipulates
a mass storage device at such a low level locks you into using that particu-
lar device. That is, if your software manipulates a disk with 48 sectors per
track, 12 tracks per cylinder, and 768 cylinders per drive, that software will
not work optimally (if at all) on a drive with a different sector, track, and
cylinder layout. Second, accessing the drive at a low level makes it difficult
to share the device among different applications, something that can be
especially costly on a multitasking system that may have several applica-
tions sharing the device at once. For example, if you’ve laid out your data
on various sectors on a track to coordinate computation time with sector
access, your work is lost when the OS interrupts your program and gives
some other application its time slice—time you were counting on to do
any necessary computations prior to the next data sector rotating under
the read/write head. Third, some of the features of modern mass storage
devices, such as on-board caching controllers and SCSI interfaces that pres-
ent a storage device as a sequence of blocks rather than as something with a
given track and sector geometry, eliminate any advantage that low-level soft-
ware might have had. Fourth, modern OSes typically contain file buffering
and block caching algorithms that provide good filesystem performance,
obviating the need to operate at such a low level. Finally, low-level disk
access is very complex, and writing such software is difficult.

14.7.1  Sequential Filesystems
The earliest file manager systems stored files sequentially on the disk’s sur-
face. That is, if each sector/block on the disk held 512 bytes and a file was
32KB long, that file would consume 64 consecutive sectors/blocks on the
disk’s surface. To access that file at some future time, the file manager only
needed to know the file’s starting block number and the number of blocks
it occupied. The filesystem had to maintain these two pieces of information

398 Chapter 14

somewhere in nonvolatile storage. The obvious place was on the storage
media itself, in a data structure known as the directory—an array of values
starting at a specific disk location that the OS can reference when an appli-
cation requests a particular file. The file manager can search through the
directory for the file’s name and extract its starting block and length. With
this information, the filesystem can provide the application with access to
the file’s data.

One advantage of the sequential filesystem is that it is very fast. The OS
can read or write a single file’s data very rapidly if the file is stored in sequen-
tial blocks on the disk’s surface. But a sequential file organization has some
serious problems, too. The biggest and most obvious drawback is that you
can’t extend the size of a file once the file manager places another file at the
next block on the disk. Disk fragmentation is another big problem. As appli-
cations create and delete many small and medium files, the disk fills up with
short sequences of unused sectors that, individually, are too small for most
files. On sequential filesystems, disks often had free space sufficient to hold
some data, but they couldn’t use it because it was scattered in small pieces all
over the disk’s surface. To solve this problem, users had to run disk compac-
tion programs to coalesce all the free sectors and move them to the end of
the disk by physically rearranging files on its surface. Another solution was to
copy files from one full disk to another empty disk, collecting the many small,
unused sectors together. Obviously, this was extra work that the user had to
do—work that the OS should have been doing.

The sequential file storage scheme really falls apart when used with
multitasking OSes. If two applications attempt to write file data to the disk
concurrently, the filesystem must place the starting block of the second
application’s file beyond the last block required by the first application’s
file. As the OS has no way of determining how large the files can grow,
each application has to tell the OS the maximum length of the file when
the application first opens it. Unfortunately, many applications cannot
determine in advance how much space they’ll need for their files, so they
have to guess the size of the file when opening it. If the estimated file size
is too small, either the program has to abort with a “file full” error, or the
application has to create a larger file, copy the old data from the “full” file
to the new file, and then delete the old file. As you can imagine, this is hor-
ribly inefficient and definitely not great code.

To avoid such performance problems, many applications grossly overes-
timate the amount of space they need for their files. As a result, they wind
up wasting disk space when the files don’t actually use all the data allocated
to them, a form of internal fragmentation. Furthermore, if applications
truncate their files when closing them, the resulting free sections returned
to the OS tend to fragment the disk into the small, unusable blocks of free
space described previously, a problem known as external fragmentation. For
these reasons, sequential storage on the disk has been replaced by more
sophisticated storage management schemes in modern OSes.

Mass Storage Devices and Filesystems 399

14.7.2  Efficient File Allocation Strategies
Most modern file allocation strategies allow files to be stored across arbi-
trary blocks on the disk. Because the filesystem can now place bytes of the
file in any free block on the disk, the problems of external fragmentation
and the limitation on file size are all but eliminated. As long as there’s
at least one free block on the disk, you can expand the size of any file.
However, with this flexibility comes some added complexity. In a sequential
filesystem, it was easy to locate free space on the disk; by simply noting the
starting block numbers and sizes of the files in a directory, the filesystem
could locate a free block large enough to satisfy the current disk allocation
request, if one was available. But with files stored across arbitrary blocks,
scanning the directory and noting which blocks a file uses is far too expen-
sive to compute, so the filesystem has to keep track of the free and used
blocks. Most modern OSes use one of three data structures—a set, a table
(array), or a list—to keep track of which sectors are free and which are not.
Each scheme has its advantages and disadvantages.

14.7.2.1  Free-Space Bitmaps

The free-space bitmap scheme uses a set data structure to maintain a set
of free blocks on the disk drive. If a block is a member of that set, the file
manager can remove it whenever it needs another block for a file. Because
set membership is a Boolean relationship (a block is either in the set or it’s
not), it takes exactly 1 bit to specify the set membership of each block.

Typically, a file manager reserves a certain section of the disk to hold
a bitmap that specifies which blocks on the disk are free. The bitmap con-
sumes some integral number of blocks on the disk, with each block con-
sumed representing a specific number of other blocks on the disk, which
we can calculate by multiplying the block size (in bytes) by 8 (bits per byte).
For example, if the OS uses 4,096-byte blocks on the disk, a bitmap consist-
ing of a single block can track up to 32,768 other blocks on the disk.

The disadvantage of the bitmap scheme is that as disks get large, so does
the bitmap. For example, on a 120GB drive with 4,096-byte blocks, the bit-
map will be almost 4MB long. While this is a small percentage of the total
disk capacity, accessing a single bit in a bitmap this large can be clumsy. To
find a free block, the OS has to do a linear search through this 4MB bit-
map. Even if you keep the bitmap in system memory (which is a bit expen-
sive, considering that you have to do it for each drive), searching through
it every time you need a free sector is an expensive proposition. As a result,
you don’t see this scheme used much on larger disk drives.

One advantage (and also a disadvantage) of the bitmap scheme is that
the file manager uses it only to keep track of the free space on the disk, not
which sectors belong to a given file. As a result, if the free-space bitmap is
damaged somehow, nothing is permanently lost; you can easily reconstruct
it by searching through all the disk directories and computing which sec-
tors are being used by the files in those directories (the remaining sectors,
obviously, are the free ones). Although this process is somewhat time-
consuming, it’s nice to have the option if disaster strikes.

400 Chapter 14

14.7.2.2  File Allocation Tables

Another way to track disk-sector usage is with a table of sector pointers, or
a file allocation table (FAT). This scheme is widely used. Cementing its popu-
larity, this is also the default file allocation scheme used on most USB flash
drives. An interesting facet of the FAT structure is that it combines both
free-space management and file-sector allocation management into the
same data structure, ultimately saving space when compared to the bitmap
scheme, which uses separate data structures for each. Furthermore, unlike
the bitmap scheme, FAT doesn’t require an inefficient linear search to find
the next available free sector.

The FAT is really nothing more than an array of self-relative pointers
(that is, indexes into itself), setting aside one pointer for each sector/block
on the storage device. When a disk is initialized, the first several blocks on
its surface are reserved for objects like the root directory and the FAT itself,
and the remaining blocks on the disk are free. Somewhere in the root
directory is a free-space pointer that specifies the next available free block
on the disk. Assuming the free-space pointer initially contains the value 64,
implying that the next free block is block 64, the FAT entries at indexes 64,
65, 66, and so on, would contain the following values, assuming there are n
blocks on the disk, numbered from 0 to n − 1:

FAT index FAT entry value

.

64 65

65 66

66 67

67 68

.

n – 2 n – 1

n – 1 0

The entry at block 64 tells you the next available free block on the disk,
65. Moving on to entry 65, you’ll find the value of the next available free
block on the disk, 66. The last entry in the FAT contains a 0 (block 0 con-
tains meta-information for the entire disk partition and is never available).

Whenever an application needs one or more blocks to hold some new
data on the disk’s surface, the file manager grabs the free-space pointer
value and then continues going through the FAT entries for however many
blocks are required to store the new data. For example, if each block is
4,096 bytes long and the current application is attempting to write 8,000
bytes to a file, the file manager will need to remove two blocks from the
free-block list, following these steps:

1.	 Get the value of the free-space pointer.

2.	 Save the value of the free-space pointer in order to determine the first
free sector.

Mass Storage Devices and Filesystems 401

3.	 Continue going through the FAT entries for the number of blocks
required to store the application’s data.

4.	 Extract the FAT entry value of the last block where the application
needs to store its data, and set the free-space pointer to this value.

5.	 Store a 0 over the FAT entry value of the last block that the application
uses, marking the end to the list of blocks that the application needs.

6.	 Return the original (as it was prior to these steps) value of the free-
space pointer into the FAT as the pointer to the list of blocks that are
now allocated for the application.

After the block allocation in our earlier example, the application has
blocks 64 and 65 at its disposal, the free-space pointer contains 66, and the
FAT looks like this:

FAT index FAT entry value

.

64 65

65 0

66 67

67 68

.

n – 2 n – 1

n – 1 0

This is not to imply that entries in the FAT always contain the index of
the next entry in the table. As the file manager allocates and deallocates
storage for files on the disk, these numbers tend to become scrambled. For
example, if an application returns block 64 to the free list but holds on to
block 65, the free-space pointer would contain the value 64, and the FAT
would have the following values:

FAT index FAT entry value

.

64 66

65 0

66 67

67 68

.

n – 2 n – 1

n – 1 0

As noted earlier, one advantage of the FAT data structure is that it
combines both free-space management and file allocation management

402 Chapter 14

into a single data structure. This means that each file doesn’t have to carry
around a list of the blocks its data occupies. Instead, it needs only a single
pointer value specifying an index into the FAT where the first block of the
file’s data can be found. You can find the remaining blocks containing
the file’s data by stepping through the FAT.

One important advantage of the FAT scheme over the set (bitmap)
scheme is that once the disk using a FAT filesystem is full, it doesn’t main-
tain information about which blocks are free. In contrast, the bitmap
scheme consumes space on the disk to track free blocks even when there
are none available. The FAT scheme replaces the entries originally used to
track free blocks with the file-block pointers. When the disk is full, the val-
ues that originally maintained the free-block list are no longer consuming
disk space because they’re all now tracking blocks in files. In this case, the
free-space pointer contains 0 (to denote an empty free-space list) and all
the FAT entries contain chains of block indexes for file data.

However, the FAT scheme does have a couple of disadvantages. First,
unlike the bitmap in a set scheme filesystem, the table in a FAT filesystem
represents a single point of failure. If the FAT is somehow destroyed, it can
be very difficult to repair the disk and recover files; losing some free space
on a disk is a problem, but losing track of where your files are on the disk is
a major problem. Furthermore, because the disk head tends to spend more
time in the FAT area of a storage device than in any other single area on
the disk, the FAT is the most likely part of a hard disk to be damaged by a
head crash, and the most likely part of a floppy or optical drive to exhibit
excessive wear. This is a sufficiently big concern that some FAT filesystems
provide an option to maintain an extra copy of the FAT on the disk.

Another problem with the FAT is that it’s usually located at a fixed
place on the disk, typically at some low block number. In order to deter-
mine which block or blocks to read for a particular file, the disk heads
must move to the FAT, so if the FAT is at the beginning of the disk, they’ll
constantly be traveling to and from the FAT across large distances. This
massive head movement not only is slow but tends to wear out the mechani-
cal parts of the disk drive sooner. In newer versions of Microsoft OSes, the
FAT-32 scheme eliminates part of this problem by allowing the FAT to be
positioned somewhere other than the beginning of the disk, though still at
a fixed location. Application file I/O performance can be quite low with a
FAT filesystem unless the OS caches the FAT in main memory, which can
be dangerous if the system crashes, because you could lose track of all file
data whose FAT entries have not been written to disk.

The FAT scheme is also inefficient for doing random access on a file. To
read from offset m to offset n in a file, the file manager must divide n by the
block size to obtain the block offset into the file containing the byte at off-
set n, divide m by the block size to obtain its block offset, and then sequen-
tially search through the FAT chain between these two blocks to find the
sector(s) containing the desired data. This linear search can be expensive
if the file is a large database with many thousands of blocks between the
current block position and the desired block position.

Mass Storage Devices and Filesystems 403

Yet another problem with the FAT filesystem, though this one is rather
esoteric, is that it doesn’t support sparse files. That is, you cannot write to
byte 0 and byte 1,000,000 of a file without also allocating every byte of data
between those two points on the disk surface. Some non-FAT file managers
allocate only the blocks where an application has written data. For example,
if an application writes data only to bytes 0 and 1,000,000 of a file, the file
manager allocates only two blocks for the file. If the application attempts to
read a block that hasn’t been previously allocated (for example, if the appli-
cation in the current example attempts to read the byte at offset 500,000
without first writing to that location), the file manager simply returns 0s
for the read operation without actually using any space on the disk. But
because of how a FAT is organized, you can’t create sparse files on the disk.

14.7.2.3  Lists of Blocks

To overcome the limitations of the FAT filesystem, advanced OSes—such
as Windows NT/2000/XP/7/8/10, macOS (APFS), and various flavors of
Unix—use a list-of-blocks scheme instead. Indeed, the list scheme enjoys
all the advantages of a FAT system (such as efficient, nonlinear free-block
location, and efficient storage of the free-block list), and it solves many of
FAT’s problems.

The list scheme begins by setting aside several blocks on the disk for
the purpose of keeping (generally) 32- or 64-bit pointers to each free block
on the disk. If each block on the disk holds 4,096 bytes, a block can hold
1,024 (or 512) pointers. Dividing the number of blocks on the disk by 1,024
(512) determines the number of blocks the free-block list will initially con-
sume. As you’ll soon see, the system uses these blocks to store data once the
disk fills up, so there’s no storage overhead associated with the blocks con-
sumed by the free-block list.

If a block in the free-block list contains 1,024 pointers (the following
examples all assume 32-bit pointers), then the first 1,023 pointers contain
the block numbers of free blocks on the disk. The file manager maintains
two pointers on the disk: one that holds the block number of the current
block containing free-block pointers, and one that holds an index into that
current block. Whenever the filesystem needs a free block, it obtains the
index for one from the free-block list by using these two pointers. Then
the file manager increments the index into the free-block list to the next
available entry in the list. When the index increments to 1,023 (the 1,024th
item in the free-block list), instead of using the pointer entry value at that
index to locate a free block, the file manager uses it as the address of the
next block containing a list of free-block pointers on the disk, and it uses
the current block, containing a now-empty list of block pointers, as the free
block. This is how the file manager reuses the blocks originally designated
to hold the free-block list, rather than reusing the pointers in the free-block
list to keep track of the blocks belonging to a given file, as FAT does. Once
the file manager uses up all the free-block pointers in a given block, it uses
that block for actual file data.

404 Chapter 14

Unlike the FAT, the list scheme does not merge the free-block list and
the file list into the same data structure. Instead, a separate data structure
for each file holds the list of blocks associated with that file. Under typical
Unix and Linux filesystems, the directory entry for the file actually holds
the first 8 to 16 entries in the list (see Figure 14-5). This allows the OS to
track small files (up to 32KB or 64KB) without having to allocate any extra
space on the disk.

The directory entry typically
holds between 8 and 16
pointers to the first data
blocks of the file.

Directory
entry

4,096-byte blocks,
each containing 1,024
free-space pointers

Figure 14-5: Block list for small files

Research on various flavors of Unix suggests that the vast majority of
files are small, and embedding several pointers into the directory entry
provides an efficient way to access small files. Of course, as time passes, the
average file size seems to increase. But as it turns out, block sizes tend to
increase as well. When the research was first done, the typical block size
was 512 bytes, but today it’s 4,096 bytes. During that time, then, average file
sizes could have increased by a factor of 8 without, on average, requiring
any extra space in the directory entries.

For medium files, up to about 4MB, the OS will allocate a single block
with 1,024 pointers to the blocks that store the file’s data. The OS continues
to use the pointers found in the directory entry for the first few blocks of
the file, and then it uses a block on the disk to hold the next group of block
pointers. Generally, the last pointer in the directory entry holds the loca-
tion of this block (see Figure 14-6).

Mass Storage Devices and Filesystems 405

Directory
entry

Single-level
block list
in a block
containing
1,024
4-byte
pointers

A set of eight 4,096-byte blocks, each
containing 1,024 free-space pointers

Figure 14-6: Block list for medium files

For files larger than about 4MB, the filesystem switches to a three-tiered
block scheme, which works for file sizes up to 4GB. In this scheme, the last
pointer in the directory entry stores the location of a block of 1,024 point-
ers, and each pointer in this block holds the location of an additional block
of 1,024 pointers, with each pointer in this block storing the location of a
block that contains actual file data. See Figure 14-7 for the details.

406 Chapter 14

Directory
entry 4,096-byte data blocks

One of up to 1,024
third-level pointer lists

A 4,096-byte
middle-level
block list
containing
1,024 4-byte
pointers, each
(possibly)
pointing at
a block
containing
a third-level
pointer list

Each third-level
pointer list can
accommodate
1,024 blocks,
producing
4MB of data,
multiplied by
1,024 different
third-level pointer
lists for a total
of 4GB of data.

Figure 14-7: Three-level block list for large files (up to 4GB)

Mass Storage Devices and Filesystems 407

One advantage to this tree structure is that it readily supports sparse
files: an application can write to block 0 and block 100 of a file without
having to allocate data blocks for every block between those two points. By
placing a special block pointer value (typically 0) in the intervening entries
in the block list, the OS can determine whether a block isn’t present in the
file. Should an application attempt to read a missing block in the file, the OS
can simply return all 0s for the empty block. Of course, once the application
writes data to a block that hadn’t been previously allocated, the OS must copy
the data to the disk and fill in the appropriate block pointer in the block list.

As disks became larger, the 4GB file limit imposed by this scheme
began to create some problems for certain applications, such as video edi-
tors, large database applications, and web servers. One could easily extend
this scheme 1,000 times—to 4TB—by adding another level to the block-list
tree. The only problem with this approach is that the more levels of indi-
rection you have, the slower random file access becomes, because the OS
may have to read several blocks from the disk in order to get a single block
of data. (When it has one level, it makes sense to cache the block-pointer
list in memory, but with two and three levels, it’s impractical to do this for
every file). Another way to extend the maximum size 4GB at a time is to use
multiple pointers to second-tier file blocks (for example, have all or most of
the original 8 to 16 pointers in the directory point at second-tier block-list
entries rather than directly at file data blocks). Although there’s no current
convention for extending beyond three levels, rest assured that as the need
arises, OS designers will develop schemes for accessing large files efficiently.
For example, 64-bit OSes can use 64-bit pointers, rather than 32-bit point-
ers, and eliminate the 4GB limitation.

14.8  Writing Software That Manipulates Data on a Mass
Storage Device

Understanding how different mass storage devices behave is important
if you want to write high-performance software that manipulates files on
these devices. Although modern OSes attempt to isolate applications from
the physical realities of mass storage, an OS can only do so much for you.
Furthermore, because an OS can’t predict how your particular application
will access files on a mass storage device, it can’t tailor file access optimi-
zations to your application; instead, its optimizations are geared toward
applications exhibiting typical file access patterns. The less typical your
application’s file I/O is, then, the less likely you’ll get the best performance
out of the system. In this section, we’ll look at how you can coordinate your
file access activities with the OS to achieve the best performance.

14.8.1  File Access Performance
Although disk drives and most other mass storage devices are often thought
of as “random access” devices, the fact is that mass storage access is usually
more efficient when done sequentially. Sequential access on a disk drive is
relatively efficient because the OS can move the read/write head one track

408 Chapter 14

at a time (assuming the file appears in sequential blocks on the disk). This
is much faster than accessing one block on the disk, moving the read/write
head to some other track, accessing another block, moving the head again,
and so on. Therefore, you should avoid random file access in an application
if at all possible.

You should also try to read or write large blocks of data on each file
access rather than reading or writing small amounts more frequently.
There are two reasons for this. First, OS calls are not fast, so if you make
half as many calls by reading or writing twice as much data on each access,
the application will often run twice as fast. Second, the OS must read or
write whole disk blocks. If your block size is 4,096 bytes, but you just write
2,000 bytes to some block and then seek to some other position in the file
outside that block, the OS will actually have to read the entire 4,096-byte
block from the disk, merge in the 2,000 bytes, and then finally write the
entire 4,096 bytes back to the disk. Contrast this with a write operation
that writes a full 4,096 bytes—in this case, the OS wouldn’t have to read
the data from the disk first; it would only have to write the block. Writing
full blocks improves disk access performance by a factor of 2, because writ-
ing partial blocks requires the OS to first read the block, merge the data,
and then write the block; writing whole blocks renders the read operation
unnecessary. Even if your application doesn’t write data in increments that
are even multiples of the disk’s block size, writing large blocks improves
performance. If you write 16,000 bytes to a file in one write operation, the
OS will still have to write the last block of those 16,000 bytes using a read-
merge-write operation, but it will write the first three blocks using only
write operations.

If you start with a relatively empty disk, the OS generally attempts to
write the data for new files in sequential blocks. This organization is prob-
ably most efficient for future file access. However, as the system’s users cre-
ate and delete files on the disk, the blocks of data for individual files may
be distributed nonsequentially. In a very bad case, the OS may wind up
allocating a few blocks here and a few blocks there all across the disk’s sur-
face. As a result, even sequential file access can behave like slow random file
access. As discussed previously, this kind of file fragmentation can dramati-
cally decrease filesystem performance. Unfortunately, there’s no way for an
application to determine if its file data is fragmented across the disk surface
and, even if it could, there’s little it could do about the situation. Although
there are utilities available to defragment the blocks on the disk’s surface, an
application generally can’t request their execution (and “defragger” utilities
are quite slow anyway).

Although applications rarely get the opportunity to defragment their
data files during normal program execution, there are some things you
can do to reduce the probability of your data files becoming fragmented.
The best advice you can follow is to always write file data in large chunks.
Indeed, if you can write the whole file in a single write operation, do so. In
addition to speeding up access to the OS, writing large amounts of data
tends to result in the allocation of sequential blocks. When you write small
blocks of data to the disk, other applications in a multitasking environment

Mass Storage Devices and Filesystems 409

could also be writing to the disk concurrently. In this case, the OS may
interleave the block allocation requests for the files being written by sev-
eral different applications, making it unlikely that a particular file’s data
will be written sequentially. It is important to try to write a file’s data in
sequential blocks, even if you plan to access portions of that data randomly,
since searching for random records in a file written sequentially generally
requires far less head movement than searching for random records in a
file whose blocks are scattered all over.

If you’re going to create a file and then access its blocks of data repeat-
edly, whether randomly or sequentially, try to preallocate the blocks on the
disk. If you know, for example, that your file’s data will not exceed 1MB,
you could write a block of one million 0s to the disk before your application
starts manipulating the file. By doing so, you help ensure that the OS will
write your file to sequential blocks on the disk. Though you pay an initial
price to write all those 0s (an operation you wouldn’t normally do, presum-
ably), the savings in read/write head-seek times could easily make up for it.
This scheme is especially useful if an application is reading or writing two
or more files concurrently (which would almost guarantee the interleaving
of the blocks for the various files).

14.8.2  Synchronous and Asynchronous I/O
Because most mass storage devices are mechanical, and, therefore, subject
to mechanical delays, applications that use them extensively have to wait for
them to complete read/write operations. Most disk I/O operations are syn-
chronous, meaning that an application that makes a call to the OS must wait
until that I/O request is complete before continuing subsequent operations.

This is why most modern OSes also provide an asynchronous I/O capabil-
ity, in which the OS begins the application’s request and then returns con-
trol to the application without waiting for the I/O operation to complete.
While the I/O operation proceeds, the application promises not to do any-
thing with the data buffer specified for it. However, the application can do
computation and schedule additional I/O operations, because the OS will
notify it when the original request completes. This is especially useful when
you’re accessing files on multiple disk drives in the system, which is usually
possible only with SCSI and other high-end drives.

14.8.3  The Implications of I/O Type
Another important consideration for writing software that manipulates
mass storage devices is the type of I/O you’re performing. Binary I/O is usu-
ally faster than formatted text I/O, because of the format of the data written
to disk. For example, suppose you have an array of 16 integer values that
you want to write to a file. To achieve this, you could use either of the fol-
lowing two C/C++ code sequences:

FILE *f;
int array[16];
 . . .

410 Chapter 14

// Sequence #1:

fwrite(f, array, 16 * sizeof(int));
 . . .
// Sequence #2:

for(i=0; i < 16; ++i)
 fprintf(f, "%d ", array[i]);

The second sequence looks like it would run slower than the first
because it uses a loop, rather than a single call, to step through each ele-
ment of the array. But although the extra execution overhead of the loop
does have a small negative impact on the execution time of the write opera-
tion, this efficiency loss is minor compared to the real problem with the sec-
ond sequence. Whereas the first code sequence writes out a 64-byte memory
image consisting of 16 32-bit integers to the disk, the second code sequence
converts each of the 16 integers to a string of characters and then writes
each string to the disk. This integer-to-string conversion process is relatively
slow. Furthermore, the fprintf() function has to interpret the format string
("%d") at runtime, which incurs an additional delay.

The advantage of formatted I/O is that the resulting file is both
human-readable and easily read by other applications. However, if you’re
using a file to hold data that is of interest only to your application, a more
efficient approach might be to write the data as a memory image.

14.8.4  Memory-Mapped Files
Memory-mapped files use the OS’s virtual memory capabilities to map mem-
ory addresses in the application space directly to blocks on the disk. Modern
OSes have highly optimized virtual memory subsystems, so piggy-backing
file I/O on top of the virtual memory subsystem results in very efficient file
access. Furthermore, memory-mapped file access is easy. When you open
a memory-mapped file, the OS returns a memory pointer to some block
of memory. By simply accessing the memory locations referenced by this
pointer, just as you would any other in-memory data structure, you can access
the file’s data. This makes file access almost trivial, while often improving file
manipulation performance, especially when file access is random.

One of the reasons that memory-mapped files are so much more effi-
cient than regular files is that the OS reads the list of blocks belonging to
memory-mapped files only once. It then sets up the system’s memory man-
agement tables to point at each block belonging to the file. After opening
the file, the OS rarely has to read any file metadata from the disk, which
greatly reduces superfluous disk access during random file access. It also
improves sequential file access, though to a lesser degree. The OS doesn’t
constantly have to copy data between the disk, internal OS buffers, and
application data buffers.

Memory-mapped file access does have some disadvantages. First, you
can’t map gigantic files entirely into memory, at least on older PCs and
OSes that have a 32-bit address bus and set aside a maximum of 4GB per

Mass Storage Devices and Filesystems 411

application. Generally, it isn’t practical to use a memory-mapped access
scheme for files larger than 256MB, though this has changed as more CPUs
with 64-bit addressing capabilities have become available. It’s also not a
good idea to use memory-mapped files when an application is already using
most of the RAM physically present in the system. Fortunately, these two
situations are not typical, so they don’t limit the use of memory-mapped
files much.

A more common and significant issue is that when you first create a
memory-mapped file, you have to tell the OS the file’s maximum size. If
it’s impossible to determine the file’s final size, you’ll have to overestimate
it and then truncate the file when you close it. Unfortunately, this wastes
system memory while the file is open. Memory-mapped files work well when
you’re manipulating files in read-only mode or simply reading and writing
data in an existing file without extending the file’s size. Fortunately, you can
always create a file using traditional file access mechanisms and then use
memory-mapped file I/O to access the file later.

Finally, almost every OS does memory-mapped file access differently,
so it’s unlikely that memory-mapped file I/O code will be portable between
OSes. Nevertheless, the code to open and close memory-mapped files is quite
short, and it’s easy enough to provide multiple copies of the code for the vari-
ous OSes you need to support. Of course, actually accessing the file’s data
consists of simple memory accesses, and that’s independent of the OS. For
more information on memory-mapped files, consult your OS’s API refer-
ence. Given their convenience and performance, you should seriously con-
sider using memory-mapped files whenever possible in your applications.

14.9  For More Information
Silberschatz, Abraham, Peter Baer Galvin, and Greg Gagne. Operating System

Concepts. 8th ed. Hoboken, NJ: John Wiley & Sons, 2009.

Although mass storage devices are, argu-
ably, the most common peripheral in

modern computer systems, there are many
other widely used devices, such as communica-

tion ports (serial and parallel), keyboards and mice,
and sound cards. These peripherals will be the focus
of this chapter.

15.1  Exploring Specific PC Peripheral Devices
In some respects, it’s dangerous to discuss real devices on modern PCs
because the traditional (“legacy”) devices have all but disappeared from
PC designs. As manufacturers introduce new PCs, they are removing many
of the legacy, easy-to-program peripherals like parallel and serial ports,
and replacing them with complex peripherals like USB and Thunderbolt.
Although a detailed discussion on programming these newer peripheral

15
M I S C E L L A N E O U S I N P U T A N D

O U T P U T D E V I C E S

414 Chapter 15

devices is beyond the scope of this book, you need to understand their
behavior in order to write great code that accesses them.

N O T E 	 Because of the nature of the peripheral devices discussed in the rest of this chapter, the
information presented applies only to IBM-compatible PCs. There simply isn’t enough
space in this book to cover how particular I/O devices behave on different systems.
Other systems support similar I/O devices, but their hardware interfaces may differ
from what’s described here. Nevertheless, the general principles still apply.

15.1.1  The Keyboard
The original IBM PC’s keyboard is a computer system in its own right.
Buried inside the keyboard’s case is an 8042 microcontroller chip that
constantly scans the switches on the keyboard to see if any keys are being
pressed. This processing occurs in parallel with the normal activities of the
PC, and even though the PC’s 80x86 is busy with other things, the keyboard
never misses a keystroke.

A typical keystroke starts with the user pressing a key on the keyboard.
This closes an electrical contact in a switch, which the keyboard’s microcon-
troller can sense. Unfortunately, mechanical switches do not always close per-
fectly clean. Often, the contacts bounce off one another several times before
coming to rest with a solid connection. To a microcontroller chip that is read-
ing the switch constantly, these bouncing contacts look like a very quick series
of keypresses and releases. If the microcontroller registers these as multiple
keystrokes, it can result in a phenomenon known as keybounce, a problem com-
mon to many cheap and old keyboards. Even on the most expensive and new-
est keyboards, keybounce can be a problem if you look at the switch a million
times a second, because mechanical switches simply cannot settle down that
quickly. A typical inexpensive key will settle down within 5 milliseconds, so if
the keyboard-scanning software polls the key less often than this, the control-
ler will effectively miss the keybounce. The practice of limiting how often the
keyboard is scanned in order to eliminate keybounce is known as debouncing.
Typical keyboard controllers scan the keyboard once every 10 to 25 millisec-
onds; any less than this may produce bouncy keys, and any more may result
in lost keystrokes (by very fast typists).

The keyboard controller must not generate a new key code sequence
every time it scans the keyboard and finds a key held down. The user may
hold a key down for many tens or hundreds of milliseconds before releas-
ing it, and we don’t want this to register as multiple keystrokes. Instead, the
keyboard controller should generate a single key code value when the key
goes from the up position to the down position (a down key operation). In
addition, modern keyboards provide an autorepeat capability that engages
once the user has held down a key for a given time period (usually about
half a second), and it treats the held key as a sequence of keystrokes as long
as the user continues to hold the key down. However, even these autorepeat
keystrokes are regulated to allow only about 10 keystrokes per second rather
than the number of times per second the keyboard controller scans all the
switches on the keyboard.

Miscellaneous Input and Output Devices 415

Upon detecting a down keystroke, the microcontroller sends a key-
board scan code to the PC. The scan code is not related to the ASCII code for
that key; it is an arbitrary value IBM chose when the PC’s keyboard was first
developed. The PC keyboard actually generates two scan codes for every key
pressed. It generates a down code when a key is pressed down and an up code
when the key is released. If the user holds the key down long enough for the
autorepeat operation to begin, the keyboard controller sends a sequence of
down codes until the key is released, at which point the keyboard controller
sends a single up code.

The 8042 microcontroller chip transmits these scan codes to the PC,
where they are processed by an interrupt service routine (ISR) for the key-
board. Having separate up and down codes is important because certain
keys (like shift, ctrl, and alt) are meaningful only when held down. By
generating up codes for all the keys, the keyboard ensures that the key-
board ISR knows which keys are pressed while the user is holding down one
of these modifier keys. Exactly what the system does with these scan codes
depends on the OS, but usually the OS’s keyboard device driver will trans-
late the scan code sequence into an appropriate ASCII code or some other
notation that applications can work with.

Today, almost all PC keyboards interface via the USB port, and they
probably use a more modern microcontroller than the 8042 found in the
original IBM PC keyboard, but otherwise their behavior is exactly the same.

15.1.2  The Standard PC Parallel Port
The original IBM PC design provided support for three parallel printer
ports (which IBM designated LPT1:, LPT2:, and LPT3:). With laser and
inkjet printers still a few years in the future, IBM probably envisioned
machines that could support a standard dot matrix printer, a daisy wheel
printer, and maybe some other auxiliary type of printer for different pur-
poses. IBM almost certainly didn’t anticipate the widespread use of parallel
ports, or it probably would have designed them differently. At their prime,
the PC’s parallel port controlled keyboards, disk drives, tape drives, SCSI
adapters, Ethernet and other network adapters, joystick adapters, auxiliary
keypad devices, other miscellaneous devices, and, oh yes, printers.

Today, the parallel port is largely absent in systems because of connector
size and performance problems. Nevertheless, it remains an interesting device.
It’s one of the few interfaces that hobbyists can use to connect the PC to simple
devices they’ve built themselves. Therefore, learning to program the parallel
port is a task many hardware enthusiasts have taken upon themselves.

In a unidirectional parallel communication system, there are two dis-
tinguished sites: the transmitting site and the receiving site. The transmit-
ting site places its data on the data lines and informs the receiving site that
data is available; the receiving site then reads the data lines and informs the
transmitting site that it has taken the data. Note how the two sites synchro-
nize their access to the data lines—the receiving site does not read the data
lines until the transmitting site tells it to, and the transmitting site does not
place a new value on the data lines until the receiving site removes the data

416 Chapter 15

and tells the transmitting site that it has the data. In other words, this form
of parallel communication between the printer and computer system relies
on handshaking to coordinate the data transfer.

The PC’s parallel port implements handshaking using three control
signals in addition to the eight data lines. The transmitting site uses the
strobe (or data strobe) line to tell the receiving site that data is available.
The receiving site uses the acknowledge line to tell the transmitting site that
it has taken the data. A third handshaking line, busy, tells the transmitting
site that the receiving site is busy so it should not attempt to send data yet.
The busy signal differs from the acknowledge signal in that acknowledge
tells the system that the receiving site has accepted the data and processed
it, whereas busy communicates only that the receiving site can’t accept any
new data yet—it does not imply that the last transmission has been pro-
cessed (or even received).

In a typical data transmission session, the transmitting site:

1.	 Checks the busy line to see if the receiving site is busy. If the busy
line is active, the transmitter waits in a loop until the busy line
becomes inactive.

2.	 Places its data on the data lines.

3.	 Activates the strobe line.

4.	 Waits in a loop for the acknowledge line to become active.

5.	 Sets the strobe inactive.

6.	 Waits in a loop for the receiving site to set the acknowledge line inac-
tive, indicating that it recognizes that the strobe line is now inactive.

7.	 Repeats steps 1 through 6 for each byte it must transmit.

Meanwhile, the receiving site:

1.	 Sets the busy line inactive when it is ready to accept data.

2.	 Waits in a loop until the strobe line becomes active.

3.	 Reads the data from the data lines.

4.	 Activates the acknowledge line.

5.	 Waits in a loop until the strobe line goes inactive.

6.	 Sets the busy line active (optional).

7.	 Sets the acknowledge line inactive.

8.	 Processes the data.

9.	 Sets the busy line inactive (optional).

10.	 Repeats steps 2 through 9 for each additional byte it receives.

By carefully following these steps, the receiving and transmitting
sites coordinate their actions so that the transmitting site doesn’t attempt
to put several bytes on the data lines before the receiving site consumes
them, and so the receiving site doesn’t attempt to read data that the trans-
mitting site has not sent.

Miscellaneous Input and Output Devices 417

15.1.3  Serial Ports
The RS-232 serial communication standard is probably the most popu-
lar serial communication scheme in the world. Although it suffers from
many drawbacks (speed being the primary one), it is widely used, and
there are thousands of devices you can connect to a PC using an RS-232
serial interface. Though many devices still use this standard, it is rapidly
being eclipsed by USB (and today you can handle most RS-232 interfacing
requirements by plugging a USB-to-RS232 cable into your PC).

The original PC system design supports concurrent use of up to four
RS-232 compatible devices connected through the COM1:, COM2:, COM3:,
and COM4: ports. To connect additional serial devices, you can buy inter-
face cards that let you add 16 or more serial ports to the PC.

In the early days of the PC, DOS programmers had to directly access
the 8250 serial communication controller (SCC) to implement RS-232 com-
munications in their applications. A typical serial communications program
would have a serial port ISR that read incoming data from the SCC and
wrote outgoing data to the chip, as well as code to initialize the chip and to
buffer incoming and outgoing data.

Fortunately, today’s application programmers rarely program the SCC
directly. Instead, OSes such as Windows and Linux provide sophisticated
serial communications device drivers that application programmers can
call. These drivers provide a consistent feature set that all applications can
use, and this reduces the learning curve needed to provide serial communi-
cation functionality. Another advantage to the OS device driver approach is
that it removes the dependency on the 8250 SCC. Applications that use an
OS device driver will automatically work with different SCCs. In contrast,
an application that programs the 8250 directly won’t work on a system that
uses a USB-to-RS232 converter cable. However, if the manufacturer of that
converter cable provides an appropriate device driver for an OS, applica-
tions that do serial communications via that OS will automatically work
with the USB/serial device.

An in-depth examination of RS-232 serial communications is beyond
the scope of this book. For more information on this topic, consult your OS
programmer’s guide or pick up one of the many excellent texts devoted spe-
cifically to this subject.

15.2  Mice, Trackpads, and Other Pointing Devices
Along with disk drives, keyboards, and display devices, pointing devices are
probably the most common peripherals you’ll find on modern PCs. Pointing
devices are among the least complex peripheral devices, providing a very
simple data stream to the computer. They come in two categories: those that
return the relative position of the pointer and those that return the absolute
position of the pointing device. The relative position is the change in position
since the last time the system read the device; the absolute position is some set
of coordinate values within a fixed coordinate system. Mice, trackpads, and

418 Chapter 15

trackballs return relative coordinates; touch screens, light pens, pressure-
sensitive tablets, and joysticks return absolute coordinates.

Generally, it’s easy to translate an absolute coordinate system to a rela-
tive one, but problematic to do the reverse. Converting a relative coordinate
system to an absolute one requires a constant reference point that may
become meaningless if, for example, someone lifts a mouse off the surface
and sets it down elsewhere. Fortunately, most windowing systems work with
relative coordinate values from pointing devices, so the limitations of point-
ing devices that return relative coordinates are not a problem.

Early mice were typically optomechanical devices that rotated two encod-
ing wheels oriented along the x- and y-axes of the mouse body. Usually, both
wheels were encoded to send 2-bit pulses whenever they moved a certain dis-
tance. One bit told the system that the wheel had moved a certain distance,
and the other bit told the system which direction the wheel had moved.1 By
constantly tracking the 4 bits (2 bits for each axis) from the mouse, the com-
puter system could determine the mouse’s distance and direction traveled,
and keep a very accurate record of the mouse’s position in between applica-
tion requests for that position.

One problem with having the CPU track each mouse movement is that,
when moved quickly, mice can generate a constant and high-speed stream
of data. If the system is busy with other computations, it might miss some of
the incoming mouse data and therefore lose track of the mouse’s position.
Furthermore, the host’s CPU time is better spent on application computa-
tions than tracking the mouse position.

As a result, mouse manufacturers decided early on to incorporate a
simple microcontroller in the mouse package, to keep track of the physical
mouse movements and respond to system requests for mouse coordinate
updates, or at the very least generate interrupts on a periodic basis when
the mouse position changes. Most modern mice connect to the system via
the USB and respond with positional updates to system requests that occur
about every 8 milliseconds.

Because of the wide acceptance of the mouse as a GUI pointing device,
computer manufacturers have created many other devices that serve the
same purpose but are more portable—mice aren’t the most convenient
pointing devices to attach to a laptop computer on the road, for example.
Trackballs, strain gauges (the little “stick” between the G and H keys on
many laptops), trackpads, trackpoints, and touch screens are all examples of
devices that manufacturers have attached to laptop computers, tablets, and
PDAs to create more portable pointing devices. Though these devices vary in
their convenience to the end user, to the OS they can all look like a mouse.
So, from a software perspective, there’s little difference between them.

In modern OSes, the application rarely interfaces with a pointing
device directly. Instead, the OS tracks the mouse position and updates cur-
sors and other mouse effects in the system, then notifies the application
when some sort of pointing device event (such as a button press) occurs.

1. This is a bit of a simplification, but we’ll ignore that here.

Miscellaneous Input and Output Devices 419

In response to a query from an application, the OS returns the position of
the system cursor and the state of the buttons on the pointing device.

15.3  Joysticks and Game Controllers
The analog game adapter created for the IBM PC allowed users to connect
up to four resistive potentiometers and four digital switch connections to the
PC. The design of the PC’s game adapter was obviously influenced by the
analog input capabilities of the Apple II computer, the most popular com-
puter available at the time the PC was developed. IBM’s analog input design,
like Apple’s, was designed to be dirt-cheap. Accuracy and performance were
not a concern at all. In fact, you can purchase the electronic parts to build
your own version of the game adapter, at retail, for less than $3.

Due to the inherent inefficiencies of reading the original electronics
of the IBM PC game controller, most modern game controllers contain the
analog electronics that convert physical position into a digital value directly
inside the controller, and then interface to the system via USB. Microsoft
Windows and other modern OSes provide a special game-controller device-
driver interface and APIs that allow applications to determine what facilities
the game controller has, and also send the data to those applications in a
standardized form. This allows game-controller manufacturers to provide
many special features that were not possible with the original PC game-
controller interface. Modern applications read game-controller data just as
though they were reading data from a file or some other character-oriented
device like a keyboard. This vastly simplifies the programming of such
devices while improving overall system performance.

Some “old-school” game programmers feel that calling APIs is inherently
inefficient and that great code always controls the hardware directly. This
thinking is a bit outdated, for a few reasons. First, most modern OSes don’t
allow applications direct access to hardware even if the programmer wants it.
Second, software that talks directly to the hardware won’t work with as wide
a variety of devices as software that lets the OS handle the hardware. Finally,
most OS device drivers can probably be written more efficiently by the manu-
facturer’s or OS developer’s programming team than by an individual.

Because newer game controllers are no longer constrained by the
design of the original IBM PC game-controller card, they provide a wide
range of capabilities. Refer to the relevant game controller and OS docu-
mentation for information on how to program the API for a specific device.

15.4  Sound Cards
The original IBM PC included a built-in speaker that the CPU could pro-
gram (using an onboard timer chip) to produce a single-frequency tone.
Producing a wide range of sound effects was possible, but it required
programming a single bit connected directly to the speaker. This process
consumed nearly all the available CPU time. Within a couple of years of
the PC’s arrival, various manufacturers like Creative Labs created a special

420 Chapter 15

interface board—a sound card—that provided higher-quality PC audio out-
put and didn’t consume anywhere near that amount of CPU resources.

The first sound cards to appear for the PC didn’t follow any standards
because none existed at the time. Creative Labs’ Sound Blaster card became
the de facto standard because it had reasonable capabilities and sold in
very high volumes. At the time, there was no such thing as a device driver
for sound cards, so most applications were programming the registers
directly on the sound card. Initially, so many applications were written for
the Sound Blaster card that anyone wanting to use most audio applications
also had to purchase it. Other sound card manufacturers quickly copied
the Sound Blaster design, and all of them were subsequently stuck with it,
because any new features they added wouldn’t be supported by the available
audio software.

Sound card technology stagnated until Microsoft introduced multime-
dia support into Windows. The original audio cards were capable of medio-
cre music synthesis, suitable only for cheesy sound effects for video games.
Some boards supported 8-bit telephone-quality audio sampling, but the
audio was definitely not high fidelity. Once Windows provided a standard-
ized, device-independent interface for audio, the sound card manufacturers
began producing high-quality sound cards for the PC.

Immediately, “CD-quality” cards appeared that were capable of record-
ing and playing back audio at 44.1 KHz and 16 bits. Higher-quality sound
cards began adding wavetable synthesis hardware that produced realistic
synthesis of musical instruments. Synthesizer manufacturers like Roland
and Yamaha produced sound cards with the same electronics found in their
high-end synthesizers. Today, professional recording studios use PC-based
digital audio recording systems to record original music with 24-bit resolu-
tion at 96 (or even 192) KHz, arguably producing better results than all
but the finest analog recording systems. Of course, such systems cost many
thousands of dollars. They’re definitely not your typical sound card that
retails for under $100.

15.4.1  How Audio Interface Peripherals Produce Sound
Modern audio interface peripherals2 generally produce sound in one of
three different ways: analog (FM synthesis), digital wavetable synthesis, or
digital playback. The first two schemes produce musical tones and are the
basis for most computer-based synthesizers, while the third is used to play
back audio that was digitally recorded.

The FM synthesis scheme is an older, lower-cost, music synthesis mecha-
nism that creates musical tones by controlling various oscillators and other
sound-producing circuits on the sound card. The sound produced by such
devices is usually very low quality, reminiscent of early video games; there’s
no mistaking it for an actual musical instrument. While some very low-end

2. The term sound card hardly applies anymore because many personal computers include the
audio controller directly on the motherboard, and many high-end audio interface systems
interface via USB or FireWire, or require multiple boxes and interface cards.

Miscellaneous Input and Output Devices 421

sound cards still use FM synthesis as their main sound-producing mecha-
nism, few modern audio peripherals use it for anything other than produc-
ing intentionally “synthetic” sounds.

Modern sound cards that provide musical synthesis capabilities tend to
use wavetable synthesis: the audio manufacturer typically records and digi-
tizes several notes from an actual musical instrument, and then programs
these digital recordings into read-only memory (ROM), which they assemble
into the audio interface circuit. When an application requests that the audio
interface play some note on a given musical instrument, the audio hardware
plays back the recording from ROM, producing a very realistic sound.

However, wavetable synthesis is not simply a digital playback scheme.
To record over 100 different instruments, each with a several octave range,
would require a prohibitively expensive amount of ROM storage. Therefore,
most manufacturers of such devices use software embedded on the audio
interface card to raise or lower, by some integral number of octaves, a small
number of digitized waveforms stored in ROM. This allows manufacturers to
record and store only a single octave (12 notes) for each instrument. Some
synthesizers use software to convert only a single recorded note into any other
note, to reduce costs, but the more notes the manufacturer records, the bet-
ter the quality of the resulting sound. Some of the higher-end audio boards
record several octaves on complex musical instruments (like a piano) but
only a few notes on some lesser-used, less complex sound-producing objects,
like sound effects for gunshots, explosions, and crowd noise.

Finally, pure digital playback is used for two purposes: playing back
arbitrary audio recordings and performing very high-end musical synthesis,
known as sampling. A sampling synthesizer is, effectively, a RAM-based ver-
sion of a wavetable synthesizer. Rather than storing digitized instruments
in ROM, a sampling synthesizer stores them in system RAM. Whenever
an application wants to play a given note from a musical instrument, the
system fetches the recording for that note from system RAM and sends it
to the audio circuitry for playback. Like wavetable synthesis methods, a
sampling synthesizer can convert digitized notes up and down octaves, but
because the system doesn’t have the cost-per-byte constraints associated
with ROM, the audio manufacturer can usually record a wider range of
samples from real-world musical instruments. Generally, sampling synthe-
sizers provide a microphone input so you can create your own samples.
This allows you, for example, to play a song by recording a barking dog and
generating a couple octaves of “dog bark” notes on the synthesizer. Third
parties often sell “sound fonts” containing high-quality samples of popular
musical instruments.

The other use for pure digital playback is as a digital audio recorder.
Almost every modern sound card has an audio input that will theoretically
record “CD-quality” sound in stereo.3 This allows the user to record an

3. “CD quality” simply means that the board’s digitizing electronics are capable of capturing
44,100 16-bit samples every second. Usually the analog circuitry on the board doesn’t have
sufficiently high quality to pass this audio quality through to the digitizing circuitry, so very
few PC sound cards today are truly capable of “CD-quality” recording.

422 Chapter 15

analog signal and play it back verbatim, like a tape recorder. With sufficient
outboard gear, it’s even possible to make your own musical recordings and
burn your own music CDs, though to do so you’d want something a little bit
fancier than a typical Sound Blaster card—something at least as advanced
as the DigiDesign ProTools HDX or M-Audio system.

15.4.2  The Audio and MIDI File Formats
There are two standard mechanisms for playing back sound in a modern
PC: audio file playback and MIDI file playback.

Audio files contain digitized samples of the sound to play back. While
there are many different audio file formats (for example, WAV and AIF), the
basic idea is the same—the file contains some header information that speci-
fies the recording format (such as 16-bit 44.1 KHz, or 8-bit 22 KHz) and the
number of samples, followed by the actual sound samples. Some of the sim-
pler file formats allow you to dump the data directly to a typical sound card
after proper initialization of the card; other formats may require a minor
data translation before the sound card can process the data. In either case,
the audio file format is essentially a hardware-independent version of the
data you’d normally feed to a generic sound card.

One problem with sound files is that they can grow rather large. One
minute of stereo CD-quality audio requires just less than 10MB of storage.
A typical 3- to 4-minute song requires between 20MB and 45MB. Not only
does such a file take up an inordinate amount of RAM, but it consumes a fair
amount of storage in the software’s distribution file as well. If you’re playing
back a unique audio sequence that you’ve recorded, you have no choice but to
use this space to hold the sequence. However, if you’re playing back an audio
sequence that consists of a series of repeated sounds, you can use the same
technique that sampling synthesizers use and store only one instance of each
sound, and then use some sort of index value to indicate which sound you
want to play. This can dramatically reduce the size of a music file.

This is exactly the idea behind the Musical Instrument Digital Interface
(MIDI) file format. MIDI is a standard protocol for controlling music syn-
thesis and other equipment. If you want to play back music that doesn’t con-
tain vocals or other nonmusical elements, MIDI can be very efficient.

Rather than holding audio samples, a MIDI file simply specifies the
musical notes to play, when to play them, how long to play them, which
instrument to play them on, and so on. Because it takes only a few bytes
to specify all this information, a MIDI file can represent an entire song very
compactly. High-quality MIDI files generally range from about 20KB to 100KB
for a typical 3- to 4-minute song. Contrast this with the 20MB to 45MB for
an audio file of the same length. Most sound cards today are capable of
playing back General MIDI (GM) files using an on-board wavetable synthe-
sizer or FM synthesis. Most synthesizer manufacturers use the GM standard
to control their equipment, so its use is very widespread and GM files are
easy to obtain.

One problem with MIDI is that the quality of the playback is dependent
upon the quality of the end user’s sound card. Some of the more expensive

Miscellaneous Input and Output Devices 423

audio boards do a very good job of playing back MIDI files, but some of the
lower-cost boards—including, unfortunately, a large number of systems that
have the audio interface built into the motherboard—produce cartoonish-
sounding playback.

Therefore, you need to carefully consider using MIDI in your applica-
tions. On the one hand, MIDI offers the advantages of smaller files and
faster processing. On the other hand, on some systems the audio quality
will be quite low, making your application sound bad. You have to balance
the pros and cons of these approaches for your particular application.

Because most modern sound cards are capable of playing back
CD-quality recordings, you might wonder why the manufacturers don’t
collect a bunch of samples and simulate one of these sampling synthesiz-
ers. Well, they do. Roland, for example, provides the Virtual Sound Canvas
program, which simulates its hardware Sound Canvas module in software.
These virtual synthesizers produce very high-quality output, but consume
a large percentage of the CPU’s capability, thus leaving less power for your
applications. If your applications don’t need the full power of the CPU,
these virtual synthesizers provide a very high-quality, low-cost solution.

If you know your target audience will have a synthesizer, another solu-
tion is to connect an outboard synthesizer module to your PC via a MIDI
interface port and send the MIDI data to a synthesizer to play. This is an
acceptable solution for a specialized application with a limited customer
base, since few people outside of musicians would own a synthesizer.

15.4.3  Programming Audio Devices
One of the best aspects of audio in modern applications is that there’s been
a tremendous amount of standardization. File formats and audio hard-
ware interfaces are very easy to use in modern applications. As with most
other peripherals, few modern programs control audio hardware directly,
because OSes like Windows and Linux provide device drivers that handle
it for you. Producing sound in a typical Windows application requires little
more than reading data from a file that contains the sound information
and writing that data to another file used by the device driver, which inter-
faces with the actual audio hardware.

One other issue to consider when writing audio-based software is the
availability of multimedia extensions in the CPU you’re using. The Pentium
and later 80x86 CPUs provide the MMX, SSE, and AVX instruction sets.
Other CPU families provide comparable instruction set extensions (such
as the AltiVec instructions on the PowerPC or NEON on ARM). Although
the OS probably uses these extended instructions in the device driver,
you can employ them in your own applications as well. Unfortunately, that
usually involves assembly language programming, because few high-level
languages provide efficient access to them. Therefore, if you’re going to be
doing high-performance multimedia programming, assembly language is
something you’ll probably want to learn. See The Art of Assembly Language for
additional details on the Pentium’s SSE/AVX instruction set.

424 Chapter 15

15.5  For More Information
Axelson, Jan. Parallel Port Complete: Programming, Interfacing, & Using the PC’s

Parallel Printer Port. Madison, WI: Lakeview Publishing, 2000.

———. Serial Port Complete: Programming and Circuits for RS-232 and RS-485
Links and Networks. Madison, WI: Lakeview Publishing, 2000.

Hyde, Randall. The Art of Assembly Language. 2nd ed. San Francisco:
No Starch Press, 2010.

The goal of this book was to get you
thinking at the machine level. One way

to force yourself to write code at this level
is to write your applications in assembly lan-

guage. When you write code statement by statement
in assembly language, you get a pretty good idea of
the cost associated with each one.

Unfortunately, using assembly language isn’t a realistic solution for
most applications. The disadvantages of assembly language have been well
publicized (and exaggerated) over the past several decades, and as a result
many people have decided assembly isn’t an option for them.

Unlike writing code in assembly language, writing code in a high-level
language doesn’t force you to think at a high level of abstraction. There’s
nothing preventing you from thinking in low-level terms while writing
high-level code. This book has equipped you with the background knowl-
edge you need to do just that. By learning how the computer represents
data, you’ve learned how HLL data types translate to the machine level.

A F T E R W O R D :
T H I N K I N G L O W - L E V E L ,
W R I T I N G H I G H - L E V E L

426 Afterword: Thinking Low-Level, Writing High-Level

By learning how the CPU executes machine instructions, you’ve learned the
costs of various operations in your HLL applications. And by learning about
memory performance, you’ve learned how to organize your HLL variables
and other data to maximize cache and memory access. There’s only one
piece missing from this puzzle: “Exactly how does a particular compiler map
HLL statements to the machine level?” That topic is sufficiently large that
it deserves an entire book on its own. And that’s the purpose of the second
volume in the Write Great Code series: Thinking Low-Level, Writing High-Level.

WGC2 will pick up right where this book leaves off. It will teach you
how each statement in a typical HLL maps to machine code, how you can
choose between two or more high-level sequences to produce the best pos-
sible machine code, and how to analyze that machine code to determine its
quality and that of the high-level code that produced it. And while doing all
of this, it will give you a greater appreciation for how compilers work and
encourage you to help them do their job better.

Congratulations on your progress thus far toward writing great code.
See you in Volume 2.

A
A S C I I C H A R A C T E R S E T

Binary Hexadecimal Decimal Character

0000_0000 00 0 NULL

0000_0001 01 1 CTRL A

0000_0010 02 2 CTRL B

0000_0011 03 3 CTRL C

0000_0100 04 4 CTRL D

0000_0101 05 5 CTRL E

0000_0110 06 6 CTRL F

0000_0111 07 7 Bell

0000_1000 08 8 Backspace

0000_1001 09 9 TAB

0000_1010 0A 10 Line feed

0000_1011 0B 11 CTRL K

0000_1100 0C 12 Form feed

0000_1101 0D 13 RETURN

0000_1110 0E 14 CTRL N

428 Appendix A

Binary Hexadecimal Decimal Character

0000_1111 0F 15 CTRL O

0001_0000 10 16 CTRL P

0001_0001 11 17 CTRL Q

0001_0010 12 18 CTRL R

0001_0011 13 19 CTRL S

0001_0100 14 20 CTRL T

0001_0101 15 21 CTRL U

0001_0110 16 22 CTRL V

0001_0111 17 23 CTRL W

0001_1000 18 24 CTRL X

0001_1001 19 25 CTRL Y

0001_1010 1A 26 CTRL Z

0001_1011 1B 27 CTRL [

0001_1100 1C 28 CTRL \

0001_1101 1D 29 ESC

0001_1110 1E 30 CTRL ^

0001_1111 1F 31 CTRL _

0010_0000 20 32 Space

0010_0001 21 33 !

0010_0010 22 34 "

0010_0011 23 35 #

0010_0100 24 36 $

0010_0101 25 37 %

0010_0110 26 38 &

0010_0111 27 39 '

0010_1000 28 40 (

0010_1001 29 41)

0010_1010 2A 42 *

0010_1011 2B 43 +

0010_1100 2C 44 ,

0010_1101 2D 45 -

0010_1110 2E 46 .

0010_1111 2F 47 /

0011_0000 30 48 0

0011_0001 31 49 1

0011_0010 32 50 2

0011_0011 33 51 3

0011_0100 34 52 4

ASCII Character Set 429

Binary Hexadecimal Decimal Character

0011_0101 35 53 5

0011_0110 36 54 6

0011_0111 37 55 7

0011_1000 38 56 8

0011_1001 39 57 9

0011_1010 3A 58 :

0011_1011 3B 59 ;

0011_1100 3C 60 <

0011_1101 3D 61 =

0011_1110 3E 62 >

0011_1111 3F 63 ?

0100_0000 40 64 @

0100_0001 41 65 A

0100_0010 42 66 B

0100_0011 43 67 C

0100_0100 44 68 D

0100_0101 45 69 E

0100_0110 46 70 F

0100_0111 47 71 G

0100_1000 48 72 H

0100_1001 49 73 I

0100_1010 4A 74 J

0100_1011 4B 75 K

0100_1100 4C 76 L

0100_1101 4D 77 M

0100_1110 4E 78 N

0100_1111 4F 79 O

0101_0000 50 80 P

0101_0001 51 81 Q

0101_0010 52 82 R

0101_0011 53 83 S

0101_0100 54 84 T

0101_0101 55 85 U

0101_0110 56 86 V

0101_0111 57 87 W

0101_1000 58 88 X

0101_1001 59 89 Y

0101_1010 5A 90 Z

Binary Hexadecimal Decimal Character

0101_1011 5B 91 [

0101_1100 5C 92 \

0101_1101 5D 93]

0101_1110 5E 94 ^

0101_1111 5F 95 _

0110_0000 60 96 `

0110_0001 61 97 a

0110_0010 62 98 b

0110_0011 63 99 c

0110_0100 64 100 d

0110_0101 65 101 e

0110_0110 66 102 f

0110_0111 67 103 g

0110_1000 68 104 h

0110_1001 69 105 i

0110_1010 6A 106 j

0110_1011 6B 107 k

0110_1100 6C 108 l

0110_1101 6D 109 m

0110_1110 6E 110 n

0110_1111 6F 111 o

0111_0000 70 112 p

0111_0001 71 113 q

0111_0010 72 114 r

0111_0011 73 115 s

0111_0100 74 116 t

0111_0101 75 117 u

0111_0110 76 118 v

0111_0111 77 119 w

0111_1000 78 120 x

0111_1001 79 121 y

0111_1010 7A 122 z

0111_1011 7B 123 {

0111_1100 7C 124 |

0111_1101 7D 125 }

0111_1110 7E 126 ~

0111_1111 7F 127

430 Appendix A

Glossary 431

A
ABI  Application binary interface

Abstract base class  A class that has at least
one abstract method (member function).

Abstract method  A method in a class that
does not have an implementation. Derived
classes are responsible for implementing
the abstract method.

Accuracy  The correctness of a computation.

Activation record  A block of memory
holding parameters, local variables, and
other memory entities associated with a
procedure/function call.

Address bus  The portion of the system
bus on which memory addresses appear
(to access memory and I/O devices).

Address space  The range of memory
locations available to a single application.

Addressing modes  A mechanism for
selecting an effective address in memory
by combining register values, constants,
and other components.

Aggregate data type  A data type contain-
ing a collection of data values.

AGP  Accelerated graphics port

ALU  Arithmetic logical unit

Anonymous variables  Variables without a
name bound to them. For example, a data
structure that a program allocates on the
heap and refers to via a pointer (rather
than by name) is an anonymous variable.

Arabic numerals  The common 10 digits
(0–9) used by most Western countries to
represent base-10 values.

Architecture (computer)  See Computer
architecture.

ARM  Acorn RISC Machine; a popular
CPU architecture (used in most smart-
phones, for example).

Array base address  Memory address of
the first element of an array.

Associated values  In Swift, an associated
value is an auxiliary value associated with
an enum constant in an enumerated data
type. Swift uses associated values to pro-
vide the same functionality as discriminate
unions or variant record data types.

Associativity  A binary operator ° is said to
be associative if (A ° B) ° C = A ° (B ° C) for
all Boolean values A, B, and C.

Asynchronous I/O  I/O operations
that take place independent of the CPU’s
activities. That is, the CPU starts the I/O
operation and then performs other activi-
ties without waiting for the I/O operation
to complete.

ATA  Advanced Technology Attachment;
an older disk-drive-interface command set.
SATA is the modern replacement.

ATAPI  ATA with Packet Interface

Average rotational latency  The average
time required for a desired disk sector to
appear under a disk head.

G L O S S A R Y

432 Glossary

B
Base class  An ancestor class of derived
classes.

Basic Multilingual Plane  The first group
of 65,536 Unicode code points (U+0000 to
U+CFFF and U+E000 to U+FFFF).

BCD  Binary-coded decimal

Best-fit  A memory allocation scheme
whereby the system scans all the blocks on
the free list to find the smallest one that
can satisfy the allocation request.

Big-endian  A byte organization (usually
in memory) where the HO byte of a multi-
byte structure appears first in the string of
bytes (for example, the HO byte appears at
the lowest address in memory and the LO
byte appears at the highest address).

Binary-coded decimal  A binary represen-
tation of base-10 numbers that uses nibbles
(4 bits) to represent a single decimal digit.
Binary values 1010 through 1111 are illegal
BCD values.

Binary numbering system  A numeric sys-
tem based on powers of 2 (and only having
the digits 0 and 1).

Binding  Associating some attribute with
an object (such as associating a value with
a variable).

Bit  A single binary digit, representing the
value 0 or 1.

Bit strings  An ordered sequence of one or
more binary digits (bits).

Bitwise  Operations on two bit strings that
proceed on a bit-by-bit basis; that is, they
operate on 2 bits at a time, each of which
occupies the same position in its respective
bit string.

BIU  Bus interface unit

BMP  See Basic Multilingual Plane.

Boolean expressions  Arithmetic-like
expressions that evaluate to either true
or false.

Boolean logic  A mathematical system
based on two values (for example, 0 and 1,
or true and false).

BSS  Block started by a symbol; an area of
memory bound to an identifier.

Byte  A bit string containing exactly 8 bits.

Byte-addressable memory  Memory from
which the CPU can access individual bytes
(as opposed to other memory, often on
RISC processors, that can be accessed only
32 or 64 bits at a time).

C
Cache hit  When a CPU accesses a memory
location that is present in the memory cache.

Cache line  A group of memory locations
managed as a set by the CPU or cache
manager. Typically, a CPU writes or reads
an entire cache line to/from memory at
one time.

Cache miss  A memory access to a location
that is not currently held in cache memory.

Canonical equivalence  Two different
sequences (such as strings) are canonically
equivalent if they produce the same char-
acter on an output device. If two strings are
canonically equivalent, comparing them for
equality should produce true even if they
have different bytes in their sequences.

Casting  The process of converting a value
from one type to another.

Central processing unit  The core compo-
nent in a computer system where arithme-
tic, logical, control, instruction fetch and
decode, and other operations take place.

Character string  A sequence of characters.

Glossary 433

CISC  Complex instruction set computer

Clock frequency  The frequency of the
signal (typically a square wave) input to
a CPU that synchronizes and controls
its internal operations. The speed of the
CPU is often directly proportional to the
clock frequency.

Closure  A mathematical system is closed
with respect to a particular operator if every
pair of values in that system supplied to that
operator produces a value in the system.

Code pages  Different character sets shar-
ing the same numeric representation (for
example, multiple EBCDIC character sets
lie in different code pages).

Code plane  A set of up to 65,536 different
Unicode characters.

Code point  A numeric value (in the range
0–65,535) representing a Unicode char-
acter (scalar) or a surrogate code point
(Unicode character set expansion).

Column-major ordering  Organizing
arrays in memory with column elements
appearing in consecutive memory locations.

Commutative  A two-operand operator is
commutative if you can swap the left and
right operands and the operator produces
the same result.

Composite data types  Data types that
contain a collection of other data objects.
Examples include arrays, structs/records,
classes, tuples, and unions.

Computer architecture  The set of rules
and methods that define the functionality
and organization of a computer system.

Control bus  The portion of the system
bus that contains various control lines, such
as read/write control, byte enable lines,
clock signals, and hold lines.

Control characters  Special characters
that perform terminal/device manipula-
tion rather than displaying a symbol on an
output device. Examples include backspace,
carriage return, and line feed.

Control hazard  An attempt by a CPU to
continue executing instructions in a pipeline
after a control transfer occurs (invalidating
the sequential instructions in the pipeline).

Copy on write  A mechanism whereby data
is shared between multiple variables until
one variable writes to the common data, at
which point the system makes a copy of the
data prior to modifying it (for the variable
writing to the common data).

Core  See CPU core.

CPU  Central processing unit

CPU clock  A signal that controls the rate
of activities within a CPU (also known as
the system clock). See also Clock frequency.

CPU core  A full CPU on a single piece of
silicon. Often, multiple CPU cores appear
on the same piece of silicon, allowing mul-
tiple threads of concurrent execution.

CU  Control unit

D
Data bus  The portion of the system bus
where various components exchange data
with one another.

Data hazard  An attempt by a CPU to use
a piece of data before a currently executing
instruction is done using that data.

DBCS  Double-byte character set; a char-
acter set scheme that uses 1 or 2 bytes to
represent a large number of characters
(typically fewer than 500 characters total).

Decimal numbering system  A numeric
representation system based on exponents
of 10.

434 Glossary

Delphi  A popular Object Pascal compiler
and development system.

Denormalized values  Floating-point num-
bers whose exponent contains 0 and where
the binary point isn’t between the HO man-
tissa bit position and bit position HO – 1.

Descriptor  A record (structure) that
maintains information about a data struc-
ture somewhere else in memory. For exam-
ple, a string descriptor might contain the
length of the string along with a pointer to
the characters in that string.

Direct addressing  Accessing a memory
location using an address encoded as part
of the machine instruction.

Dirty bit  A flag in a cache line specifying
that data has been written to the cache line
but not all the way through to main memory.

Discriminant union  Also known as a dis-
criminated union. A collection of data values
in a structure whose use is mutually exclu-
sive. That is, for the lifetime of the object,
the software will reference only a single
field from the structure. Often, compilers
will allocate all the fields of a union at the
same memory address to conserve memory
(because only one should ever be used at
a time).

Distributive  Two binary operators ° and
% are distributive if A ° (B % C) = (A ° B) %
(A ° C) for all Boolean values A, B, and C.

DMA  Direct memory access

DOS  Disk operating system

Double word  A bit string that is the size
of 2 words (typically 32 bits, but it could
be larger if the CPU’s native word size is
greater than 16 bits).

DRAM  Dynamic random-access memory;
the most common form of memory in mod-
ern computer systems.

DSM  Distributed shared memory

Dword  See Double word.

Dynamic objects  Objects that have some
attribute bound to them while a program
is running.

Dynamic range  The difference between
the smallest and largest numbers in a given
numeric representation.

E
EBCDIC  Extended Binary Coded
Decimal Interchange Code

Effective address  A memory address
resulting from the computation of all
addressing mode components in an
instruction.

Endianness  The organization of bytes
in a multibyte data object in memory. Big-
endian organization stores the HO byte of
a data structure at the lowest (byte) address
in memory, whereas the LO byte appears at
the highest address. Little-endian organiza-
tion stores the LO byte at the lowest address
in memory and the HO byte at the highest
address.

Excess-127 format  A binary representa-
tion of floating-point exponents using 8
bits, with values 0 through 127 representing
negative exponents and 128 through 255
representing positive exponents (and 0).

Excess-1,023 exponent  A binary rep-
resentation of floating-point exponents
using 11 bits, with values 0 through 1,023
representing negative exponents and 1,024
through 2,047 representing positive expo-
nents (and 0).

Excess-16,383 exponent  A binary repre-
sentation of floating-point exponents using
15 bits, with values 0 through 16,383 rep-
resenting negative exponents and 16,384
through 32,767 representing positive expo-
nents (and 0).

Glossary 435

Exponent  A mantissa is multiplied by
the numeric base (usually binary) raised
to the exponent power (for example, for
m.mmmmme+xx the exponent is the xx portion).

F
Falling edge  The component of a clock
signal where the signal changes from high
to low.

False precision  Garbage bits gener-
ated by certain computations resulting
in imprecise results.

FAT  File allocation table

Field  A data memory of a record, struc-
ture, class, or other aggregate/composite
data type.

FIFO  First in, first out

First-fit  A memory allocation scheme in
which the memory manager allocates first
block (in the free-block list) that satisfies
the allocation request.

Fixed-point representation  A numeric
representation using a fixed set of digits
with a radix point at an assumed position
in the string of digits. For example, a six-
digit decimal fixed-point representation
(with the decimal point fixed between the
third and fourth digits) could represent
values between 000.000 and 999.999. Most
commonly, fixed-point values in comput-
ers are binary fixed-point values, with the
binary point fixed at a certain location in
the bit string.

Floating-point representation  A numeric
representation for real numbers that con-
tains two components: a mantissa and
an exponent.

FPU  Floating-point unit

Fragmentation  In a memory allocation
scheme, fragmentation occurs when larger
blocks are broken up into small blocks that
aren’t sufficient to handle common alloca-
tion requests.

G
Garbage collection  Automatic reclama-
tion of dynamically allocated memory by
a system.

Glyph  A set of strokes that draw a charac-
ter on an output device.

GM  General MIDI

Grapheme clusters  A sequence of
Unicode code points that produce a single
item most people would recognize as a
stand-alone character on an output device.

H
Harvard architecture  A CPU architecture
that uses separate memory spaces for code
and data.

Hazards  Attempts by a CPU to simulta-
neously use a single resource by multiple
instructions.

Heap  A region in memory reserved for
dynamic storage allocation.

Hexadecimal numbering system  A num-
bering system based on powers of 16.

HLA  High-Level Assembly (language)

HO  High-order (most significant)

Hyperthreading  A scheme (typically
in 80x86 processors) whereby multiple
threads of execution occur in parallel by
using functional units on the CPU that are
currently idle.

Hz  Hertz (also known as cycles per second)—
the unit of the system clock frequency.

436 Glossary

I
I/O  Input/output

IDE  Integrated drive electronics; an older
disk drive interface (SATA is the modern
equivalent).

Identity  A Boolean value I is said to be
the identity element with respect to some
binary operator ° if A ° I = A for all Boolean
values A.

Immediate operand  A constant operand
for a machine instruction.

Indexed addressing  Computing the effec-
tive address by adding an index (numeric
value) held in a machine register or memory
location to some base address (which could
also be in a register, in a memory location, or
encoded as part of the machine instruction).

Indexed addressing mode  A memory
address computed by adding some value
(typically held in a register) to a base
address.

Indirect addressing  Referencing a mem-
ory location by an address held in a register
or another memory location (that is, using
a pointer to the memory location).

Indirect addressing mode  Accessing
an address in memory where the address
is held in some register or memory loca-
tion (rather than encoded directly in the
machine instruction).

Inheritance  The process of one class
inheriting attributes and behaviors from
another class (also known as subclassing).

Instruction cache  A high-speed cache
memory used to hold machine instructions.

Instruction set architecture   The design
of the machine instruction set for a CPU.

Inverse  A Boolean value I is said to be the
inverse element with respect to some binary
operator ° if A ° I = B and B ≠ A (that is, B
is the opposite value of A in a Boolean sys-
tem) for all Boolean values A and B.

ISA  Instruction set architecture; also the
Industry Standard Architecture bus (the
name of the original IBM PC bus).

ISR  Interrupt service routine

K
Kylix  A Linux-based version of Delphi
(Object Pascal).

L
L1 cache  Level 1 caching system.

L2 cache  Level 2 caching system.

L3 cache  Level 3 caching system.

Latency  The time between a request
for some resource (such as data in cache
memory) and the actual fulfillment of
that request.

Least significant bit  The bit in a bit string
representing the smallest value (smallest
exponent of 2). Typically the rightmost bit
in a bit string.

Length-prefixed string  A string that
begins with a count of the number of char-
acters in the string.

Lifetime  The period of time between the
binding of some attribute to the point when
the bond is broken. For example, the life-
time of a memory variable is usually from
the point you allocate memory for the vari-
able to the point you deallocate that storage.

Little-endian  A byte organization (usually
in memory) where the LO byte of a multi-
byte structure appears first in the string of
bytes (for example, the LO byte appears at
the lowest address in memory and the HO
byte appears at the highest address).

LO  Low-order (least significant)

Long word  A bit string whose size is
128 bits.

Glossary 437

LRU  Least recently used

LSB  Least significant bit

M
Machine code  A numeric encoding of
machine instructions in memory.

Machine instructions  Commands that a
CPU executes natively.

Macroinstruction  Native CPU machine
instructions (emulated by executing
several microcode instructions on
microcoded CPUs).

Mantissa  The significant digits in a real
number that do not include the exponent
portion (for example, for m.mmmmme + xx the
mantissa is the m.mmmmm portion).

Mask in  Force bits to 1 in a bit string.

Mask out  Force bits to 0 in a bit string.

MASM  Microsoft Macro Assembler

Memory access time  The amount of time
a CPU takes to fetch (or write) a memory
element. Typically specified in system clock
period units (that is, nanoseconds or pico-
seconds), though operating frequency (for
example, GHz) is also common (clock period
is the reciprocal of the clock frequency).

Memory addressing modes  A mechanism
for computing memory addresses on a CPU.

Memory controllers  Specialized com-
ponents (typically on modern CPUs)
that interface directly to DRAM devices
providing appropriate address/data mul-
tiplexing, refresh control, and other mem-
ory-related functions.

Memory leak  Making dynamically allo-
cated memory unavailable for reuse. Occurs
when code stops using an allocated block of
memory without explicitly freeing it.

Memory-mapped files  Storing files in the
address space of a process and accessing the
file data using virtual memory operations.

MHz  Megahertz, or one million cycles
per second

Microcode  Internal low-level code that
a CPU executes in order to execute native
machine instructions.

Microengine  The component of the CPU
that executes microcode.

Microinstructions  Low-level instructions
in microcode.

Microsecond  One millionth of a second.

MIDI  Musical Instrument Digital Interface

Millisecond  One thousandth of a second.

MIMD  Multiple instructions, multiple data

MMC  Multimedia Commands (SCSI)

MMU  Memory management unit

Modulo-n counters  Variables that incre-
ment from 0 to (n – 1) and then reset to 0.

Most significant bit  The bit with the
greatest value in a bit string (often the
leftmost bit in a bit string).

MSB  Most significant bit

MSC  Management Server Commands
(SCSI)

Multiple inheritance  The ability for a
class to inherit attributes (data fields) and
behaviors (methods/functions) from mul-
tiple parent classes.

Multiprocessing  Executing multiple
threads of execution on multiple CPUs
(or CPU cores).

438 Glossary

N
NaN  Not-a-number; a special floating-
point representation for illegal values.

Nanosecond  One billionth of a second.

Nibble  A bit string containing exactly
4 bits.

Normalized floating-point values 
Floating-point numbers that have their
exponents adjusted so that the binary point
is between the HO and HO – 1 bit positions
in the mantissa.

Nsec  See Nanosecond.

NUMA  Non-uniform memory access

Number  An intangible concept that repre-
sents a quantity.

Numbering system  A set of symbols and
conventions for representing numeric values.

Numeric representation  Printable symbols
human beings use to represent numbers.

O
Octal numbering system  A numeric
representation based on powers of 8.

Offline storage  Information kept on
media that is not connected to the com-
puter system that uses it; examples include
magnetic tapes and optical disks.

One’s complement format  A signed
numeric representation that uses a single
bit as a sign bit. Note that one’s complement
has two representations of 0 (with the sign
bit containing 0 or 1).

Opcode  Operation codes; numerical
encodings for machine instructions.

Operation codes  See Opcodes.

Operator precedence  See Precedence.

OS  Operating system

OSD  Object-based Storage Device com-
mands (SCSI)

Out-of-order execution  Certain CPUs
delay completing the execution of certain
instructions until after later instructions
have begun executing; however, the CPUs
(usually) attempt to ensure that the results
produced with out-of-order execution are
the same as if they’d been produced with
linear execution.

Overflow  Incorrect calculations that pro-
duce a value that is too large to fit in the
destination bit string.

P
Parallel processing  Running multiple
threads (programs) concurrently on mul-
tiple CPUs (or CPU cores).

Parameterized type  Specifying a type as a
parameter (argument) to a class definition
or function.

PATA  Parallel ATA (same as IDE/ATA)

PCI  Peripheral component interconnect

Pipeline  Stages in a CPU’s hardware that
execute phases of a machine instruction.

Pointer  A variable whose value refers to
a different data value. Typically pointers
contain the memory address of the object
they reference.

Polling  Software testing to see if a
resource or operation is available.

Polymorphism  The feature of an object-
oriented programming language whereby
an object reference to some base class could
actually refer to a derived class object. A
polymorphic type is one whose operations
can apply to other types.

Glossary 439

Positional notation system  A system (typi-
cally numeric) where different positions
in a string of characters stand for different
entities. For example, the decimal number-
ing system is positional, with each digit to
the left representing a greater power of 10.

Postulate  An initial assumption in a math-
ematical system.

Powerset  A set of objects using a bit string
representation with 1 bit (present/not pres-
ent) for each possible member of the set.

Pragma  A special programming language
feature that provides information to the
compiler (rather than generating machine
code, as is the case for normal statements).

Precedence  A property that controls the
order of evaluation when multiple opera-
tors appear within an expression.

Precision  The number of digits or bits
maintained in a computation.

Prefetch queue  A special first-in, first-out
memory inside a CPU that holds machine
instructions that the CPU is about to execute.

Prefix opcode byte  A prefix byte in a
machine instruction that redefines the fol-
lowing opcodes.

Q
QNaN  Quiet not-a-number

Quad word  A bit string that is 4 words
concatenated together; this is usually
64 bits.

R
Radix  Base of a numbering system. For
example, Radix-10 is the decimal (base-10)
numbering system.

Radix point  A period that separates
whole numbers from fractional values in a
numeric representation. Usually, the base
(such as decimal or hexadecimal) name is
used rather than “radix” (for example, deci-
mal point or hexadecimal point).

RAID  Redundant array of inexpensive disks

RAM  Random access memory

Rational representation  A numeric repre-
sentation for fractional numbers that uses
two integers to represent the numerator
and denominator of a fractional value.

RBC  Reduced Block Commands (SCSI)

Record  In a language like Pascal, a com-
posite data type that allows you to combine
different data objects into a single type.

Reference counter  A data structure used
to count how many pieces of code are using
(referencing) a block of memory so that
the memory can be reclaimed (garbage-
collected) once the code is done using it.

Register renaming  An architectural fea-
ture of the CPU that allows it to process
some operations faster by using shadow reg-
isters in place of its main registers when the
main registers are unavailable.

RISC  Reduced instruction set computer;
a computer architecture based around
reducing the work each machine instruc-
tion performs.

Rising edge  The component of a clock
signal where the signal changes from low
to high.

Row-major ordering  Organizing elements
of an array with elements in rows appearing
in consecutive memory locations.

440 Glossary

S
SAS  Serial-Attached SCSI

Saturation  The process of storing a maxi-
mum (or minimum) value into a numeric
variable if the range of the original value
does not fit in the variable.

SBC  SCSI Block Commands, or single-
board computer

Scaled-index addressing  Like an indexed
address mode, but the scaled-index address-
ing mode multiplies the index value by
some constant (usually 2, 4, 8, or 16) prior
to adding the index to the base address.

Scaled numeric format  A numeric rep-
resentation that multiples (or divides) all
values by a fixed constant. For example, a
“times 1,000” scaled format would multiply
all numbers by 1,000, allowing an integer
value to represent numeric quantities from
x.000 to x.999 (where x is some arbitrary
integer value).

SCC  SCSI Controller Commands, or
serial communications chip

Scope  The portion of a program where an
identifier’s name is bound to an object.

SCSI  Small Systems Computer Interface;
an older interface to hard drives and other
peripherals. SAS (Serial-Attached SCSI) is
the modern implementation of SCSI.

SES  SCSI Enclosure Services commands

SGC  SCSI Graphics Commands

Sign contraction  The process of reducing
the number of bits used by a two’s comple-
ment signed integer (sign contraction isn’t
always possible if the value won’t fit into the
reduced number of bits).

Sign extension  The process of expand-
ing the size (bits) of a two’s complement
signed integer.

SIMD  Single instruction, multiple data

SISD  Single instruction, single data

SNaN  Signaling not-a-number

Spatial locality  The idea that if a system
accesses a given memory location, it will
likely access an adjacent memory location
in the near future (such as accessing succes-
sive machine instructions in memory).

SPC  SCSI Primary Commands

SPI  SCSI Parallel Interface

SSC  SCSI Stream Commands

SSD  Solid-state drive; a semiconductor-
based mass storage replacement for
hard drives.

Static (binding)  Objects exhibit static
binding when an attribute is bound to
the object the whole time the program
is running.

Superscalar CPU  A CPU that is capable
of executing more than one instruction
simultaneously.

Surrogate code points  Special Unicode
values that expand the character set beyond
65,536 characters (expansion beyond
16 bits).

Synchronous I/O  With synchronous I/O,
a process starts an I/O operation and then
waits for its completion before continuing
execution.

System bus  A set of signal lines that con-
nect various components of a computer
system (such as the CPU, memory, and
I/O devices).

T
Tbyte  A bit string whose size is 80 bits.

Temporal locality  The idea that if a sys-
tem accesses a given memory location, it
likely will access this same location in the
near future.

Glossary 441

Thrashing  Repeated accesses to memory
objects that are either not in the cache or
not in physical memory (forcing a reload of
the cache from main memory or a reload of
memory from a secondary storage device,
such as a hard drive), resulting in reduced
system performance.

Tuple  A list of associated data values. In
Swift, a tuple is roughly equivalent to a list
of values.

Two’s complement representation  A spe-
cial binary format representing signed and
unsigned integers.

U
Underflow  Incorrect results produced
from a calculation that are too small to fit
in the destination bit string.

Unicode  A universal standardized charac-
ter set that supports most known characters.

Unicode normalization  Adjusting canoni-
cally equivalent Unicode strings so that they
have the same (minimal) code points, orga-
nized in the same order.

Union  See Discriminant union.

USB  Universal Serial Bus

µsec  See Microsecond.

UTF  Universal Transformation Format;
an encoding scheme for Unicode (UTF-8,
UTF-16, and UTF-32 are the three standard
Unicode encoding schemes).

V
Virtual memory  Utilizing secondary stor-
age (hard drives or SSDs) to hold infre-
quently accessed data so main memory is
available for frequently used data.

Virtual method table  A table of pointers,
each of which contains the address of a vir-
tual method associated with a class. Objects
use virtual method tables to provide link-
ages to methods associated with the under-
lying class to supply polymorphism.

VLIW  Very-long instruction word; a high-
performance computer architecture.

VMT  See Virtual method table.

Von Neumann architecture  A computer
architecture for a stored-program system
where the data and program codes sit in
the same memory space and the computer
fetches both on the same address and
data bus.

W
Wait state  A clock cycle during which the
CPU suspends activities while waiting to
synchronize with external hardware (such
as slow memory).

WGC  Write Great Code

WGC1  Write Great Code, Volume 1:
Understanding the Machine

WGC2  Write Great Code, Volume 2:
Thinking Low-Level, Writing High-Level

WGC3  Write Great Code, Volume 3:
Engineering Software

WGC4  Write Great Code, Volume 4:
Designing Great Code

WGC5  Write Great Code, Volume 5:
Great Coding

WGC6  Write Great Code, Volume 6:
Testing, Debugging, and Quality Assurance

Word  A bit string of some CPU-native
length. Typically 16 bits on modern CPUs,
but it could be 32 or even 64 bits.

442 Glossary

Z
Zero extension  The process of expanding
an unsigned binary bit string to a larger-
sized bit string.

Zero-terminated strings  A character
string that contains a 0 byte as the last
element of the string.

Index 443

Numbers
7-bit strings, 111

 advantages, 112
 assembly language macro

implementation, 112
16-bit bus data access, 138
8042 microcontroller chip (keyboard

controller), 415

A
absolute position pointing devices, 417
abstract base classes, 202
abstract member functions in C++, 206
abstract methods, 202
Accelerated Graphics Port (AGP)

bus, 360
accessing data with a 16-bit bus, 138
accessing double words in memory, 140
accessing elements of an array, 171, 175
accessing words

in byte-addressable memory, 136
at odd addresses, 139

acknowledge line (parallel port), 416
activation records, 342
active-low logic, 242
adders, 240
adding integer values to a pointer, 164
add instruction, 257

encoding on the x86, 310
encoding on the Y86, 296

addressable memory, 133
address bus, 133
address spaces, 135
Advanced Technology Attachment

(ATA), 373
advantages of 7-bit strings, 112
AGP (Accelerated Graphics Port)

bus, 360
algebraic manipulation of Boolean

expressions, 223

aliases, 191
aligned data access, 164
allocating objects in contiguous

memory, 163
AND operation, 42, 218
anonymous variables, 161, 342
application binary interface (ABI), 185
Arabic numerals, 11
architecture, 131
arithmetic and logical instructions

(Y86), 292
arithmetic shift right operation, 49
arithmetic units, 263
ARM CPU (memory access), 141
arrays, 166

alignment in memory, 170
of arrays, 179
in C#, 168
declarations, 167
implementation in Swift, 179
index bounds checking, 169
initialization in Swift, 168
Pascal, 169
representation in memory, 170

Art of Assembly Language, 7, 59, 93, 157,
215, 317, 424

ASCII character set, 96–98
assembly language macro to declare

7-bit strings, 112
assigning instruction opcodes, 290
associativity, 219
asynchronous I/O (filesystems), 409
ATA (Advanced Technology

Attachment), 373
ATAPI (ATA with Packet Interface), 373
audio device programming, 423
audio sampling, 421
average rotational latency (of a disk

drive), 386
average seek time (on a disk), 384

I N D E X

444 Index

B
backspace character, 97
base addresses

of an allocated memory region, 162
of an array, 166
of a record, 185

base classes, 195
base (numbering system radix), 12
BCD, 29
BDXL, 391
best-fit memory allocation, 343
biased (excess) exponents, 68
bidirectional ports, 352
big-endian data organization, 142

issues when using unions, 192
binary arithmetic

addition, 38
division, 41
multiplication, 40
subtraction, 39

binary-coded decimal, 29, 99
binary conversion

to decimal, 13
to hexadecimal, 16

binary data types, 20
binary I/O (files), 409
binary numbering system, 13
binary operator, 218
binary representations for NaN, 73
bit density (on a disk), 384
bit fields, 51, 54
bit numbers, 21
bit strings, 20, 44
bitwise operations, 44
BIU (bus interface unit), 265
blocks (on a disk), 383
blowing revs, 386
Blu-ray, 391
BMP (Unicode Basic Multilingual

Plane), 102
Boolean algebra, 218

theorems of, 219
Boolean expressions, 220, 223
Boolean function numbers, 222
Boolean functions, 220, 221
Boolean literals, 223
Boolean logic, 217
Boolean map simplification, 229
Boolean operators, 218

precedence, 220
Boolean postulates, 218
Boolean terms, 223, 224

bounds checking of array indexes, 169
buffering peripheral device data, 360
bulk transmissions (USB), 378
burst mode on the PCI bus, 359
bus contention, 270
bus interface unit (BIU), 265
busy line (parallel port), 416
byte-addressable memory, 135, 162
byte-addressable memory array, 138
byte enable lines, 135, 140
bytes, 20

C
C/C++ records (structs), 182
C/C++ unions, 187
C# strings, 115
caches

coherency, 280
disk, 387
hits, 152, 153
line replacement policies, 329
lines, 152, 326
memory, 151
misses, 152
three-level (L3), 154
two-level (L2), 153
write policies, 330

canonical equivalence (Unicode), 105
canonical forms of Boolean

expressions, 224
carriage return character, 97
case-variant records in Pascal/

Delphi, 187
CD-Recordable (CD-R), 391
CD-Rewriteable (CD-RW), 391
CD-ROM, 390
ceil() function, 72
central processing unit (CPU), 131, 154
character names in Unicode, 103
character sets, 96–101, 119, 120

ASCII, 96–99
double-byte, 100
EBCDIC, 99–100
Unicode, 101

character strings, 110
choosing instructions for a CPU, 289
class constructors, 198
classes, 192

in C++, 205
in Java, 208
in Swift, 209

client drivers (USB), 380

Index 445

clipping (saturation), 28
clock cycle, 148
clocked logic, 245
clocks per instruction (CPI), 275
closure (of an operator), 218
coarse-grained parallelism, 280
code planes in Unicode, 102
code points in Unicode, 101
column-major ordering, 173, 176
combining characters in Unicode,

108, 109
acute accent character, 104

COM ports, 417
commutivity, 218
comparing bits, 46
comparing dates, 53
comparing floating-point numbers, 65
comparing pointers, 162, 166
complex instruction set computer

(CISC) instructions,
255, 301

composite data types, 166
computer architecture, 131
conditional jumps, 255

on the Y86, 295, 299
condition codes register, 257
constructing a truth map, 230
constructing logic functions using only

NAND gates, 238
constructing minterms from the

canonical form, 225
contention for the bus, 270
contiguousarray type (Swift), 180
control bus, 134
control characters, 96
control transfer instructions (on the

Y86), 292
control transmissions (USB), 377
control units, 263
converting between canonical

forms, 229
copy on write, 117
counters, 248
CPI (clocks per instruction), 275
CPU (central processing unit), 131

memory access, 154
cylinders (on a disk drive), 385

D
D (data) flip-flop, 246
dangling pointers, 117
data bus, 132

data hazard, 270
data transfer rates, 357
dates, 51

comparing, 53
DBCS (double-byte character sets), 100
debouncing keyboards, 414
decimal numbering system, 11
decimal-to-binary conversion, 13
declaring arrays in memory, 167
declaring multidimensional arrays, 177
decoder circuits, 242
decoding delays, 150
decoding instruction opcodes, 243
defragment operation, 408
delete() memory allocation function,

161, 342
Delphi strings, 118
DeMorgan’s Theorems, 220
denormalized operand (floating-point

exception), 75
denormalized values, 71
descriptor-based strings, 114
device drivers, 364
digital audio recorder, 421
digital design, 217
Digital Linear Tape (DLT), 392
digital playback (audio), 420
digital wavetable synthesis, 420
direct-mapped caches, 326
direct memory access (DMA), 354, 355
direct memory addressing mode,

155, 293
dirty bits, 331
disadvantage of the bitmap scheme, 399
disadvantages of FAT, 402
disadvantages of zero-terminated

strings, 111
discriminant unions, 187
disk caches, 387
disk directory, 398
disk-drive geometries, 387
diskless workstations, 381
dispose() memory allocation function,

161, 342
distributed shared memory (DSM), 321
distributive law, 219
division by zero (floating-point

exception), 74
DLT (Digital Linear Tape), 392
DMA (direct memory access), 354, 355
double-byte character sets, 100, 101
double-precision floating-point

format, 69

446 Index

double-word storage in byte-addressable
memory, 136

down codes on the keyboard, 415
down key code, 414
dual I/O ports, 352
duality principle, 220
DVD+RW, 391
DVD-R, 391
DVD-RAM, 391
DVD-ROM, 391
DVD-RW, 391
dword, 21
dynamic memory allocation, 161
dynamic range in floating-point

numbers, 62
dynamic strings, 117

E
eager comparison, 66
EBCDIC (Extended Binary Coded

Decimal Interchange Code)
character set, 99

EEPROM (electrically erasable
programmable read-only
memory), 393

effective address, 156
EISA bus, 357
electrically erasable programmable

read-only memory
(EEPROM), 393

encapsulation, 205
encoding instructions, 285

80x86, 301
Y86, 293, 296

endianness, 143
conversion, 144

end-of-line character, 98
equivalence function

(exclusive-NOR), 222
error accumulation in floating-point

calculations, 63
exceptions in floating-point

arithmetic, 74
excess-127 exponent, 68
excess-1,023 exponent, 69
excess-16,383 exponents, 69, 70
exclusive-NOR, 222
exclusive-OR (XOR), 42, 221, 222
executing instructions out of order, 277
execution units, 254, 275
expansion opcodes, 294
exponents, 62

Extended Binary Coded Decimal
Interchange Code
(EBCDIC), 99

extended-precision floating-point
format, 69

external fragmentation
in filesystems, 398
in a memory manager, 344

F
falling edge of a clock, 148
Fast SCSI, 369
Fast and Wide SCSI, 369
FAT (file allocation table), 400, 402
Fibre Channel, 374
fields in a record/structure, 181
file access performance, 407
file allocation strategies, 399
file allocation table (FAT), 400, 402
file fragmentation, 408
file manager, 396
file storage (in the memory hierarchy), 321
filesystems, 396

bitmap scheme pros and cons, 399
defragmenting, 408
directory, 398
FAT pros and cons, 402
fragmentation, 398
free-space bitmaps, 399
lists of blocks allocation scheme, 403
performance of, 407
sequential, 397
synchronous I/O, 409
three-tiered block scheme, 405

fine-grained parallelism, 280
first-fit memory allocation, 343
first-in, first-out (FIFO) cache

replacement policy, 330
fixed-point representation, 30
flags register, 257
flash drive write performance, 395
flash storage, 393
flip-flops, 245
floating-point arithmetic, 61
floating-point comparisons, 65
floating-point division, 90
floating-point exceptions, 74
floating-point formats, 66

double-precision, 69
extended-precision, 69
quad-precision, 70
single-precision, 67

Index 447

floating-point operations
addition, 75
division, 86, 90
multiplication, 86
subtraction, 75

floating-point unit (FPU), 30
floor() function, 72
floppy disk drives, 382
floptical drives, 389
flushing the pipeline, 271
FM synthesis, 420
forcing bits to 0, 44
forcing bits to 1, 44
formatted text I/O (files), 409
four-way set associative caches, 328
FPU (floating-point unit), 30
fragmentation, 408
free() memory allocation function,

161, 346
free-space bitmaps (filesystems), 399
full adder, 240
function numbers, Boolean, 222
functional units, 263
fusion drive, 396

G
game controllers, 419
garbage collection, 117, 161, 345
General MIDI (GM), 422
general protection fault, 339
generics, 213
geometries of disk drives, 387
glyphs, 10, 103
granularity of memory allocation, 347
grapheme clusters, 103, 105
great code, 5
guard bits, 71
guard digits, 63

H
half adder, 240
handshaking, 361
hard drives, 382
hardcopy storage (in the memory

hierarchy), 322
Harvard architecture, 272
heap, 161, 343
hexadecimal numbering system, 15
hexadecimal-to-binary conversions, 16
high-order bit, 21
high-order byte, 21

high-speed devices, 357
HLA (High-Level Assembly) strings, 112
HLA (High-Level Assembly) unions, 190
hot-pluggable devices, 374
hot-swappable devices, 369
hybrid drives, 396
HyCode character set, 122
Hz (hertz), 148

I
IDE/ATA interface, 372
identity elements for a Boolean

operator, 219
IEEE floating-point formats, 66
implementing arrays in Swift, 179
implementing pointers, 160
implication (logical function), 222
indexed addressing mode, 156, 293
indirect addressing mode, 155, 293
Industry Standard Architecture (ISA)

bus, 357
inexact result (floating-point

exception), 75
infinity (floating-point), 73
information hiding (encapsulation), 205
inheritance, 194, 196
inhibition (logical function), 222
initializing arrays in Swift, 168
input ports, 350
instruction design goals, 285
instruction pointer register, 253
instruction set architecture (ISA), 284
interfaces (Java), 210
interleaving sectors on a disk drive, 386
internal fragmentation, 347, 398
interrupt service routine (ISR), 364
interrupt transfers (USB), 378
interrupts, 363
invalid operation (floating-point

exception), 74
inverse element (for Boolean

operators), 219
inverted page tables, 335
inverting bits, 44
I/O (input/output), 131

direct memory access (DMA),
355, 356

I/O-mapped I/O, 355
memory-mapped I/O, 354–355
speed hierarchy, 356

ISA (Industry Standard Architecture)
bus, 357

448 Index

ISA (instruction set architecture), 284
ISO transfers (USB), 379
ISR (interrupt service routine), 364

J
Java interfaces, 210
Java strings, 114
jnz instruction, 255, 258
joysticks, 419
jump instructions, 299

K
kernel mode (CPU), 346
keyboard

keybounce, 414
modifier keys, 415
scan code, 415

L
L1 cache, 320
L2 cache, 320
L3 cache, 321
latency (of a cache access), 325
Latin-1 character set, 105
least recently used (LRU) cache

replacement algorithm, 330
least significant bit, 21
left associative operations, 220
legacy peripherals, 413
legacy support, 284
length-prefixed strings, 111
levels

cache, 320–321
RAID, 388–389

Linear Tape-Open (LTO), 392
line feed character, 97
list representation of character sets, 120
lists of blocks allocation scheme

(filesystems), 403
literals, Boolean, 220, 225
little-endian data organization, 142

issues when using unions, 192
local bus for a CPU, 357
locality of reference, 323
logical AND operation, 42, 218, 222
logical complement operation, 218
logical exclusive-OR operation, 42, 222
logical inhibition, 221
logical NAND operation, 222
logical NOR operation, 222

logical NOT operation, 42, 44, 218, 222
logical OR operation, 42, 218, 222
logical XOR operation, 42
long word, 22
loop instruction, 255, 259
lowercase alphabetic characters, 97
low-order bit, 21
low-order byte, 21
low-speed devices, 356
LPT printer ports, 415
LTO (Linear Tape-Open), 392

M
machine code, 296
machine organization, 3
malloc() function, 161, 346

string data allocation and, 116
mantissa, 62
mapping method for Boolean function

simplification, 229
masking, 44
mass storage device filesystems, 396
maximum addressable memory, 133
medium-speed devices, 357
memory

access, 131, 148
addressing modes, 154
allocation, 161

search algorithms, 343
best-fit algorithm in a memory

allocator, 343
first-fit algorithm in a memory

allocator, 343
granularity of memory

allocation, 347
leaks, 117
organization, 131
protection, 332
storage of records, 184
virtual, 332

memory banks, 138
memory cells, 245
memory paging, 332
memory management unit (MMU), 335
memory-mapped files, 335, 410
memory-mapped I/O, 354
mice, 417
microcode, 254
microinstructions, 254
MIDI (Musical Instrument Digital

Interface) files, 422

Index 449

MIMD (multiple instruction, multiple
data) execution model, 279

miniport drivers, 372, 373
miserly approach to comparing

floating-point numbers, 66
modifier keys (keyboard), 415
mod-reg-r/m byte (addressing mode

byte on x86), 303
modulo-n counters, 47
most significant bit, 21
mov instruction, 256, 298
multidimensional arrays, 172, 177–178
multilevel page tables, 334
multiple inheritance, 206
multiple instruction, multiple data

(MIMD) execution
model, 279

multiprocessing, 280
Musical Instrument Digital Interface

(MIDI) files, 422

N
NaN representations, 73
NAND gate, 238
NAND operation, 222
near-line memory storage systems, 322
near-line storage subsystems, 390
network storage (in the memory

hierarchy), 321
new() memory allocation function,

161, 342
nibbles, 20
Non-Uniform Memory Access

(NUMA), 321
nonvolatile storage, 393
normal forms (Unicode), 106
normalization, 70

in Unicode, 105, 106
NOR operation, 222
NOT instruction (Y86), 298
NOT operation, 42, 44, 218, 222
NuBus, 357
NULL pointer references, 339
NUMA (Non-Uniform Memory

Access), 321
number of Boolean functions, 221
numbering systems, 11
numbers, definition of 10
numeric digit characters, 97
numeric overflow (floating-point

exception), 75
numeric representation, 9

numeric/string conversions, 18
numeric underflow (floating-point

exception), 75
n-way set associative cache, 328

O
octal (base-8) numbering system, 17
offline storage subsystems, 322
one-way set associative cache, 326
online memory subsystems, 322
opcodes, 254, 285

assigning, 290
operating system file managers, 396
operation codes. See opcodes
operations involving infinity, 74
optical drives, 389
ordinal data types, 169
OR operation, 42, 218, 222
OS API calls, 346
out-of-order execution, 277
output ports, 350
overhead of OS API calls, 346

P
packed data, 51
packing data, 55
paging, memory, 332
parallelism, 260
parallel ports

acknowledge line, 416
busy line, 416
strobe line, 416

parallel processing, 279
Pascal

arrays, 169
records, 181
unions (case-variant records), 187

PATA interface, 374
patch-board programming, 253
PC parallel printer port, 350
PCI (Peripheral Component

Interconnect) bus, 357
PC peripherals, 413
peer-to-peer buses, 370
performance loss due to memory

allocation, 348
performance of OS API calls, 346
Peripheral Component Interconnect

(PCI) bus, 357
peripheral devices, PC, 413
pipeline flushing, 271

450 Index

pipeline hazards, 273
pipeline stalls, 271
pipelining, 267
platter (hard disk media), 383
plug-and-play devices, 374
pointer arithmetic, 162
pointers, 342

address assignment in byte-
addressable memory, 162

base addresses (of an allocated
block), 162

types of, 159, 160
pointing devices, 417
polled I/O, 363
polymorphism, 201
positional notation system, 11
powerset representation of character

sets, 119
precedence, 220
prefetch queues, 265
principle of duality, 220
private keyword (C++), 205
processor size, 132
product of maxterms

canonical form, 228
representation, 224

programmed I/O, 355
programming audio devices, 423
program status word. See flags register
protected keyword (C++), 205
protected-mode operation, 364
protocols (Swift), 210
pseudo-dynamic strings, 116
public keyword (C++), 205
Python strings, 116

Q
QNaN (quiet not-a-number), 73
quad-precision floating-point format, 70
quad word, 22
quiet not-a-number (QNaN), 73

R
radix point, 12
RAID (redundant array of inexpensive

disks) systems, 388–389
RAM disks, 395
random logic CPU design, 254
rational representation of fractional

values, 35
read control line, 134

reading from memory, 136
read-only port (I/O), 350
read operations on the bus, 149
read/write ports, 351
record base address, 185
records

in C/C++ (structs), 182
in HLA, 183
in Pascal, 181
in Swift (tuples), 183

reduced instruction set computer
(RISC), 260

redundant array of inexpensive disks
(RAID), 388–389

reel-to-reel drives, 393
reference counters, 118

reference counting for strings, 117
registers

electronic implementation of, 247
in the memory hierarchy, 320
renaming, 277

relative-position pointing devices, 417
replacement policy for caches, 329
representing arrays in memory, 170
representing character sets, 119–120
representing dates, 51
right associative operations, 220
RISC (reduced instruction set

computer), 260
rising edge of a clock, 148
robotic jukebox (optical storage), 390
rotational latency (of a disk drive), 386
rounding floating-point results, 71–72
row-major ordering, 173

S
sampling (audio), 421
SATA interface, 374
saturation, 28
scalar, Unicode, 102
scaled-index addressing modes, 157, 306
scaled-index byte (sib), 307
scaled numeric formats, 33
scan code, keyboard, 415
schematic diagram symbols, 238
scientific notation, 62
SCSI (Small Computer System

Interface), 367
command set, 370
miniport drivers, 372

sectors (on a disk), 383
semiconductor (RAM) disks, 395

Index 451

sequential filesystems, 397
sequential logic, 245
serialized operations, 147
serial ports, 417
set/reset (SR) flip-flop, 245
seven-segment decoder, 241
shift left operation, 48
shift registers, 247
shift right operation, 48
sib (scaled-index byte), 307
signaling not-a-number (SNaN), 73
signals (interrupts), 364
sign bit, 23
sign contraction, 26
sign extension, 26
signed integer values, 23
significant digits, 62
simplification of Boolean functions, 229
single instruction, multiple data (SIMD)

execution model, 279
single instruction, single data (SISD)

execution model, 279
single-precision floating-point

format, 67
size of a processor, 132
sizeof() function (C/C++), 162
Small Computer System Interface

(SCSI), 367, 370, 372
SNaN (signaling not-a-number), 73
solid-state drives (SSDs), 381, 395, 396
sound cards, 419
spatial locality of reference,

151, 322, 323
SSDs (solid-state drives), 381, 395, 396
stack-pointer register, 342
stale character data, 117
starvation (USB), 378
static strings, 116
stored program computer, 253
storing double words in byte-

addressable memory, 136
storing words in byte-addressable

memory, 136
strain gauges (pointing devices), 418
stralloc() memory allocation

function, 117
streaming data, 391
streaming tape drives, 393
strings

C#, 115
Delphi, 118
dynamic, 117

formats, 110
Java, 114
pseudo-dynamic, 116
Python, 116
reference counting, 117
static, 116
Swift, 115
zero-terminated, 110

strobe line (parallel port), 416
struct assembler directive, 183
structs in C/C++, 182
structures, 181–183
subtracting an integer from a

pointer, 164
subtracting a pointer from a

pointer, 164
sum of minterms, 224, 225, 227
superscalar operation, 275–277
surrogate code points in Unicode,

102, 103
Swift

arrays, 167
implementation, 179
initialization, 168

protocols, 210
records (tuples), 183
strings, 115
unions, 189

synchronous I/O (filesystems), 409
system buses, 132, 357
system clock, 147

period, 148

T
tally/slash numeric representation, 11
tape drives, 392
tbyte, 22
templates, 213
temporal locality of reference,

151, 322, 323
terms (Boolean), 223, 224
testing bits for 0 or 1, 45
theorems of Boolean algebra, 219
thrashing (cache), 331
three-level page tables, 335
three-tiered block scheme

(filesystems), 405
timeouts on peripheral devices, 362
TLB (translation lookaside buffer), 334
touch screens, 418
trackpads, 417
trackpoints, 418

452 Index

tracks (on a disk), 383
track-to-track seek time, 384

translation lookaside buffer (TLB), 334
truncating floating-point numbers, 71
truth tables, 43, 220
tuples (records) in Swift, 183
two’s complement numbering system, 23
two-level caching system, 153
two-way set associative caches, 328

U
unconditional jumps (Y86), 299
Unicode

BMP (Basic Multilingual Plane), 102
canonical equivalence, 105
character names, 103
code planes, 102
code points, 101
combining characters, 108, 109
encodings, 107, 108

UTF-8, 107
UTF-16, 107
UTF-32, 107

multilingual planes, 102
normal forms, 106
scalar, 102
surrogate code points, 102
Unicode character set, 101

uninitialized data sections in
memory, 341

unions
in C/C++, 187
endian issues, 192
in HLA, 190
memory storage, 190

unique Boolean functions, 221
universal Boolean function (NAND

gate), 238
Universal Serial Bus. See USB
unpacking data, 55
unsigned integer values, 23
up codes on the keyboard, 415
uppercase alphabetic characters, 97
USB, 374–375

bulk transmissions, 377, 378
bus enumeration, 380
client drivers, 380
control transmissions, 377
host controller stack, 376
interrupt transmissions, 377, 378
isochronous transmissions, 377, 379

starvation, 378
USB-c, 379

user mode (CPU), 346
UTF-8 encoding (Unicode), 107
UTF-16 encoding (Unicode), 107
UTF-32 encoding (Unicode), 107

V
variable-length instructions, 289
very long instruction word (VLIW)

architectures, 278, 279
virtual memory, 321, 332
virtual method tables (VMTs), 194
virtual sound canvas, 423
von Neumann architecture, 131

W
wait states, 150
wavetable synthesis, 420
Wide SCSI, 369
words, 21

accessing in byte addressable
memory, 136

stored at odd addresses, 139
working sets, 334
WORM (write-once, read-many), 391
write control line, 134
write lifetime (flash device), 394
write-once, read-many (WORM), 391
write-only port (I/O), 350
write operations on the bus, 149
write performance of flash drives, 395
write-through cache write policy, 330
writing to memory, 135

X
XOR (exclusive-OR) operation, 42, 222

Y
Y86 hypothetical processor, 291
Y86 instructions, 291

Z
zero extension, 26
zero flag, 255
zero-terminated strings, 110

disadvantages, 111

RESOURCES
Visit https://nostarch.com/writegreatcode1_2e for resources, errata, and more
information.

phone:
1.800.420.7240 or

1.415.863.9900

email:
sales@nostarch.com

web:
www.nostarch.com

More no-nonsense books from NO STARCH PRESS

WRITE GREAT CODE, VOLUME 2,
2ND EDITION
Thinking Low-Level, Writing High-Level
by Randall Hyde

July 2020, 656 pp., $49.95
ISBN: 978-1-71850-038-9

WRITE GREAT CODE, VOLUME 3
Engineering Software
by randall hyde

july 2020, 360 pp., $49.95
ISBN 978-1-59327-979-0

EFFECTIVE C
An Introduction to Professional
C Programming
by robert c. seacord

july 2020, 272 pp., $59.95
ISBN 978-1-71850-104-1

THE RUST PROGRAMMING
LANGUAGE
(Covers Rust 2018)
by steve klabnik and
carol nichols

august 2019, 560 pp., $39.95
ISBN 978-1-71850-044-0

PYTHON CRASH COURSE,
2ND EDITION
A Hands-On, Project-Based Introduction
to Programming
by eric matthes

may 2019, 544 pp., $39.95
ISBN 978-1-59327-928-8

THE SECRET LIFE OF PROGRAMS
Understand Computers—Craft Better Code
by jonathan e. steinhart

august 2019, 504 pp., $44.95
ISBN 978-1-59327-970-7

https://nostarch.com/writegreatcode1_2e

SHELVE IN:
COM

PUTERS/PROGRAM
M

ING

$49.95 ($65.95 CDN)
www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT™

M A C H I N E
A R C H I T E C T U R E

F O R M E R E M O R T A L S

M A C H I N E
A R C H I T E C T U R E

F O R M E R E M O R T A L S

M A C H I N E
A R C H I T E C T U R E

F O R M E R E M O R T A L S

M A C H I N E
A R C H I T E C T U R E

F O R M E R E M O R T A L S

NEW COVERAGE OF:

• Programming languages like Swift and Java

• Code generation on modern 64-bit CPUs

• ARM processors on mobile phones and tablets

• Newer peripheral devices

• Larger memory systems and large-scale SSDs

This first volume of Randall Hyde’s classic Write Great
Code series dives into machine organization without
the extra overhead of learning assembly language
programming. Written for high-level language program-
mers, Understanding the Machine fills in the low-level
details of machine organization that are often left out
of computer science and engineering courses. You’ll
learn:

• How the machine represents numbers, strings, and
high-level data structures, so you’ll know the inherent
cost of using them

• How to organize your data, so the machine can
access it efficiently

• How the CPU operates, so you can write code that
works the way the machine does

• How I/O devices operate, so you can maximize your
application’s performance when accessing those devices

• How to best use the memory hierarchy to produce the
fastest possible programs

Great code is efficient code. But before you can write
truly efficient code, you must understand how computer

systems execute programs and how abstractions in
programming languages map to the machine’s low
level hardware. After all, compilers don’t write the best
machine code; programmers do. This book gives you
the foundation upon which all great software is built.

A B O U T T H E A U T H O R

Randall Hyde is the author of The Art of Assembly
Language and the three volume Write Great Code
series (all No Starch Press). He is also the co-author of
The Waite Group’s MASM 6.0 Bible. He has written
for Dr. Dobb’s Journal and Byte, and professional and
academic journals.

	Brief Contents
	Contents
	Acknowledgments
	Chapter 1: What You Need to Know to Write Great Code
	The Write Great Code Series
	What This Book Covers
	Assumptions This Book Makes
	Characteristics of Great Code
	The Environment for This Book
	Additional Tips
	For More Information

	Chapter 2: Numeric Representation
	What Is a Number?
	Numbering Systems
	The Decimal Positional Numbering System
	Radix (Base) Values
	The Binary Numbering System
	The Hexadecimal Numbering System
	The Octal Numbering System

	Numeric/String Conversions
	Internal Numeric Representation
	Bits
	Bit Strings

	Signed and Unsigned Numbers
	Useful Properties of Binary Numbers
	Sign Extension, Zero Extension, and Contraction
	Saturation
	Binary-Coded Decimal Representation
	Fixed-Point Representation
	Scaled Numeric Formats
	Rational Representation
	For More Information

	Chapter 3: Binary Arithmetic and Bit Operations
	Arithmetic Operations on Binary and Hexadecimal Numbers
	Adding Binary Values
	Subtracting Binary Values
	Multiplying Binary Values
	Dividing Binary Values

	Logical Operations on Bits
	Logical Operations on Binary Numbers and Bit Strings
	Useful Bit Operations
	Testing Bits in a Bit String Using AND
	Testing a Set of Bits for Zero/Not Zero Using AND
	Comparing a Set of Bits Within a Binary String
	Creating Modulo-n Counters Using AND

	Shifts and Rotates
	Bit Fields and Packed Data
	Packing and Unpacking Data
	For More Information

	Chapter 4: Floating-Point Representation
	Introduction to Floating-Point Arithmetic
	IEEE Floating-Point Formats
	Single-Precision Floating-Point Format
	Double-Precision Floating-Point Format
	Extended-Precision Floating-Point Format
	Quad-Precision Floating-Point Format

	Normalization and Denormalized Values
	Rounding
	Special Floating-Point Values
	Floating-Point Exceptions
	Floating-Point Operations
	Floating-Point Representation
	Floating-Point Addition and Subtraction
	Floating-Point Multiplication and Division

	For More Information

	Chapter 5: Character Representation
	Character Data
	The ASCII Character Set
	The EBCDIC Character Set
	Double-Byte Character Sets
	The Unicode Character Set
	Unicode Code Points
	Unicode Code Planes
	Surrogate Code Points
	Glyphs, Characters, and Grapheme Clusters
	Unicode Normals and Canonical Equivalence
	Unicode Encodings
	Unicode Combining Characters

	Character Strings
	Character String Formats
	Types of Strings: Static, Pseudo-Dynamic, and Dynamic
	Reference Counting for Strings
	Delphi Strings
	Custom String Formats

	Character Set Data Types
	Powerset Representation of Character Sets
	List Representation of Character Sets

	Designing Your Own Character Set
	Designing an Efficient Character Set
	Grouping the Character Codes for Numeric Digits
	Grouping Alphabetic Characters
	Comparing Alphabetic Characters
	Grouping Other Characters

	For More Information

	Chapter 6: Memory Organization and Access
	The Basic System Components
	The System Bus

	Physical Organization of Memory
	8-Bit Data Buses
	16-Bit Data Buses
	32-Bit Data Buses
	64-Bit Data Buses
	Small Accesses on Non-80x86 Processors

	Big-Endian vs. Little-Endian Organization
	The System Clock
	Memory Access and the System Clock
	Wait States
	Cache Memory

	CPU Memory Access
	The Direct Memory Addressing Mode
	The Indirect Addressing Mode
	The Indexed Addressing Mode
	The Scaled-Index Addressing Modes

	For More Information

	Chapter 7: Composite Data Types and Memory Objects
	Pointer Types
	Pointer Implementation
	Pointers and Dynamic Memory Allocation
	Pointer Operations and Pointer Arithmetic

	Arrays
	Array Declarations
	Array Representation in Memory
	Accessing Elements of an Array
	Multidimensional Arrays

	Records/Structures
	Records in Pascal/Delphi
	Records in C/C++
	Records in HLA
	Records (Tuples) in Swift
	Memory Storage of Records

	Discriminant Unions
	Unions in C/C++
	Unions in Pascal/Delphi
	Unions in Swift
	Unions in HLA
	Memory Storage of Unions
	Other Uses of Unions

	Classes
	Inheritance
	Class Constructors
	Polymorphism
	Abstract Methods and Abstract Base Classes

	Classes in C++
	Abstract Member Functions and Classes in C++
	Multiple Inheritance in C++

	Classes in Java
	Classes in Swift
	Protocols and Interfaces
	Generics and Templates
	For More Information

	Chapter 8: Boolean Logic and Digital Design
	Boolean Algebra
	The Boolean Operators
	Boolean Postulates
	Boolean Operator Precedence

	Boolean Functions and Truth Tables
	Function Numbers
	Algebraic Manipulation of Boolean Expressions
	Canonical Forms
	Sum-of-Minterms Canonical Form and Truth Tables
	Algebraically Derived Sum-of-Minterms Canonical Form
	Product-of-Maxterms Canonical Form

	Simplification of Boolean Functions
	What Does This Have to Do with Computers, Anyway?
	Correspondence Between Electronic Circuits and Boolean Functions
	Combinatorial Circuits
	Sequential and Clocked Logic

	For More Information

	Chapter 9: CPU Architecture
	Basic CPU Design
	Decoding and Executing Instructions: Random Logic vs. Microcode
	Executing Instructions, Step by Step
	The mov Instruction
	The add Instruction
	The jnz Instruction
	The loop Instruction

	RISC vs. CISC: Improving Performance by Executing More, Faster, Instructions
	Parallelism: The Key to Faster Processing
	Functional Units
	The Prefetch Queue
	Conditions That Hinder the Performance of the Prefetch Queue
	Pipelining: Overlapping the Execution of Multiple Instructions
	Instruction Caches: Providing Multiple Paths to Memory
	Pipeline Hazards
	Superscalar Operation: Executing Instructions in Parallel
	Out-of-Order Execution
	Register Renaming
	VLIW Architecture
	Parallel Processing
	Multiprocessing

	For More Information

	Chapter 10: Instruction Set Architecture
	The Importance of Instruction Set Design
	Basic Instruction Design Goals
	Choosing Opcode Length
	Planning for the Future
	Choosing Instructions
	Assigning Opcodes to Instructions

	The Y86 Hypothetical Processor
	Y86 Limitations
	Y86 Instructions
	Operand Types and Addressing Modes on the Y86
	Encoding Y86 Instructions
	Examples of Encoding Y86 Instructions
	Extending the Y86 Instruction Set

	Encoding 80x86 Instructions
	Encoding Instruction Operands
	Encoding the add Instruction
	Encoding Immediate (Constant) Operands on the x86
	Encoding 8-, 16-, and 32-Bit Operands
	Encoding 64-Bit Operands
	Alternate Encodings for Instructions

	Implications of Instruction Set Design to the Programmer
	For More Information

	Chapter 11: Memory Architecture and Organization
	The Memory Hierarchy
	How the Memory Hierarchy Operates
	Relative Performance of Memory Subsystems
	Cache Architecture
	Direct-Mapped Cache
	Fully Associative Cache
	n-Way Set Associative Cache
	Cache-Line Replacement Policies
	Cache Write Policies
	Cache Use and Software

	NUMA and Peripheral Devices
	Virtual Memory, Memory Protection, and Paging
	Writing Software That Is Cognizant of the Memory Hierarchy
	Runtime Memory Organization
	Static and Dynamic Objects, Binding, and Lifetime
	The Code, Read-Only, and Constant Sections
	The Static Variables Section
	The Storage Variables Section
	The Stack Section
	The Heap Section and Dynamic Memory Allocation

	For More Information

	Chapter 12: Input and Output
	Connecting a CPU to the Outside World
	Other Ways to Connect Ports to the System
	I/O Mechanisms
	Memory-Mapped I/O
	I/O-Mapped Input/Output
	Direct Memory Access

	I/O Speed Hierarchy
	System Buses and Data Transfer Rates
	Performance of the PCI Bus
	Performance of the ISA Bus
	The AGP Bus

	Buffering
	Handshaking
	Timeouts on an I/O Port
	Interrupts and Polled I/O
	Protected-Mode Operation and Device Drivers
	The Device Driver Model
	Communication with Device Drivers

	For More Information

	Chapter 13: Computer Peripheral Buses
	The Small Computer System Interface
	Limitations
	Improvements
	SCSI Protocol
	SCSI Advantages

	The IDE/ATA Interface
	The SATA Interface
	Fibre Channel

	The Universal Serial Bus
	USB Design
	 USB Performance
	Types of USB Transmissions
	USB-C
	USB Device Drivers

	For More Information

	Chapter 14: Mass Storage Devices and Filesystems
	Disk Drives
	Floppy Disk Drives
	Hard Drives
	RAID Systems
	Optical Drives
	CD, DVD, and Blu-ray Drives

	Tape Drives
	Flash Storage
	RAM Disks
	Solid-State Drives
	Hybrid Drives
	Filesystems on Mass Storage Devices
	Sequential Filesystems
	Efficient File Allocation Strategies

	Writing Software That Manipulates Data on a Mass Storage Device
	File Access Performance
	Synchronous and Asynchronous I/O
	The Implications of I/O Type
	Memory-Mapped Files

	For More Information

	Chapter 15: Miscellaneous Input and Output Devices
	Exploring Specific PC Peripheral Devices
	The Keyboard
	The Standard PC Parallel Port
	Serial Ports

	Mice, Trackpads, and Other Pointing Devices
	Joysticks and Game Controllers
	Sound Cards
	How Audio Interface Peripherals Produce Sound
	The Audio and MIDI File Formats
	Programming Audio Devices

	For More Information

	Afterword: Thinking Low-Level, Writing High-Level
	Appendix A: ASCII Character Set
	Glossary
	Index

